Supporting Information

Phenotypic Optimization of Urea-Thiophene Carboxamides to Yield Potent, Well Tolerated and Orally Active Protective Agents Against Aminoglycoside-Induced Hearing Loss
Sarwat Chowdhury, Kelly N. Owens, R. Jason Herr, Qin Jiang, Xinchao Chen, Graham Johnson, Vincent E. Groppi, David W. Raible, Edwin W Rubel and Julian A. Simon

Figure S1: Reproducibility of Zebrafish Lateral Line Hair Cells Viability Assay; Table S1: Pharmacokinetic and Toxicological Properties of 90; Figure S2 \& S3, Figures S2, S3 and Table S2: Compound 90 Crystal Structure Determination Tables S4 \& S5: Non-interference in Antimicrobial Activity of Aminoglycoside Antibiotics; Full Experimental Procedures and Characterization of Compounds 1-99 (PDF)

SMILES strings for reported compounds (CSV)

Assessment of Compound Efficacy in Zebrafish Lateral Line Hair Cells:

Figure S1. Reproducibility of Zebrafish Lateral Line Hair Cell Protection Assay.
Zebrafish larvae were incubated with 1 (ORC-001) and neomycin ($200 \mu \mathrm{M}$) as described. Hair cell survival was determined as described. Results of two separate runs on two different dates are shown.

Table S1: Pharmacokinetic and toxicological properties of ORC-13661

Physical Characteristics	Results
Molecular Weight	390.89 (427.3 as HCl salt)
Kinetic solubility of the free base in PBS (pH 7.4)	$86 \mu \mathrm{M}$
Thermodynamic solubility - HCl salt (0.5% Methylcellulose/Saline)	$>3 \mathrm{mg} / \mathrm{mL}$ but $<10 \mathrm{mg} / \mathrm{mL}$
cLogP	3.69
TPSA	87.46
ADMET tests	
HepG2 IC50 (cytotoxicity)	> $300 \mu \mathrm{M}$
MDR1-MDCK/PGP x $10^{-6} \mathrm{~cm} / \mathrm{s}$	A-B 1.24, B-A 46.9, A-B (w/CSA) 5.2, B-A (w/CSA) 3.65
CYP Inhibition $\mathrm{IC}_{50}(\mu \mathrm{M})$	2C9(60), 2C19(58), 2D6(>100), 3A4(46)
Microsomal Intrinsic Clearance (Rat, Dog, Monkey, Human)	16, 9, 9, 4 ($\mu \mathrm{L} / \mathrm{min} / \mathrm{mg}$ protein)
Microsomal half-life (Rat, Dog, Monkey, Human)	89, 152, 147, 328 (minutes)
Hepatocyte Scale Up unbound clearance (Rat, Dog, Monkey, Human)	32, 63, 18, 6.7 ($\mathrm{mL} / \mathrm{min} / \mathrm{kg}$)
Hepatocyte Half-life (Rat, Dog, Monkey, Human)	205, 150, 267, 525 (minutes)
Protein Binding (Rat, Dog, Monkey, Human)	86\%, 90%, $82 \%, 89 \%$
in vitro metabolic profile (Rat, Dog, Monkey, Human)	Minimal metabolism for man and NHP, modest for dog and rat - no unique metabolites in human
PAMPA	4.1 ($\times 10^{-6} \mathrm{~cm} / \mathrm{s}$)
Safety/Toxicology Tests	
hERG IC50	$5.64 \mu \mathrm{M}$
Rat Efficacious Dose ($5 \mathrm{mg} / \mathrm{kg}$) $\mathrm{C}_{\text {max }}$	$0.24 \mu \mathrm{M}$
hERG IC ${ }_{20}$ (est)/ Rat Efficacious Dose unbound $\mathrm{C}_{\text {max }}=$ safety ratio	$1.8 \mu \mathrm{M} / 0.024=75$
Ames mutagenicity	Not mutagenic
7 day dose finding toxicology - rat	NOAEL > $100 \mathrm{mg} / \mathrm{kg} / \mathrm{day}$, MTD > 300mg/kg/day
7 day dose finding toxicology - dog	NOAEL > $30 \mathrm{mg} / \mathrm{kg} /$ day, MTD > $100 \mathrm{mg} / \mathrm{kg} /$ day
Secondary Pharmacology	
CEREP - screening (55 assays) $10 \mu \mathrm{M}$ conc.	D1, 5-HT ${ }_{2}, 5-\mathrm{HT}_{2 \mathrm{~B}}, 5-\mathrm{HT}_{5 \mathrm{~A}}, \mu(\mathrm{mop}), \mathrm{NTS}_{1}, \mathrm{Na}^{+}$channel showed \% inhibition > 50\%
- Nav 1.5 50\% max inhibition	$30 \mu \mathrm{M}$
$-\quad \begin{aligned} & \text { 5-HT }{ }_{2 \mathrm{~A}} \text { agonist, } 5-\mathrm{HT}_{2 \mathrm{~A}} \text { Antagonist, } 5-\mathrm{HT}_{2 \mathrm{~B}} \\ & \text { agonist, } 5-\mathrm{HT}_{2 \mathrm{~B}} \text { antagonist, OPRM }{ }_{1} \text { agonist }\end{aligned}$	Negative activation

Structure Determination of ORC-13661 HCl.

Structure solved by Brandon Mercado, Ph.D., Yale University Chemical and Biophysical Instrumentation Center.

Figure S2.

Figure S3. A Stereo view of ORC-13661 HCI

Table S2. Crystal data and structure refinement for $\mathbf{9 0}$ (ORC-13661.)

Identification code	ORC-13661
Empirical formula	$\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{Cl}_{2} \mathrm{~N}_{4} \mathrm{O}_{3} \mathrm{~S}$
Formula weight	459.38
Temperature	93(2) K
Wavelength	1.54187 A
Crystal system	Monoclinic
Space group	I 2
Unit cell dimensions	$\mathrm{a}=17.551(12) \AA \AA^{\circ} \quad \alpha=90^{\circ}$
	$\mathrm{b}=12.5203(4) \AA \AA^{\circ} \quad \beta=111.33(5)^{\circ}$
	$\mathrm{c}=21.614(14) \AA \quad \gamma=90^{\circ}$
Volume	4424(4) \AA^{3}
Z	8
Density (calculated)	$1.379 \mathrm{mg} / \mathrm{m}^{3}$
Absorption coefficient	$3.757 \mathrm{~mm}^{-1}$
F(000)	1920
Crystal size	$0.150 \times 0.150 \times 0.080 \mathrm{~mm}^{3}$
Θ range for data collection	2.794 to 68.159°.
Index ranges	$-21 \leq h \leq 21,-15 \leq k \leq 15,-26 \leq l \leq 26$
Reflections collected	74485
Independent reflections	$8030[\mathrm{R}(\mathrm{int})=0.0510]$
Completeness to $\theta=67.687^{\circ}$	99.9\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.753 and 0.631
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	8030 / 1/562
Goodness-of-fit on F^{2}	1.075
Final R indices [$\mathrm{I}>2 \sigma(\mathrm{I})$]	$\mathrm{R} 1=0.0296, \mathrm{wR} 2=0.0697$
R indices (all data)	$\mathrm{R} 1=0.0336, \mathrm{wR} 2=0.0725$
Absolute structure parameter	0.020(5)
Largest diff. peak and hole	0.193 and -0.251 e. \AA^{-3}

Supporting Information 5: Non-interference in Antimicrobial Activity of Aminoglycoside Antibiotics (AGAs) in vitro ${ }^{1,2}$

Fractional Inhibitory Concentration (FIC) test of each of the three compounds against four strains of P. aeruginosa at Micromyx in Kalamazoo Michigan and the H37Rv strain of M. tuberculosis at Dr. Eric Nuermberger's laboratory at Johns Hopkins Medical Center, Baltimore Maryland.
Differing concentrations of the compounds were tested along with serial dilutions of the AGs to determine the Mean Inhibitory Concentration (MIC) of the AGA against each bacterial strain to evaluate synergy, interference or indifference. Table S5-1 displays the summary results of one compound (90, ORC-13661) in a FIC test against five strains of P. aeruginosa using four different AGAs. For each AG, and each test compound, the FIC index (FICI) was calculated:

$$
\text { FICI }=\text { FIC-AG/MIC-AG }+ \text { FIC-test/MIC-test }
$$

Results were similar for each of the three compounds and all showed an "indifference" of the MIC to the presence of our compounds. Table S5-2 shows results of the MICs tests with mycobacterium TB and Amikacin.

Table S4. Fractional Inhibitory Concentration of 90 (ORC-13661) for four AGs against five strains of P. aeruginosa. (The FICI between 0.6 and 2.0 show indifference, i.e. no synergy, no interference)

ORC-13661		Mean FICI				
Aminoglycoside	Mean FICI Range	P. aeruginosa $\mathbf{1 0 3}$ ATCC 27853	P. aeruginosa $\mathbf{6 1 6 0}$	P. aeruginosa $\mathbf{6 3 2 2}$ (AG resistant)	$\boldsymbol{P .}$ aeruginosa $\mathbf{6 3 2 5}$	P. aeruginosa $\mathbf{6 4 7 1}$
Tobramycin	$0.70-1.28$	1.14	0.70	NA	1.28	0.86
Amikacin	$0.71-1.14$	1.07	0.71	NA	1.14	1.14
Kanamycin	$0.93-2.00$	NA	0.93	NA	1.43	2.00
Neomycin	$0.93-1.43$	1.28	1.00	0.93	1.43	1.43

Table S5. Mean Inhibitory Concentration test: Mtb H37Rv at 1 or 10 uM in complete 7H9 broth medium.

