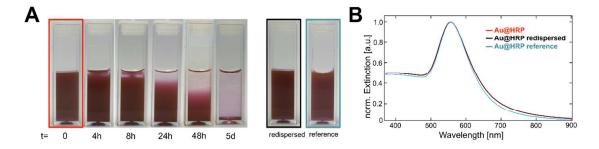
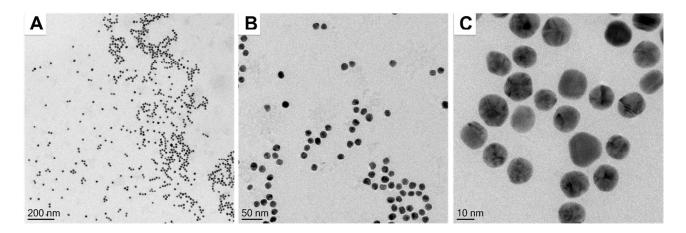
Supporting Information


Enzymatic Catalysis at Nanoscale: Enzyme-coated Nanoparticles as Colloidal Biocatalysts for Polymerization Reactions

Lucas Philipp Kreuzer¹, Max Julius Männel^{1,4}, Jonas Schubert^{1,4}, Roland P. M. Höller^{1,4}, Munish Chanana^{1,2,3*}.

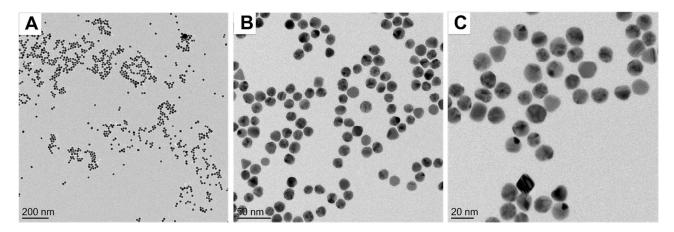
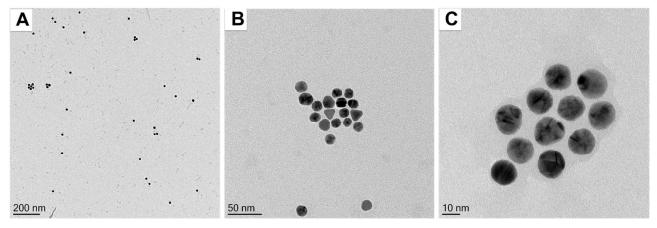
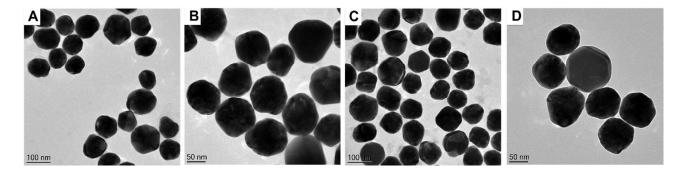

1 Physical Chemistry II, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany.

2 Institute of Building Materials, ETH Zürich, Stefano-Franscini-Platz 3, 8093, Zürich, Switzerland. 3 Laboratory for Applied Wood Materials, EMPA Dübendorf, Ueberlandstr. 129, 8600, Dübendorf, Switzerland.

4 Leibniz Institute for Polymer Research, Hohe Str. 6, 01069, Dresden, Germany

Figure S1. Sedimentation behavior of larger Au@HRP NPs (d ~ 100 nm). A) Sedimentation of Au@HRP NPs that were used for the ATRP reaction over time. After 5 days, the gold NP sediment completely and can be redispersed completely, without any aggregation, as revealed by the LSPR band (B). UV-Vis spectra of Au@HRP (red), redispersed Au@HRP (black) and a reference (light blue). The reference is the Au@HRP dispersion that was not used for the ATRP reaction. The corresponding images of the nanoparticle dispersions are framed with the color of the graphs.

Figure S2. TEM images of citrate-stabilized 15 nm gold nanoparticles. The scale bar corresponds to 200 nm (A), 50 nm (B) and 10 nm (C).

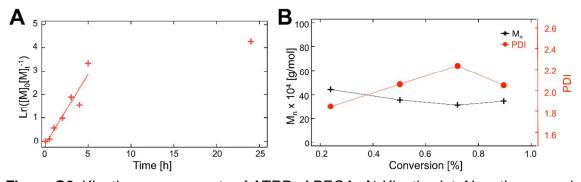

Figure S3. TEM images of HRP-coated 15 nm gold nanoparticles. The scale bar corresponds to 200 nm (A), 50 nm (B) and 20 nm (C).

Figure S4. TEM images of HRP-coated 15 nm gold nanoparticles after 3 full polymerization and recovery cycles. The scale bar corresponds to 200 nm (A), 50 nm (B) and 10 nm(C).

Figure S5. TEM images of HRP-coated ~100 nm gold nanoparticles before (A and B) and after 3 full polymerization and recovery cycles (C and D). The scale bars corresponds to 100 nm (A, C) and 50 nm (B, D). The average size of the nanoparticles is 98.7 ± 18.74 nm.

Figure S6. Kinetic measurements of ATRP of PEGA: A) Kinetic plot. Negative normal logarithm as function of reaction time. B) Molecular weight (+) and PDI (•) as function of conversion. ¹H-NMR data: ¹H NMR (300 MHz, DMSO-d₆, δ): 6.25 (d, J=15Hz, 1H, C=CH₂), 6.10 (m, 1H, CH₂=CH), 5.90 (d, J=9Hz, 1H, C=CH₂), 3.58-3.45 (m, 32H, [-O-CH₂-CH₂-O]₈), 3.2 (s, 3H, CH₃)

Table 1. GPC results of the ATR	P of NIPAAM	and DEGMA	using Au15@HRP
(overall 3 polymerization cycles)			

	PNIPAAM			PDEGMA		
cycle	M _n [g/mol]	M _w [g/mol]	PDI	M _n [g/mol]	M _w [g/mol]	PDI
1	42900±5750	104000±16000	2.4±0.1	20000±2780	35700±5850	1.8±0.1
2	28300±6510	77100±19500	2.7±0.3	20100±2930	28800±12300	1.9±0.1
3	35200±3260	81900±11500	2.3±0.1	21000±1130	36900±2090	1.8±0.2

The constant values for molecular weight and PDI, the high colloidal stability as well as the nearly full recovery of the Au15@HRP NPs suggest clearly that more than three ATRP cycles can be realized with the same HRP-coated gold NP dispersions.