Use of zwitterionic ligands in uranyl hybrid materials: Explorations on the structural features that control water ordering and mobility

Maurice K. Payne, Rebecca C. Laird, Margaret A. Schnell, Samantha R. Mackin, and Tori Z. Forbes*

Department of Chemistry, University of Iowa, Iowa City, IA 52242 *corresponding author: <u>tori-forbes@uiowa.edu</u>

Additional crystallographic information

Table S1. Select bond distances (Å) and angles (°) for UIM-5.

U1-01'	1.774(2)
U1-O2'	1.775(2)
U1-01	2.455(3)
U1-O2	2.376(3)
U1-O3	2.347(3)
U1-O4	2.316(3)
U1-O5	2.372(3)
01'-U1-O2'	179.29(11)

Table S2. Select bond distances (Å) and angles (°) for UIM-2A.

U1-01'	1.7804(19)
U1-O2'	1.7670(19)
U1-01	2.4903(18)
U1-O2	2.5147(18)
U1-O3	2.3272(18)
U1-O4	2.3277(18)
U1-05	2.2900(18)
01'-U1-O2'	179.25(8)

Table S3. Select bond distances (Å) and angles (°) for UIM-2B.

U1-01'	1.775(3)
U1-O2'	1.778(3)
U1-01	2.327(3)
U1-O2	2.492(3)
U1-O3	2.478(3)
U1-O4	2.273(3)
U1-05	2.346(3)
01'-U1-O2'	176.81(12)

U1-01'	1.7820(19)
U1-O2'	1.7736(19)
U1-01	2.538(2)
U1-O2	2.4754(18)
U1-O3	2.3244(18)
U1-O4	2.294(2)
U1-05	2.3705(19)
01'-U1-O2'	176.78(9)

 Table S4.
 Select bond distances (Å) and angles (°) for UIM-2C.

Figure S1. Extended lattice for **UIM-2A** with dominant π - π interaction highlighted with the green square. U represented by yellow polyhedra, whereas the O, C, and N atoms are depicted as red, black and light blue spheres. H atoms and lattice water molecules omitted for clarity.

Figure S2. Extended lattice for **UIM-2B**. U represented by yellow polyhedra, whereas the O, C, and N atoms are depicted as red, black and light blue spheres. H atoms and lattice water molecules omitted for clarity.

Figure S3. Extended lattice for **UIM-2C** depicting the variations in ligand binding modes. The dashed parallelogram highlights the differences in the crystal packing that leads to structural variations within the UIM-2 polymorphs. U represented by yellow polyhedra, whereas the O, C, and N atoms are depicted as red, black and light blue spheres. H atoms and lattice water molecules omitted for clarity.

Figure S4. Representative π - π interactions for **UIM-2A** with centroid to centroid distances and interplanar angles for this interaction highlighted in green.

Figure S5. Representative π - π interactions for **UIM-2B** with centroid to centroid distances and interplanar angles for this interaction highlighted in green.

Figure S6. Representative π - π interactions for **UIM-2C** with centroid to centroid distances and interplanar angles for this interaction highlighted in green.

Figure S7. Experimental and calculated pXRD pattern of UIM-5.

2 Theta Figure S8. Experimental and calculated pXRD pattern of UIM-2A.

Figure S9. Experimental and calculated pXRD pattern of UIM-2B.

UIM-2C pXRD

Figure S10. Experimental and calculated pXRD pattern of UIM-2C.

Figure S11. Thermogravimetric analysis of UIM-5.

Figure S12. Thermogravimetric analysis of UIM-2A.

Figure S13. Thermogravimetric analysis of UIM-2B.

Figure S14. Thermogravimetric analysis of UIM-2C.

Compound	С	С	Н	Н	Ν	Ν
_	theory %	found %	theory %	found %	theory %	found %
UIM-5	22.59	22.53 ±	3.52	3.39 ±	7.53	7.52 ±
		0.14		0.044		0.045
UIM-2A	25.01	$24.75 \pm$	2.70	2.52 ±	8.33	7.17 ±
		0.24		0.042		0.31
UIM-2B	25.01	$25.33 \pm$	2.70	$2.40 \pm$	8.33	8.19 ±
		0.028		0.061		0.42
UIM-2C	25.01	$25.79 \pm$	2.70	2.13 ±	8.33	8.52 ±
		0.075		0.071		0.023
UIM-0	26.43	$24.67 \pm$	2.22	2.68 ±	8.81	8.40 ±
		0.061		0.017		0.28

Table S5. CHN Analysis for UIM series.

Table S6. Comparing vibrational spectroscopies to uranyl bond length.^a

	Raman		Experimental Uranyl Bonds			Infrared	
Compound	v_1 (sym)	Calc U-O	U1-01'	U1-O2'	Average	v_3 (asym)	Calc U-O
		distance					distance
		(Å)					(Å)
UIM-5	835	1.776	1.774	1.775	1.775	906	1.780
UIM-2A	834	1.777	1.7804	1.767	1.774	908	1.779
UIM-2B	834	1.777	1.775	1.778	1.777	912	1.776
UIM-2C	830	1.781	1.782	1.7736	1.778	910	1.777
UIM-0	832	1.779	1.771	1.786	1.779	906	1.780

a. Bartlett, J.R., Cooney, R.P., J. Mol. Struct., 1989, 193, 295