	Nothing	ORC-4471		ORC-4572		ORC-13661	
		$1 \mu \mathrm{M}$	10 $\mu \mathrm{M}$	$1 \mu \mathrm{M}$	$10 \mu \mathrm{M}$	$1 \mu \mathrm{M}$	$10 \mu \mathrm{M}$
Nothing	$+++/+++$	$+++/+++$	$++/++$	$+++/+++$	$++/+++$	$+++/+++$	$+++/+++$
Amikacin - $0.5 \mu \mathrm{~g} / \mathrm{ml}$	$+-/ 0$						
Amikacin - $1.0 \mu \mathrm{~g} / \mathrm{ml}$	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$	$0 / 0$

* All samples were prepared in 7 H 9 media w/ 10% OADC - no Tween and run in duplicate.
(+/-) questionable clumps; ($\mathbf{0}$) no visible growth; (+,++, +++) visible growth

Experimental Section:

ADMET characterization

Compounds $\mathbf{1}$ and $\mathbf{9 0}$ were characterized by Pharmaron Inc. using established protocols. Half-life was calculated from serial measurements of drug concentration by LC/MS. The area under the serum concentration-time curve (AUC) was calculated by noncompartmental analysis using WinNonlin Version 4.0 (Pharsight, Mountain View, CA.).

hERG inhibition ${ }^{3,4}$

Compounds were evaluated for hERG inhibition by Ricerca Inc. using HEK-293 cells expressing human hERG ($\mathrm{K}_{\mathrm{v}} 11.1$). Compound effects on the peak tail current using voltage-clamped cells using PatchExpress 7000A instrument. Compounds were incubated with cells until a steady state level current was reached. After the final compound concentration was tested, the test compound was washed out and a positive control ($10 \mu \mathrm{M}$ cisapride) was tested. IC_{50} values were determined based of current responses analyzed using nonlinear regression to fit data to a one-site dose-response model using MathIQ software (AIM).

In vitro toxicity ${ }^{5,6}$

Toxicity of compounds was evaluated using HepG2 cells grown in culture. Cells were treated with test compounds over a range of concentrations for 72 hours. 24 hours after drug removal, cell viability was determined using CellTiterGlo (Promega Corp.).

General Chemistry Procedures.

All reactions were performed under a dry atmosphere of nitrogen unless otherwise specified. Indicated reaction temperatures refer to the reaction bath, while room temperature (rt) is noted as $25^{\circ} \mathrm{C}$. Commercial grade reagents and anhydrous solvents were used as received from vendors and no attempts were made to purify or dry these components further. Removal of solvents under reduced pressure was accomplished with a Buchi rotary evaporator at approximately 28 mm Hg pressure using a Teflon-linked KNF vacuum pump. Thin layer chromatography was performed using either 1 " x 3 " AnalTech No. 02521 or Merck 60 F254 silica gel plates with fluorescent indicator using appropriate solvent mixtures. Visualization of TLC plates was made by observation with either short wave UV light (254 nm lamp), 10% phosphomolybdic acid in ethanol or in iodine vapors. Medium pressure Flash column chromatography was carried out using either a Teledyne Isco CombiFlash Companion Unit with RediSep Rf silica gel columns or a Biotage Isolera with SiliCycle HP cartridges. Proton NMR spectra were obtained either on 300 MHz Bruker Nuclear Magnetic Resonance Spectrometer or 500 MHz Bruker Nuclear Magnetic Resonance Spectrometer and chemical shifts (δ) are reported in parts per million (ppm) and coupling constant (J) values are given in Hz , with the following spectral pattern designations: s , singlet; d , doublet; t , triplet, q , quartet; dd, doublet of doublets; m, multiplet; br, broad singlet; sym, symmetrical. Tetramethylsilane (TMS) was used as an internal reference. Melting points are uncorrected and were obtained using a MEL-TEMP Electrothermal melting point apparatus. Mass spectroscopic analyses were performed either using positive mode electron spray ionization (ESI) on a Varian ProStar LC-MS with a 1200L quadrupole mass spectrometer
or using positive mode atmospheric pressure chemical ionization (APCI) on a Shimadzu LC-MS system. High performance liquid chromatography (HPLC) purity analysis was conducted using a Varian Pro Star HPLC system with a binary solvent system A and B using a gradient elution [A, $\mathrm{H}_{2} \mathrm{O}$ with 0.1% trifluoroacetic acid (TFA); B, $\mathrm{CH}_{3} \mathrm{CN}$ with $0.1 \% \mathrm{TFA}]$ and flow rate $=1 \mathrm{~mL} / \mathrm{min}$, with UV detection at 254 nm . All final compounds were purified to $\geq 95 \%$ purity and these purity levels were measured by a Varian Pro Star HPLC system. Three different Varian Pro Star HPLC methods were used to establish compound purity. HPLC Method A: Phenomenex Luna C18(2) column $(4.6 \times 250 \mathrm{~mm})$; mobile phase, $\mathrm{A}=\mathrm{H}_{2} \mathrm{O}$ with $0.1 \% \mathrm{TFA}$ and $\mathrm{B}=\mathrm{CH}_{3} \mathrm{CN}$ with 0.1% TFA; gradient $10-95 \%$ B ($0.0-10 \mathrm{~min}$; hold for 6 min); UV detection at 254 nm . HPLC Method B: SunFire C18 column ($4.6 \times 250 \mathrm{~mm}$); mobile phase, A $=\mathrm{H}_{2} \mathrm{O}$ with 0.1% TFA and $\mathrm{B}=\mathrm{CH}_{3} \mathrm{CN}$ with 0.1% TFA; gradient: $10-100 \% \mathrm{~B}(0.0-20 \mathrm{~min}$; hold for 5 min$)$; UV detection at 254 nm . HPLC Method C: SunFire C18 column ($4.6 \times 250 \mathrm{~mm}$); mobile phase, $\mathrm{A}=\mathrm{H}_{2} \mathrm{O}$ with 0.1% TFA and $\mathrm{B}=\mathrm{CH}_{3} \mathrm{CN}$ with 0.1% TFA; gradient: $0-100 \% \mathrm{~B}$ ($0.0-15 \mathrm{~min}$; hold for 5 min) ; UV detection at 254 nm .

Experimental Methods

Compounds $9,12-13,15,27,34-39$ and 46-48 were purchased from commercial vendors. Identity and purity were confirmed $\geq 95 \%$ by HPLC-MS.

Synthesis of compounds.

Scheme 1

Preparation of 2-[3-(4-Chloro-3-methylphenyl)ureido]-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide Hydrochloride (A4, 1, ORC-001).

Step One. 2-Amino-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide (A2, 28 in Table 3). A stirred mixture of N-ethyl-4-pyrrolidinone (A1, $22.7 \mathrm{~g}, 178$ mmol), 2-cyanoacetamide ($16.5 \mathrm{~g}, 197 \mathrm{mmol}$), sulphur ($6.87 \mathrm{~g}, 215 \mathrm{mmol}$) and morpholine ($31.5 \mathrm{~g}, 362 \mathrm{mmol}$) in ethanol $(350 \mathrm{~mL})$ was heated to reflux under nitrogen for 5 h . After this time, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The residue was mixed with saturated aqueous sodium bicarbonate (200 mL), water (200 mL). The aqueous mixture was extracted with methylene chloride ($5 \times 200 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was triturated with cold methanol (30 mL) and filtered. The filter cake was washed with cold methanol $(2 \times 10 \mathrm{~mL})$ and then dried under reduced pressure to provide compound A2 (28 in Table 3) as a yellow solid (21.7 g , 54\%): ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6) $\delta 6.98$ (s, 2H), 6.52 (bs, 2H), 3.29 (s, 2H), 2.66 (d, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}$), $2.60(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.46(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.04(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS m/z $226[\mathrm{M}+\mathrm{H}]^{+}$.

Step Two. 2-[3-(4-Chlorophenyl)ureido]-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide (A3). To the stirred solution of compound A2 ($450 \mathrm{mg}, 2.00$ $\mathrm{mmol})$ in anhydrous tetrahydrofuran $(10 \mathrm{~mL})$ at room temperature under nitrogen was
added a solution of 4-chlorophenyl isocyanate ($400 \mathrm{mg}, 2.40 \mathrm{mmol}$) in anhydrous methylene chloride (6 mL) dropwise over 3 min . Then the reaction mixture was stirred overnight at room temperature. The reaction mixture was filtered. The filter cake was washed with methylene chloride (5 mL) and then dried under reduced pressure to provide the product A3 as a white solid ($301 \mathrm{mg}, 38 \%$): ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO-d6) $\delta 10.94$ $(\mathrm{s}, 1 \mathrm{H}), 10.12(\mathrm{~s}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}, 4 \mathrm{H}), 7.34(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{~s}, 2 \mathrm{H}), 2.77(\mathrm{~d}$, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.

Step Three. 2-[3-(4-Chlorophenyl)ureido]-6-ethyl-4,5,6,7-tetrahydrothieno[2,3c]pyridine-3-carboxamide Hydrochloride (A4, ORC-001, 1 in Table 1). To the stirred mixture of compound $\mathbf{A 3}(157 \mathrm{mg}, 0.400 \mathrm{mmol})$ in methylene chloride (50 mL) at room temperature was added hydrochloric acid (2 M in diethyl ether, $0.300 \mathrm{~mL}, 0.600 \mathrm{mmol}$). After addition, the mixture was concentrated under reduced pressure. The resulting solid was triturated with methylene chloride and filtered to afford compound A4 (1 in Table 1) as yellow solid: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.94(\mathrm{~s}, 1 \mathrm{H}), 10.84(\mathrm{bs}, 1 \mathrm{H}), 10.22(\mathrm{~s}$, $1 \mathrm{H}), 7.75-6.90(\mathrm{~m}, 6 \mathrm{H}), 4.49(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.62(\mathrm{~m}$, $1 \mathrm{H}), 3.38-3.05(\mathrm{~m}, 5 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; LRMS m/z $379[\mathrm{M}+\mathrm{H}]^{+}$.

Compounds Prepared by Scheme 1

2-[3-(4-Bromophenyl)ureido]-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3carboxamide Hydrochloride (2 in Table 1). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 10.96$ (s, $1 \mathrm{H}), 10.44(\mathrm{bs}, 1 \mathrm{H}), 10.28(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~s}, 4 \mathrm{H}), 4.62-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.12(\mathrm{~m}, 1 \mathrm{H})$, $3.73-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.16(\mathrm{~m}, 3 \mathrm{H}), 3.15-3.00(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; LRMS $\mathrm{m} / \mathrm{z} 423[\mathrm{M}+\mathrm{H}]^{+}$.

6-Ethyl-2-\{[(4-iodophenyl)carbamoyl]amino\}-4H,5H,6H,7H-thieno[2,3-c]pyridine-3carboxamide Hydrochloride (3 in Table 1). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO-d6) $\delta 10.95$ (s, $1 \mathrm{H}), 10.16(\mathrm{~s}, 1 \mathrm{H}), 7.60(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.61-3.39(\mathrm{~m}, 2 \mathrm{H})$, $2.88-2.63(\mathrm{~m}, 4 \mathrm{H}), 2.61-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS m/z $471[\mathrm{M}+\mathrm{H}]^{+}$.

2-\{[(2,4-Dichlorophenyl)carbamoyl]amino\}-6-ethyl-4H,5H,6H,7H-thieno[2,3-c]pyridine-3-carboxamide Hydrochloride (4 in Table 1). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right) \delta 10.95(\mathrm{~s}, 1 \mathrm{H}), 10.16(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.31(\mathrm{~m}, 4 \mathrm{H}), 3.61-$ 3.39 (m, 2H), 2.88-2.63 (m, 4H), 2.61-2.45 (m, 2H), 1.08 (t, J=7.1 Hz, 2H); LRMS m/z $413[\mathrm{M}+\mathrm{H}]^{+}$.

6-Ethyl-2-\{[(naphthalen-2-yl)carbamoyl]amino\}-4H,5H,6H,7H-thieno[2,3-c]pyridine-3-carboxamide Hydrochloride (6 in Table 1). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right) \delta 11.00(\mathrm{~s}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H}), 8.78-8.18(\mathrm{~s}, 1 \mathrm{H}), 7.87-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.67-7.31(\mathrm{~m}$, $4 \mathrm{H}), 3.31-3.41(\mathrm{~m}, 2 \mathrm{H}), 2.83-2.72(\mathrm{~m}, 7 \mathrm{H}), 2.70-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.58-2.48(\mathrm{~m}, 2 \mathrm{H}), 1.08$ (t, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$); LRMS $m / z 395[\mathrm{M}+\mathrm{H}]^{+}$.

2-[(\{[1,1'-Biphenyl]-4-yl\}carbamoyl)amino]-6-ethyl-4H,5H,6H,7H-thieno[2,3-c]pyridine-3-carboxamide Hydrochloride (7 in Table 1). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOH}-$ $\left.d_{4}\right) \delta 7.63-7.53(\mathrm{~m}, 6 \mathrm{H}), 7.41(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{bs}, 2 \mathrm{H})$,
$2.67(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS $m / z 421[\mathrm{M}+\mathrm{H}]^{+}$.
6-Ethyl-2-[3-(4-(trifluoromethyl)phenyl)ureido]-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide Hydrochloride (8 in Table 1). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$d 6) \delta 11.04(\mathrm{~s}, 1 \mathrm{H}), 10.85(\mathrm{bs}, 1 \mathrm{H}), 10.60(\mathrm{~s}, 1 \mathrm{H}), 8.15-6.90(\mathrm{~m}, 6 \mathrm{H}), 4.60-4.46(\mathrm{~m}, 1 \mathrm{H})$, $4.26-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.67-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.00(\mathrm{~m}, 5 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; MS $m / z 413[\mathrm{M}+\mathrm{H}]^{+}$.

2-\{[(Phenyl)carbamoyl]amino\}-6-ethyl-4H,5H,6H,7H-thieno[2,3-c]pyridine-3carboxamide Hydrochloride (14 in Table 1). ${ }^{1}$ H NMR (300 MHz , DMSO- d_{6}) $\delta 10.95$ (s, 1H), $10.16(\mathrm{~s}, 1 \mathrm{H}), 7.58(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 1 \mathrm{H}), 7.67-7.31(\mathrm{~m}, 4 \mathrm{H}), 3.61-3.39(\mathrm{~m}, 2 \mathrm{H})$, $2.88-2.63(\mathrm{~m}, 4 \mathrm{H}), 2.61-2.45(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H})$; LRMS $m / z 345[\mathrm{M}+\mathrm{H}]^{+}$.

2-[3-(\{4-Chlorophenyl)carbamothioyl\}-amino]-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide Hydrochloride (A4, 26 in Table 3). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) $\delta 10.9(\mathrm{~s}, 1 \mathrm{H}), 10.85(\mathrm{bs}, 1 \mathrm{H}), 10.22(\mathrm{~s}, 1 \mathrm{H}), 7.75-6.90(\mathrm{~m}, 6 \mathrm{H}), 4.50(\mathrm{~d}, J=$ $14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.05(\mathrm{~m}, 5 \mathrm{H}), 1.32(\mathrm{t}, J=7.2$ Hz, 3H); LRMS m/z $395[\mathrm{M}+\mathrm{H}]^{+}$.

6-Ethyl-2-[(phenylcarbamoyl)amino]-4H,5H,7H-thieno[2,3-c]pyridine-3carboxamide Hydrochloride (32 in Table 3). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 8.01-$ 7.93 (m, 2H), 7.68-7.61 (m, 3H), 3.72 (bs, 2H), 2.94 (dd, $J=14.2,4.8 \mathrm{~Hz}, 4 \mathrm{H}), 2.72$ (q, $J=7.2,2 \mathrm{H}), 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS $m / z 330[\mathrm{M}+\mathrm{H}]^{+}$.

Scheme 2

Preparation of 2-[3-(4-Chlorophenyl)ureido]-6-(cyclopropylmethyl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide Hydrochloride (B6, 53 in Table 6).

Step One. tert-Butyl 2-Amino-3-carbamoyl-4,5-dihydrothieno[2,3-c]pyridine-6(7H)carboxylate (B2). A suspension of cyanoacetamide ($4.65 \mathrm{~g}, 55.3 \mathrm{mmol}$), tert-butyl 4-oxopiperidine-1-carboxylate (B1, $10.0 \mathrm{~g}, 50.3 \mathrm{mmol}$), sulfur ($1.92 \mathrm{~g}, 59.9 \mathrm{mmol}$), and
morpholine ($8.71 \mathrm{~mL}, 100 \mathrm{mmol}$) in ethanol (50 mL) was heated to reflux for 4 h and then cooled to room temperature. The reaction mixture was concentrated under reduced pressure. The resulting residue was triturated with a $1: 1$ mixture of methylene chloride and ethyl acetate to afford compound B2 as a light orange solid (14.2 g, 95\%): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta 6.98$ (bs, 2H), 6.60 (bs, 2H), 4.27 (bs, 2H), 3.55-3.48 (m, 2H), 2.71-2.67 (m, 2H), $1.42(\mathrm{~s}, 9 \mathrm{H})$; LRMS m/z $298[\mathrm{M}+\mathrm{H}]^{+}$.

Step Two. tert-Butyl 3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-4,5-

dihydrothieno $[2,3-c]$ pyridine- $6(7 H)$-carboxylate (B3, 59 in Table 6). A solution of 4chlorophenyl isocyanate ($11.1 \mathrm{~g}, 72.3 \mathrm{mmol}$), compound B2 ($19.5 \mathrm{~g}, 65.6 \mathrm{mmol}$), and triethylamine ($12.0 \mathrm{~mL}, 86.1 \mathrm{mmol}$) in anhydrous tetrahydrofuran (150 mL) was stirred at room temperature for 16 h . After this time, the reaction mixture was concentrated under reduced pressure. The resulting residue was triturated with a mixture of 1:1 methylene chloride and ethyl acetate to afford compound B3 (59 in Table 6) as an offwhite solid ($25.3 \mathrm{~g}, 86 \%$): ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 10.85$ (s, 1H), 10.20 (s, 1H), $7.52-7.45(\mathrm{~m}, 3 \mathrm{H}), 7.34(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{bs}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 3.57-3.53$ (m, 2H), 2.79-2.75 (m, 2H), 1.43 (s, 9H); LRMS m/z $473[\mathrm{M}+\mathrm{Na}]^{+}$.

Step Three. 2-[3-(4-Chlorophenyl)ureido]-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide Trifluoroacetate (B4, 40 in Table 5). To a solution of compound B3 $(\mathbf{5 9}, 16.0 \mathrm{~g}, 35.5 \mathrm{mmol})$ in methylene chloride (100 mL) was added trifluoroacetic acid ($30.0 \mathrm{~mL}, 392 \mathrm{mmol}$) dropwise over 5 min at $0^{\circ} \mathrm{C}$. After the addition complete, the reaction mixture was warmed to room temperature and stirred for 4 h . The reaction mixture was concentrated under reduced pressure and the resulting residue was triturated with ethyl acetate (75 mL) to afford compound $\mathbf{B 4}$ (40 in Table 5) as an off-white solid (16.5 g , quantitative yield): ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.97$ (s, 1H), 10.24 (s, 1 H), 9.17 (bs, 2H), 7.60-7.12 (m, 6H), 4.25 (s, 2H), 3.37-3.34 (m, 2H), 3.01-2.98 (m, 2H); LRMS $m / z 351[\mathrm{M}+\mathrm{H}]^{+}$.

Step Four. 2-[3-(4-Chlorophenyl)ureido]-6-(cyclopropylmethyl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide (B5). To a slurry of compound B4 ($300 \mathrm{mg}, 0.645 \mathrm{mmol}$) in methanol (4 mL) and tetrahydrofuran (2 mL) two drops of glacial acetic acid and cyclopropanecarbaldehyde ($94.0 \mathrm{mg}, 1.34 \mathrm{mmol}$) were added. After stirring at room temperature for 5 min , sodium cyanoborohydride ($122 \mathrm{mg}, 1.94$ mmol) was added and the reaction mixture was stirred for an additional 3 h . After this time, the reaction was quenched with water $(25 \mathrm{~mL})$ and saturated aqueous sodium bicarbonate $(50 \mathrm{~mL})$. The resulting mixture was extracted with ethyl acetate (100 mL). The extracts were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was triturated with methylene chloride to afford compound B5 as a white solid ($245 \mathrm{mg}, 94 \%$): ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) $\delta 10.95$ $(\mathrm{s}, 1 \mathrm{H}), 10.16(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.40(\mathrm{~m}, 3 \mathrm{H}), 7.33(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{bs}, 1 \mathrm{H}), 3.54(\mathrm{~s}$, $2 \mathrm{H}), 2.84-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.78-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.36(\mathrm{~s}, 2 \mathrm{H}), 0.95-0.87(\mathrm{~m}, 1 \mathrm{H}), 0.53-0.45$ (m, 2H), 0.17-0.09 (m, 2H); LRMS m/z $405[\mathrm{M}+\mathrm{H}]^{+}$.

Step Five. 2-[3-(4-Chlorophenyl)ureido]-6-(cyclopropylmethyl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide Hydrochloride (B6, 53 in Table 6). To a solution of compound A5 ($121 \mathrm{mg}, 0.299 \mathrm{mmol}$) in tetrahydrofuran (5 mL) was added hydrochloric acid (2 M in diethyl ether, $0.200 \mathrm{~mL}, 0.400 \mathrm{mmol}$). After stirring at room temperature for 15 min , the reaction mixture was concentrated under reduced pressure and the resulting residue was triturated with methylene chloride to afford compound B6 (53 in Table 6) as a yellow solid ($94 \mathrm{mg}, 71 \%$): ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.97(\mathrm{~s}, 1 \mathrm{H}), 10.28(\mathrm{bs}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.35(\mathrm{~d}, J=$ $9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.14(\mathrm{bs}, 1 \mathrm{H}), 4.61-4.57(\mathrm{~m}, 1 \mathrm{H}), 4.31-4.28(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.70(\mathrm{~m}, 1 \mathrm{H})$, 3.39-3.36 (m, 1H), 3.22-3.19 (m, 1H), 3.11-3.08 (m, 3H), 1.19-1.11 (m, 1H), 0.70-0.63 (m, 2H), 0.45-0.39 (m, 2H); LRMS $m / z 405[\mathrm{M}+\mathrm{H}]^{+}$.

Compounds Prepared by Scheme 2

2-[3-(4-Chlorophenyl)ureido]-5-ethyl-5,6-dihydro-4H-thieno[2,3-c]pyrrole-3carboxamide Hydrochloride (42 in Table 5). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) $\delta 11.99$ (s, 1H), 11.27 (s, 1H), 10.39 (s, 1H), 7.70-6.80 (m, 6H), 4.88-4.38 (m, 4H), 3.40-3.38 ($\mathrm{m}, 2 \mathrm{H}$), $1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS $m / z 365[\mathrm{M}+\mathrm{H}]^{+}$.

2-[3-(4-Chlorophenyl)ureido]-6-n-propyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3carboxamide Hydrochloride (49 in Table 6). ${ }^{1}$ H NMR (500 MHz , DMSO- d_{6}) $\delta 10.94$ (s, 1H), $10.84(\mathrm{bs}, 1 \mathrm{H}), 10.22(\mathrm{~s}, 1 \mathrm{H}), 7.75-6.90(\mathrm{~m}, 6 \mathrm{H}), 4.49(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.22-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.05(\mathrm{~m}, 7 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; LRMS $m / z 393[\mathrm{M}+\mathrm{H}]^{+}$.

2-[3-(4-Chlorophenyl)ureido]-6-isobutyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3carboxamide Hydrochloride (50 in Table 6). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) $\delta 10.95$ (s, 1H), 10.27 (s, 1H), 9.98 (bs, 1H), 7.90-6.80 (m, 6H), 4.55-3.63 (m, 3H), 3.20-3.00 (m, 4H), 2.63-2.15 (m, 2H), 1.00 (bs, 6H); LRMS m/z 407 [M+H] ${ }^{+}$.

2-[3-(4-Chlorophenyl)ureido]-6-neopentyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3carboxamide Hydrochloride (51 in Table 6). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.92$ ($\mathrm{s}, 1 \mathrm{H}$), 10.27 (s, 1H), 9.85 (bs, 1H), 7.80-6.90 (m, 6H), 4.56-4.29 (m, 2H), 3.57-3.42 (m, 2H), 3.24-2.97 (m, 4H), $1.10(\mathrm{~s}, 9 \mathrm{H})$; LRMS $m / z 421[\mathrm{M}+\mathrm{H}]^{+}$.

2-[3-(4-Chlorophenyl)ureido]-6-isopropyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3carboxamide Hydrochloride (52 in Table 6). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 11.03$ (s, 1H), 10.28 (s, 1H), 10.25 (bs, 1H), 7.55-7.02 (m, 6H), 4.43-4.39 (m, 1H), 4.36-4.28 (m, 1H), 3.71-3.61 (m, 2H), 3.30-3.04 (m, 3H), 1.36-1.32 (m, 6H); LRMS m/z 393 $[\mathrm{M}+\mathrm{H}]^{+}$.

2-[3-(4-Chlorophenyl)ureido]-6-(cyclobutylmethyl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide Hydrochloride (54 in Table 6). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.95$ (s, 1H), 10.34 (bs, 1H), 10.26 (s, 1H), 7.77-6.94 (m, 6H), 4.47-4.38 $(\mathrm{m}, 1 \mathrm{H}), 4.23-4.11(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.54(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.21(\mathrm{~m}, 3 \mathrm{H}), 3.13-3.04(\mathrm{~m}, 2 \mathrm{H})$, 2.87-2.78 (m, 1H), 2.19-2.07 (m, 2H), 1.95-1.78 (m, 4H); LRMS m/z $419[\mathrm{M}+\mathrm{H}]^{+}$.

2-[3-(4-Chlorophenyl)ureido]-6-(cyclopentylmethyl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide Hydrochloride (55 in Table 6). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d d_{6}) $10.95(\mathrm{~s}, 1 \mathrm{H}), 10.27(\mathrm{~s}, 1 \mathrm{H}), 10.14(\mathrm{bs}, 1 \mathrm{H}), 7.73-6.98(\mathrm{~m}, 6 \mathrm{H}), 4.57-4.53$ (m, 1H), 4.30-4.22 (m, 1H), 3.70-3.61 (m, 1H), 3.33-3.07 (m, 5H), 2.38-2.27 (m, 1H), $1.91-1.83(\mathrm{~m}, 2 \mathrm{H}), 1.68-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.20(\mathrm{~m}, 2 \mathrm{H}) ;$ LRMS m/z $433[\mathrm{M}+\mathrm{H}]^{+}$.

2-[3-(4-Chlorophenyl)ureido]-6-(cyclohexylmethyl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide Hydrochloride (56 in Table 6). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) $\delta 10.94$ (s, 1H), 10.27 (s, 1H), 10.15 (bs, 1H), 7.70-7.00 (m, 6H), 4.58-4.53 (m, 1H), 4.25-4.22 (m, 1H), 3.66-3.59 (m, 1H), 3.43-3.31 (m, 1H), 3.12-3.00 (m, 4H), $1.90-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.33-1.11(\mathrm{~m}, 3 \mathrm{H}), 1.02-0.92(\mathrm{~m}, 2 \mathrm{H})$; LRMS m/z $447[\mathrm{M}+\mathrm{H}]^{+}$.

2-[3-(4-Chlorophenyl)ureido]-6-(3-methoxypropyl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide Hydrochloride (57 in Table 6). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.95(\mathrm{~s}, 1 \mathrm{H}), 10.30(\mathrm{bs}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.00(\mathrm{~m}, 6 \mathrm{H}), 4.57-4.53$ $(\mathrm{m}, 1 \mathrm{H}), 4.26-4.22(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.48-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.28-3.20(\mathrm{~m}, 6 \mathrm{H})$, 3.13-3.06(m, 2H), 2.04-1.96(m, 2H); LRMS m/z $423[\mathrm{M}+\mathrm{H}]^{+}$.

2-[3-(4-Chlorophenyl)ureido]-6-(tetrahydro-2H-pyran-4-yl)-4,5,6,7-
tetrahydrothieno[2,3-c]pyridine-3-carboxamide Hydrochloride (58 in Table 6). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 11.00$ (s, 1H), 10.41 (bs, 1H), 10.27 (s, 1H), 7.72-7.30 (m, $5 \mathrm{H}), 7.11(\mathrm{bs}, 1 \mathrm{H}), 4.51-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.39-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.04-3.96(\mathrm{~m}, 2 \mathrm{H}), 3.81-3.75$ $(\mathrm{m}, 1 \mathrm{H}), 3.59-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.40-3.35(\mathrm{~m}, 2 \mathrm{H}), 3.32-3.28(\mathrm{~m}, 1 \mathrm{H}), 3.17-3.09(\mathrm{~m}, 2 \mathrm{H})$, 2.12-2.09 (m, 1H), 2.07-1.98(m, 1H), 1.83-1.72 (m, 2H); LRMS m/z $435[\mathrm{M}+\mathrm{H}]^{+}$.
tert-Butyl 4-\{3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-4,5-dihydrothieno[2,3-c]pyridin-6(7H)-yl\}acetate (60 in Table 6). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 10.96$ (s, $1 \mathrm{H}), 10.18(\mathrm{~s}, 1 \mathrm{H}), 7.63-6.81(\mathrm{~m}, 6 \mathrm{H}), 3.52-3.41(\mathrm{~m}, 2 \mathrm{H}), 2.85-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.71-2.63$ (m, 2H), 2.50-2.41 (m, 2H), 2.29-2.19 (m, 2H), 1.37 (s, 9H); LRMS m/z $465[\mathrm{M}+\mathrm{H}]^{+}$.
tert-Butyl 4-\{3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-4,5-dihydrothieno[2,3-c]pyridin-6(7H)-yl\}butanoate ($\mathbf{6 2}$ in Table 6). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 10.96$ (s, 1H), 10.18 (s, 1H), 7.63-6.70 (m, 6H), 3.52-3.41 (m, 2H), 2.85-2.72 (m, 2H), 2.712.61 (m, 2H), 2.50-2.40 (m, 2H), 2.29-2.19 (m, 2H), 1.81-1.67 (m, 2H), 1.39 (s, 9H); LRMS $m / z 493[\mathrm{M}+\mathrm{H}]^{+}$.
tert-Butyl 5-\{3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-4,5-dihydrothieno[2,3-c]pyridin-6(7H)-yl\}pentanoate (63 in Table 6). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) δ 10.94 (s, 1H), 10.17 (s, 1H), 7.61-7.29 (m, 5H), 6.84 (bs, 1H), 3.50-3.40 (m, 2H), 2.82$2.74(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.47-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.19(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.48(\mathrm{~m}$, $4 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}) ;$ LRMS $m / z 507[\mathrm{M}+\mathrm{H}]^{+}$.
tert-Butyl 6-\{3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-4,5-dihydrothieno[2,3\boldsymbol{c}]pyridin-6(7H)-yl\}hexanoate (64 in Table 6). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.95$ $(\mathrm{s}, 1 \mathrm{H}), 10.19(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.30(\mathrm{~m}, 5 \mathrm{H}), 6.89(\mathrm{bs}, 1 \mathrm{H}), 3.68-3.40(\mathrm{~m}, 3 \mathrm{H}), 2.93-2.70$
$(\mathrm{m}, 3 \mathrm{H}), 2.52-2.48(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}), 1.35-$ $1.28(\mathrm{~m}, 2 \mathrm{H})$; LRMS m/z $521[\mathrm{M}+\mathrm{H}]^{+}$.

Scheme 3

Preparation of 6-(3-Amino-3-oxopropyl)-2-[3-(4-chlorophenyl)ureido]-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide Hydrochloride (C2).

Step One. 6-(3-Amino-3-oxopropyl)-2-[3-(4-chlorophenyl)ureido]-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide (C1). A solution of compound B4 ($200 \mathrm{mg}, 0.431 \mathrm{mmol}$), acrylamide ($156 \mathrm{mg}, 2.19 \mathrm{mmol}$), and diisopropylethylamine ($0.400 \mathrm{~mL}, 2.25 \mathrm{mmol}$) in N, N-dimethylformamide (2.5 mL) was heated at $50^{\circ} \mathrm{C}$ for 8 h . After this time, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with 0% to 10% methanol/methylene chloride to afford compound $\mathbf{C 1}$ as a yellow solid ($180 \mathrm{mg}, 99 \%$): ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) δ $10.95(\mathrm{~s}, 1 \mathrm{H}), 10.19(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.29(\mathrm{~m}, 6 \mathrm{H}), 6.90-6.73(\mathrm{~m}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 2.83-$ $2.65(\mathrm{~m}, 6 \mathrm{H}), 2.33-2.25(\mathrm{~m}, 2 \mathrm{H}) ;$ LRMS $m / z 422[\mathrm{M}+\mathrm{H}]^{+}$.

Step Two. 6-(3-Amino-3-oxopropyl)-2-[3-(4-chlorophenyl)ureido]-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide Hydrochloride (C2). To a solution of compound $\mathbf{C} 1(90.0 \mathrm{mg}, 0.210 \mathrm{mmol})$ in tetrahydrofuran $(2.5 \mathrm{~mL})$ and methanol (2.5 mL) was added hydrochloric acid (2 M in diethyl ether, $0.140 \mathrm{~mL}, 0.280 \mathrm{mmol}$). After stirring at room temperature for 30 min , the reaction mixture was concentrated under reduced pressure and the resulting residue was triturated with methylene chloride to afford compound $\mathbf{C 2}$ as a yellow solid ($95 \mathrm{mg}, 99 \%$): ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) δ $10.94(\mathrm{~s}, 1 \mathrm{H}), 10.55(\mathrm{bs}, 1 \mathrm{H}), 10.27(\mathrm{~s}, 1 \mathrm{H}), 7.62(\mathrm{bs}, 1 \mathrm{H}), 7.55-7.30(\mathrm{~m}, 5 \mathrm{H}), 7.19-7.02$ $(\mathrm{m}, 2 \mathrm{H}), 4.52-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.25(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.49-3.42(\mathrm{~m}, 3 \mathrm{H})$, 3.13-3.08 (m, 2H), 2.74-2.67 (m, 2H); LRMS m/z $422[\mathrm{M}+\mathrm{H}]^{+}$.

Compounds Prepared by Scheme 3

tert-Butyl 3-\{3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-4,5-dihydrothieno[2,3-c]pyridin-6(7H)-yl\}propanoate Hydrochloride (61 in Table 6). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.96(\mathrm{~s}, 1 \mathrm{H}), 10.16(\mathrm{~s}, 1 \mathrm{H}), 7.62-7.28(\mathrm{~m}, 5 \mathrm{H}), 6.83(\mathrm{bs}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H})$, 2.80-2.63 (m, 6H), 2.47-2.41 (m, 2H), $1.40(\mathrm{~s}, 9 \mathrm{H})$; LRMS m/z $479[\mathrm{M}+\mathrm{H}]^{+}$.

Scheme 4

Preparation of 2-[3-(4-Chloro-3-methylphenyl)ureido]-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide Hydrochloride (D4).

Step One. 1-Chloro-4-isocyanato-2-methylbenzene (D2). To the stirred mixture of 4-chloro-3-methylaniline (D1, $1.01 \mathrm{~g}, 7.13 \mathrm{mmol}$) and triethylamine ($866 \mathrm{mg}, 8.56 \mathrm{mmol}$) in methylene chloride (20 mL) at $-20^{\circ} \mathrm{C}$ under nitrogen was added phosgene solution (0.15 weight/weight in toluene, $6.15 \mathrm{~g}, 9.13 \mathrm{mmol}$) dropwise over 5 min . After addition, the reaction mixture was warmed up to room temperature over 2 h , and then stirred at room temperature for another 2 h . After this time, the reaction mixture was cooled to 0 ${ }^{\circ} \mathrm{C}$, and slowly quenched with saturated aqueous sodium bicarbonate (30 mL). The mixture was extracted with ethyl acetate $(100 \mathrm{~mL})$. The organic extract was washed with 2 M hydrochloric acid (50 mL), brine (30 mL), dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated under reduced pressure. The resulting residue was triturated with methylene chloride (40 mL) and filtered. The filtrate was concentrated under reduced pressure to provide compound $\mathbf{D 2}$ as a light brown liquid ($1.08 \mathrm{~g}, 90 \%$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-$ $6.84(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$.

Step Two. 2-[3-(4-Chloro-3-methylphenyl)ureido]-6-ethyl-4,5,6,7-

tetrahydrothieno[2,3-c]pyridine-3-carboxamide (D3). To the stirred solution of compound A4 ($450 \mathrm{mg}, 2.00 \mathrm{mmol}$) in anhydrous tetrahydrofuran (10 mL) at room temperature under nitrogen was added a solution of compound D2 ($402 \mathrm{mg}, 2.40 \mathrm{mmol}$) in anhydrous methylene chloride (6 mL) dropwise over 3 min . Then the reaction mixture was stirred overnight at room temperature. The reaction mixture was filtered. The filter cake was washed with methylene chloride (5 mL) and then dried under reduced pressure to provide compound D3 as a white solid ($301 \mathrm{mg}, 38 \%$): ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right) \delta 10.94(\mathrm{~s}, 1 \mathrm{H}), 10.12(\mathrm{~s}, 1 \mathrm{H}), 7.48-6.75(\mathrm{~m}, 5 \mathrm{H}), 3.45(\mathrm{~s}, 2 \mathrm{H}), 2.77(\mathrm{~d}, J=4.8 \mathrm{~Hz}$, $2 \mathrm{H}), 2.65(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.55-2.45(\mathrm{~m}, 2 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.

Step Four. 2-[3-(4-Chloro-3-methylphenyl)ureido]-6-ethyl-4,5,6,7-
tetrahydrothieno[2,3-c]pyridine-3-carboxamide Hydrochloride (D4). To the stirred mixture of compound D3 ($157 \mathrm{mg}, 0.400 \mathrm{mmol}$) in methylene chloride (50 mL) at room temperature was added hydrochloric acid (2 M in diethyl ether, $0.300 \mathrm{~mL}, 0.600 \mathrm{mmol}$). After addition, the mixture was concentrated under reduced pressure. The resulting solid was triturated with methylene chloride and filtered to afford compound D4 as yellow solid: ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.94$ (s, 1H), 10.84 (bs, 1H), $10.22(\mathrm{~s}, 1 \mathrm{H})$, $7.75-6.90(\mathrm{~m}, 5 \mathrm{H}), 4.49(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.16(\mathrm{~m}, 1 \mathrm{H}), 3.65-3.62(\mathrm{~m}, 1 \mathrm{H})$, $3.38-3.05(\mathrm{~m}, 5 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS m/z $393[\mathrm{M}+\mathrm{H}]^{+}$.

Compounds Prepared by Scheme 4

2-[3-(2,3-Dichlorophenyl)ureido]-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3carboxamide Hydrochloride (5 in Table 1). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 10.88$ ($\mathrm{s}, 1 \mathrm{H}$), $10.59(\mathrm{bs}, 1 \mathrm{H}), 9.84(\mathrm{~s}, 1 \mathrm{H}), 7.88(\mathrm{dd}, J=7.8$ and $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.75-7.15$ (m, $4 \mathrm{H}), 4.54-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.24-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.34-3.13(\mathrm{~m}, 3 \mathrm{H}), 3.06$ (bs, 2H), $1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; LRMS $m / z 413[\mathrm{M}+\mathrm{H}]^{+}$.

2-[3-(3-Cyanophenyl)ureido]-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3carboxamide Hydrochloride (10 in Table 1). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 11.06$ (s, 1H), 10.78 (bs, 1H), 10.56 (s, 1H), 7.99 (s, 1H), 7.88-6.85 (m, 5H), 4.55-4.46 (m, $1 \mathrm{H}), 4.25-4.15(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.62(\mathrm{~m}, 1 \mathrm{H}), 3.32-3.00(\mathrm{~m}, 5 \mathrm{H}), 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; LRMS $m / z 370[\mathrm{M}+\mathrm{H}]^{+}$.

2-[3-(4-Chlorobenzyl)ureido]-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3carboxamide Hydrochloride (11 in Table 1). ${ }^{1}$ H NMR (300 MHz , DMSO- d_{6}) $\delta 10.68$ ($\mathrm{s}, 1 \mathrm{H}), 10.62(\mathrm{bs}, 1 \mathrm{H}), 8.29(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.69-6.90(\mathrm{~m}, 6 \mathrm{H}), 4.49-4.42(\mathrm{~m}, 1 \mathrm{H})$, $4.28(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.17-4.10(\mathrm{~m}, 1 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.31-3.00(\mathrm{~m}, 5 \mathrm{H}), 1.30$ (t, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}$); LRMS $m / z 393[\mathrm{M}+\mathrm{H}]^{+}$.

1-(4-Chlorophenyl)-3-(3-cyano-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2yl)urea Hydrochloride (19 in Table 2). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.19$ (s, $1 \mathrm{H}), 9.32(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.49-3.43(\mathrm{~m}, 2 \mathrm{H})$, 2.77-2.69 (m, 2H), 2.59-2.53 (m, 4H), 1.07 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; LRMS m/z $361[\mathrm{M}+\mathrm{H}]^{+}$.

2-[3-(4-Chlorophenyl)ureido]-4-methyl-5-(morpholinomethyl)thiophene-3carboxamide Hydrochloride (45 in Table 5). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 10.65$ ($\mathrm{s}, 1 \mathrm{H}$) , 10.43 (bs, 1H), $10.25(\mathrm{~s}, 1 \mathrm{H}), 7.64(\mathrm{bs}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.34$ (bs, 1H), 4.46 (s, 2H), 4.00-3.94 (m, 2H), 3.73 (t, J=11.7 Hz, 2H), 3.36-3.22 (m, 2H), 3.16-3.05 (m, 2H), 2.36 (s, 3H); LRMS m/z 407 [M-H].

2-[3-(4-Chlorophenyl)ureido]-5,5,7,7-tetramethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide Hydrochloride (87 in Table 8). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 10.80(\mathrm{~s}, 1 \mathrm{H}), 10.27(\mathrm{~s}, 1 \mathrm{H}), 9.38(\mathrm{bs}, 2 \mathrm{H}), 7.80-6.90(\mathrm{~m}, 6 \mathrm{H}), 2.92(\mathrm{~s}, 2 \mathrm{H})$, 1.73 (s, 6H), 1.44 (s, 6H); LRMS m/z 407 [M+H] ${ }^{+}$.

Scheme 5

Preparation of 1-(4-Chlorophenyl)-3-[6-ethyl-3-(morpholine-4-carbonyl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2-yl]urea Hydrochloride (E7, 20 in Table 2).

Step One. Ethyl 2-Amino-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3carboxylate (E1). A solution of ethyl 2-cyanoacetate ($4.87 \mathrm{~g}, 43.1 \mathrm{mmol}$), 1-ethylpiperidin-4-one (A1, $5.00 \mathrm{~g}, 39.3 \mathrm{mmol}$), sulfur ($1.50 \mathrm{~g}, 46.8 \mathrm{mmol}$), and morpholine ($6.80 \mathrm{~mL}, 78.1 \mathrm{mmol}$) in ethanol (30 mL) was heated to reflux for 6 h and then the reaction mixture was cooled to room temperature, concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with methylene chloride to methanol to methylene chloride (1:19). Further purification by flash column chromatography on silica gel was required eluting from methylene chloride to ethyl acetate to afford compound $\mathbf{E} 1$ as a light orange solid (9.77 g , 98%): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.95$ (bs, 2 H), 4.26 (q, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 3.42-3.41 (m, 2H), 2.88-2.80 (m, 2H), 2.77-2.69 (m, 2H), 2.57 (q, J=7.2 Hz, 2H), 1.33 (t, J=7.2 $\mathrm{Hz}, 3 \mathrm{H}), 1.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

Step Two. Ethyl 2-(tert-Butoxycarbonylamino)-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylate (E2). A solution of compound E1 ($2.00 \mathrm{~g}, 7.86 \mathrm{mmol}$), di-tert-butyl dicarbonate ($3.50 \mathrm{~g}, 16.0 \mathrm{mmol}$), and 4-dimethylaminopyridine ($97.0 \mathrm{mg}, 0.790$ mmol) in anhydrous 1,4 -dioxane (25 mL) was stirred at $75^{\circ} \mathrm{C}$ for 3 h . After this time, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The resulting residue was dissolved in chloroform (200 mL) and washed with water (200 mL). The aqueous layer was back extracted with chloroform ($3 \times 100 \mathrm{~mL}$). The combined organics were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to afford compound $\mathbf{E 2}$ as an orange viscous oil $(3.43 \mathrm{~g},>100 \%)$ that was used in the next step without further purification.

Step Three. 2-(tert-Butoxycarbonylamino)-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxylic Acid (E3). To the solution of compound $\mathbf{E} 2$ (3.43 g , crude) in
ethanol (25 mL) and water (12 mL) was added sodium hydroxide ($1.28 \mathrm{~g}, 32.0 \mathrm{mmol}$). The reaction mixture was heated to $70^{\circ} \mathrm{C}$ for 1 h . After this time, the reaction mixture was cooled to room temperature and diluted with water (25 mL) and ethyl acetate (75 $\mathrm{mL})$. The layers were separated. The aqueous layer was neutralized with 0.5 M citric acid to pH 7 . The aqueous layer was then chilled to $0^{\circ} \mathrm{C}$ for 16 h . After this time, the resulting solids were collected by suction filtration to afford compound $\mathbf{E 3}$ as a light orange solid ($1.60 \mathrm{~g}, 62 \%$ over two steps): ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 11.11$ (bs, $1 \mathrm{H}), 3.70-3.60(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.76(\mathrm{~m}, 4 \mathrm{H}), 2.66(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.11$ (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}$); LRMS $m / z 325[\mathrm{M}-\mathrm{H}]^{-}$.

Step Four. tert-Butyl 6-ethyl-3-(morpholine-4-carbonyl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2-ylcarbamate (E4). To the solution of compound H3 ($250 \mathrm{mg}, 0.766 \mathrm{mmol}$), diisopropylethylamine ($0.300 \mathrm{~mL}, 1.69 \mathrm{mmol}$), and morpholine ($100 \mathrm{mg}, 1.15 \mathrm{mmol}$) in N, N-dimethylformamide (3 mL) was added (benzotriazol-1yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) ($678 \mathrm{mg}, 1.53$ $\mathrm{mmol})$. After stirring at room temperature for 16 h , the reaction mixture was diluted with ethyl acetate $(50 \mathrm{~mL})$ and water $(75 \mathrm{~mL})$. The layers were separated and the aqueous layer was back extracted with methylene chloride $(75 \mathrm{~mL})$ and ethyl acetate $(100 \mathrm{~mL})$. The combined organics were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with methylene chloride to ethyl acetate to afford compound $\mathbf{E 4}$ as a yellow solid ($285 \mathrm{mg}, 94 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09$ (bs, $1 \mathrm{H}), 3.78-3.45(\mathrm{~m}, 10 \mathrm{H}), 2.86-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.67-2.62(\mathrm{~m}, 2 \mathrm{H}), 1.50$ ($\mathrm{s}, 9 \mathrm{H}$), $1.19(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS $m / z 396[\mathrm{M}+\mathrm{H}]^{+}$.

Step Five. (2-Amino-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-3-

$\mathbf{y l}$)(morpholino)methanone (E5). To the solution of compound $\mathbf{E 4}$ ($285 \mathrm{mg}, 0.721$ mmol) in anhydrous methylene chloride (5 mL) was added trifluoroacetic acid (3 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was gradually warmed to room temperature over 2 h and stirred at room temperature for another 14 h . After this time, the reaction mixture was concentrated under reduced pressure. The resulting residue was dissolved in methylene chloride (50 mL), washed with saturated aqueous sodium bicarbonate (50 mL), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to afford compound $\mathbf{H 5}$ as a glassy brown solid ($145 \mathrm{mg}, 68 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 4.38 (bs, 2H), 3.71-3.63 (m, 4H), 3.65-3.53 (m, 4H), 3.45 (s, 2H), 2.73-2.69 (m, 2H), 2.62-2.56 (m, 4H), $1.16(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS $m / z 296[\mathrm{M}+\mathrm{H}]^{+}$.

Step Six. 1-(4-Chlorophenyl)-3-[6-ethyl-3-(morpholine-4-carbonyl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2-yl]urea (E6). A solution of compound E5 (125 mg, 0.423 mmol) and 4-chlorophenyl isocyanate ($84.0 \mathrm{mg}, 0.547 \mathrm{mmol}$) in anhydrous tetrahydrofuran (3.5 mL) was stirred at room temperature for 16 h . After this time, the reaction mixture was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with methylene chloride to methanol/methylene chloride (1:19) to afford compound E6 as a glassy brown solid (150 $\mathrm{mg}, 79 \%):{ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70(\mathrm{bs}, 1 \mathrm{H}), 7.83(\mathrm{bs}, 1 \mathrm{H}), 7.21-7.16(\mathrm{~m}$,

4H), 3.80-3.52 (m, 10H), 2.75-2.53 (m, 6H), 1.18 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; LRMS m/z 449 $[\mathrm{M}+\mathrm{H}]^{+}$.

Step Seven. 1-(4-Chlorophenyl)-3-[6-ethyl-3-(morpholine-4-carbonyl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2-yl]urea Hydrochloride (E7, 20 in Table 2). To the solution of compound $\mathbf{H 6}$ ($150 \mathrm{mg}, 0.334 \mathrm{mmol}$) in anhydrous methylene chloride (3.5 mL) was added hydrochloric acid (2 M in diethyl ether, $0.220 \mathrm{~mL}, 0.440 \mathrm{mmol}$). After stirring at room temperature for 20 min , the reaction mixture was diluted with ethyl acetate (20 mL), sonicated, and the solids collected by suction filtration to afford compound E7 ($\mathbf{2 0}$ in Table 2) as a yellow solid ($136 \mathrm{mg}, 84 \%$): ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.21$ (bs, 1H), $10.03(\mathrm{bs}, 1 \mathrm{H}), 9.61(\mathrm{bs}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35$ (d, $J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.58-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.17(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.70(\mathrm{~m}, 3 \mathrm{H}), 3.62-3.47$ $(\mathrm{m}, 6 \mathrm{H}), 3.32-3.20(\mathrm{~m}, 3 \mathrm{H}), 2.91-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.78-2.69(\mathrm{~m}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H})$; LRMS $m / z 449[\mathrm{M}+\mathrm{H}]^{+}$.

Compounds Prepared by Scheme 5

2-[3-(4-Chlorophenyl)ureido]-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3carboxylic Acid Trifluoroacetate (16 in Table 2). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) δ $10.78(\mathrm{~s}, 1 \mathrm{H}), 10.47(\mathrm{~s}, 1 \mathrm{H}), 9.91(\mathrm{bs}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=42.9,8.7 \mathrm{~Hz}, 4 \mathrm{H}), 4.65-4.07(\mathrm{~m}$, $1 \mathrm{H}), 3.80-3.38(\mathrm{~m}, 3 \mathrm{H}), 3.18-2.83(\mathrm{~m}, 3 \mathrm{H}), 1.28(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; LRMS m/z 380 $[\mathrm{M}+\mathrm{H}]^{+}$.

Methyl 2-[3-(4-Chlorophenyl)ureido]-6-ethyl-4,5,6,7-tetrahydrothieno[2,3\boldsymbol{c}]pyridine-3-carboxylate Hydrochloride (17 in Table 2). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO$\left.d_{6}\right) \delta 10.57(\mathrm{~s}, 1 \mathrm{H}), 10.36(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=46.9,8.7 \mathrm{~Hz}, 4 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.51-3.37$ $(\mathrm{m}, 2 \mathrm{H}), 2.85-2.41(\mathrm{~m}, 6 \mathrm{H}), 1.06(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS $m / z 394[\mathrm{M}+\mathrm{H}]^{+}$.

N-Methyl 2-[3-(4-Chlorophenyl)ureido]-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide Hydrochloride (18 in Table 2). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 10.7(\mathrm{~s}, 1 \mathrm{H}), 10.1(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{dd}, J=48.0,9.0 \mathrm{~Hz}, 4 \mathrm{H}), 4.26-3.96(\mathrm{~m}, 2 \mathrm{H})$, 3.17 (d, $J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.03-2.68(\mathrm{~m}, 6 \mathrm{H}), 1.15(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; LRMS m/z 393 $[\mathrm{M}+\mathrm{H}]^{+}$.

2-[3-(4-Chlorophenyl)ureido]-6-ethyl- N-(oxetan-3-yl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide Hydrochloride (23 in Table 2). ${ }^{1} \mathrm{H}$ NMR (300 MHz ,
$\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.53-7.30(\mathrm{~m}, 4 \mathrm{H}), 4.46-3.60(\mathrm{~m}, 7 \mathrm{H}), 2.93-2.62(\mathrm{~m}, 6 \mathrm{H}), 1.21(\mathrm{t}, J=7.2 \mathrm{~Hz}$, 3H); LRMS $m / z 435[\mathrm{M}+\mathrm{H}]^{+}$.

2-[3-(4-Chlorophenyl)ureido]-6-ethyl- N -(2-hydroxyethyl)-4,5,6,7-
tetrahydrothieno[2,3-c]pyridine-3-carboxamide Hydrochloride (24 in Table 2). ${ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.49-7.28(\mathrm{~m}, 4 \mathrm{H}), 4.65-4.25(\mathrm{~m}, 2 \mathrm{H}), 3.90-3.38(\mathrm{~m}, 8 \mathrm{H})$, 3.25-3.15 (m, 2H), $1.44(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$; LRMS $m / z 423[\mathrm{M}+\mathrm{H}]^{+}$.

2-[3-(4-Chlorophenyl)ureido]-6-ethyl- N-(2-morpholinoethyl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide Dihydrochloride (25 in Table 2). ${ }^{1} \mathrm{H}$

NMR (300 MHz, DMSO-d6) $\delta 11.23$ (bs, 1H), 10.96 (bs, 1H), 10.67 (s, 1H), 10.48 (s, $1 \mathrm{H}), 8.06(\mathrm{t}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.33(\mathrm{~m}, 4 \mathrm{H}), 4.53-3.83(\mathrm{~m}, 6 \mathrm{H}), 3.75-3.50(\mathrm{~m}, 10 \mathrm{H})$, 3.40-3.10 (m, 4H), $1.33(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS $m / z 492[\mathrm{M}+\mathrm{H}]^{+}$.

Scheme 6

Preparation of 1-(4-Chlorophenyl)-3-[6-ethyl-3-(3-methyl-1,2,4-oxadiazol-5-yl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2-yl]urea Hydrochloride (F5, 21 in Table 2).

Step One. tert-Butyl 6-Ethyl-3-[1-(hydroxyimino)ethylcarbamoyl]-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2-ylcarbamate (F1). To a solution of compound E3 ($300 \mathrm{mg}, 0.919 \mathrm{mmol}$), diisopropylethylamine ($0.320 \mathrm{~mL}, 1.80 \mathrm{mmol}$), and N^{\prime} hydroxyacetimidamide ($102 \mathrm{mg}, 1.38 \mathrm{mmol}$) in N, N-dimethylformamide (3.5 mL) was added (benzotriazol-yloxy)tris(dimethylamino)-phosphonium hexafluorophosphate (BOP reagent) ($813 \mathrm{mg}, 1.84 \mathrm{mmol}$). After stirring at room temperature for 16 h , the reaction mixture was diluted with ethyl acetate (50 mL) and water (75 mL). The layers were separated and the aqueous layer was back extracted with methylene chloride (75 mL) and ethyl acetate (100 mL). The combined organics were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with methylene chloride to ethyl acetate and then to methanol/methylene chloride (1:19) to afford compound $\mathbf{F 1}$ as a yellow solid ($340 \mathrm{mg}, 97 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.33$ (bs, 1H), 4.77 (bs, 2H), $3.55(\mathrm{~s}, 2 \mathrm{H}), 2.95-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.76(\mathrm{~m}, 2 \mathrm{H}), 2.62(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.04(\mathrm{~s}$, 3 H), 1.51 ($\mathrm{s}, 9 \mathrm{H}$), 1.19 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; LRMS $m / z 383[\mathrm{M}+\mathrm{H}]^{+}$.

Step Two. tert-Butyl 6-Ethyl-3-(3-methyl-1,2,4-oxadiazol-5-yl)-4,5,6,7-

 tetrahydrothieno[2,3-c]pyridin-2-ylcarbamate (F2). A solution of compound F1 (340 $\mathrm{mg}, 0.889 \mathrm{mmol}$) in anhydrous 1,4-dioxane (5 mL) was heated to reflux for 14 h . After this time, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with methylene chloride to methanol/methylene chloride ($1: 19$) to afford compound $\mathbf{F 2}$ as a yellow solid ($118 \mathrm{mg}, 36 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.40$ (bs, $1 \mathrm{H}), 3.59(\mathrm{~s}, 2 \mathrm{H}), 3.04-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.84-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.46$ (s, 3H), 1.57 (s, 9H), 1.19 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; LRMS m/z $365[\mathrm{M}+\mathrm{H}]^{+}$.Step Three. 6-Ethyl-3-(3-methyl-1,2,4-oxadiazol-5-yl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2-amine (F3). To a solution of compound F2 ($87.0 \mathrm{mg}, 0.240 \mathrm{mmol}$) in anhydrous methylene chloride (3 mL) was added trifluoroacetic acid (3 mL) at $0^{\circ} \mathrm{C}$. The reaction mixture was warmed to room temperature and stirred for 24 h . After this time, the reaction mixture was concentrated under reduced pressure. The resulting residue was dissolved in methylene chloride (50 mL), washed with saturated aqueous sodium bicarbonate (50 mL), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with methylene chloride to methanol/methylene chloride (1:19) to afford compound F3 as a yellow solid ($38 \mathrm{mg}, 60 \%$): ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 6.17$ (bs, 2H), 3.48 (s, 2H), 2.99-2.96 (m, 2H), 2.82-2.79 (m, 2H), 2.62 $(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; LRMS m/z $265[\mathrm{M}+\mathrm{H}]^{+}$.

Step Four. 1-(4-Chlorophenyl)-3-[6-ethyl-3-(3-methyl-1,2,4-oxadiazol-5-yl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2-yl]urea (F4). To a solution of compound F3 (38.0 $\mathrm{mg}, 0.140 \mathrm{mmol}$) in anhydrous tetrahydrofuran (2 mL) was added sodium hydride (60% dispersed in oil, $10.0 \mathrm{mg}, 0.250 \mathrm{mmol}$) in one portion under nitrogen. After stirring at room temperature for 5 min , 4-chlorophenyl isocyanate ($22.0 \mathrm{mg}, 0.140 \mathrm{mmol}$) was added. The reaction mixture was stirred at room temperature for 10 min . After this time, the reaction was quenched with slow addition of methanol (5 mL) and the resulting mixture was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with methylene chloride to methanol/methylene chloride (1:19) to afford compound $\mathbf{F 4}$ as an off-white solid (25 mg , 43%): ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.44$ (bs, 1 H), 10.35 (bs, 1 H), 7.47 (d, J = 9.0 $\mathrm{Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.52-3.49(\mathrm{~m}, 2 \mathrm{H}), 2.88-2.84(\mathrm{~m}, 2 \mathrm{H}), 2.75-2.68(\mathrm{~m}$, $2 \mathrm{H}), 2.59-2.52(\mathrm{~m}, 2 \mathrm{H}), 2.47(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS $m / z 418[\mathrm{M}+\mathrm{H}]^{+}$.

Step Five. 1-(4-Chlorophenyl)-3-[6-ethyl-3-(3-methyl-1,2,4-oxadiazol-5-yl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2-yl]urea Hydrochloride (F5, 21 in Table 2). To a solution of compound $\mathbf{F 4}(25 \mathrm{mg}, 0.060 \mathrm{mmol})$ in anhydrous methylene chloride (5 mL) was added hydrochloric acid (2 M in diethyl ether, $0.10 \mathrm{~mL}, 0.20 \mathrm{mmol}$). After stirring at room temperature for 15 min , the reaction mixture was concentrated under reduced pressure and the resulting residue was triturated with methylene chloride to afford compound $\mathbf{F 5}$ (21 in Table 2) as a white solid ($22 \mathrm{mg}, 81 \%$): ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.62$ (bs, 1H), 10.53 (bs, 1H), $10.40(\mathrm{bs}, 1 \mathrm{H}), 7.57(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.41(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.62-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.30-4.19(\mathrm{~m}, 1 \mathrm{H}), 3.81-3.70(\mathrm{~m}, 1 \mathrm{H})$, $3.31-3.13(\mathrm{~m}, 5 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H}), 1.32(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS m/z $418[\mathrm{M}+\mathrm{H}]^{+}$.

Scheme 7

Preparation of 1-(4-Chlorophenyl)-3-[6-ethyl-3-(1,3,4-oxadiazol-2-yl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2-yl]urea Hydrochloride (G5, 22 in Table 2).

Step One. tert-Butyl 6-Ethyl-3-(hydrazinecarbonyl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2-ylcarbamate (G1). To a solution of compound E3 ($500 \mathrm{mg}, 1.53 \mathrm{mmol}$), diisopropylethylamine ($1.34 \mathrm{~mL}, 7.53 \mathrm{mmol}$), and hydrazine hydrochloride ($210 \mathrm{mg}, 3.07$ mmol) in N, N-dimethylformamide (4 mL) was added (benzotriazol-1yloxy)tris(dimethylamino)phosphonium hexafluorophosphate (BOP) (1.37 g, 3.10 mmol). After stirring at room temperature for 16 h , the reaction mixture was diluted with ethyl acetate (50 mL) and water (75 mL). The layers were separated and the aqueous layer was back extracted with methylene chloride (75 mL) and ethyl acetate (100 mL). The combined organics were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with methylene chloride to methanol/methylene chloride (1:9) to afford compound G1 as a yellow solid ($418 \mathrm{mg}, 80 \%$): ${ }^{1} \mathrm{H}$ NMR (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.75(\mathrm{bs}, 1 \mathrm{H}), 6.93(\mathrm{bs}, 1 \mathrm{H}), 4.02(\mathrm{bs}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 2 \mathrm{H}), 2.82-2.78(\mathrm{~m}$, $4 \mathrm{H}), 2.62(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.52(\mathrm{~s}, 9 \mathrm{H}), 1.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS $m / z 341$ $[\mathrm{M}+\mathrm{H}]^{+}$.

Step Two. tert-Butyl 6-Ethyl-3-(1,3,4-oxadiazol-2-yl)-4,5,6,7-tetrahydrothieno[2,3\boldsymbol{c}]pyridin-2-ylcarbamate (G2). A mixture of compound $\mathbf{G 1}(640 \mathrm{mg}, 1.88 \mathrm{mmol})$ and trimethyl orthoformate $(15.0 \mathrm{~mL}, 137 \mathrm{mmol})$ were heated to $120^{\circ} \mathrm{C}$ for 30 h . After this time, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with methylene chloride to methanol/methylene chloride (1:19) to afford compound $\mathbf{G} 2$ as a yellow solid ($414 \mathrm{mg}, 63 \%$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.23$ (bs, $1 \mathrm{H}), 8.36(\mathrm{~s}, 1 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 2.99-2.92(\mathrm{~m}, 2 \mathrm{H}), 2.87-2.78(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 1.55(\mathrm{~s}, 9 \mathrm{H}), 1.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS $m / z 251[\mathrm{M}+\mathrm{H}]^{+}$.

Step Three. 6-Ethyl-3-(1,3,4-oxadiazol-2-yl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2-amine (G3). To a solution of compound $\mathbf{G 2}(410 \mathrm{mg}, 1.17 \mathrm{mmol})$ in anhydrous methylene chloride (3 mL) was added trifluoroacetic acid (3 mL) at $0^{\circ} \mathrm{C}$. After stirring
at $0^{\circ} \mathrm{C}$ for 3 h , the reaction mixture was concentrated under reduced pressure. The resulting residue was dissolved in methylene chloride (75 mL), washed with saturated aqueous sodium bicarbonate (75 mL), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with methylene chloride to methanol/methylene chloride (1:9) to afford compound G3 as a yellow solid ($138 \mathrm{mg}, 47 \%$): ${ }^{1} \mathrm{H}$ NMR (500 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 6.06(\mathrm{bs}, 2 \mathrm{H}), 3.49(\mathrm{~s}, 2 \mathrm{H}), 2.93-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.81-2.77$ $(\mathrm{m}, 2 \mathrm{H}), 2.61(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.18(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS $m / z 251[\mathrm{M}+\mathrm{H}]^{+}$.

Step Four. 1-(4-Chlorophenyl)-3-[6-ethyl-3-(1,3,4-oxadiazol-2-yl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2-yl]urea (G4). To a solution of compound J3 (133 $\mathrm{mg}, 0.531 \mathrm{mmol}$) in anhydrous tetrahydrofuran (3 mL) was added sodium hydride (60% dispersed in oil, $22.0 \mathrm{mg}, 0.550 \mathrm{mmol}$) in one portion at $0^{\circ} \mathrm{C}$ under nitrogen. After stirring at $0^{\circ} \mathrm{C}$ for 5 min , 4-chlorophenyl isocyanate ($90.0 \mathrm{mg}, 0.590 \mathrm{mmol}$) was added. The reaction mixture was warmed to room temperature and stirred at room temperature for 45 min . After this time, the reaction was quenched with slow addition of methanol (5 mL) and the resulting mixture was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with methylene chloride to methanol/methylene chloride (1:9) to afford compound $\mathbf{G 4}$ as a yellow solid ($175 \mathrm{mg}, 82 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.62$ (bs, 1H), 8.38 (s, 1H), 7.46 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31$ (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), 7.17 (bs, 1H), 3.60 (s, 2H), 2.97-2.95 $(\mathrm{m}, 2 \mathrm{H}), 2.83-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.65(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$; LRMS m / z $404[\mathrm{M}+\mathrm{H}]^{+}$.

Step Five. 1-(4-Chlorophenyl)-3-[6-ethyl-3-(1,3,4-oxadiazol-2-yl)-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-2-yl]urea Hydrochloride (G5, 22 in Table 2). To a solution of compound $\mathbf{G 4}$ ($175 \mathrm{mg}, 0.433 \mathrm{mmol}$) in anhydrous methylene chloride (3 mL) and anhydrous tetrahydrofuran (3 mL) was added hydrochloric acid (2 M in diethyl ether, $0.300 \mathrm{~mL}, 0.600 \mathrm{mmol})$. After stirring at room temperature for 15 min , the reaction mixture was concentrated under reduced pressure and the resulting residue was triturated with methylene chloride to afford compound $\mathbf{G 5}$ (22 in Table 2) as a yellow solid ($133 \mathrm{mg}, 70 \%$): ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.63$ (s, 1H), 10.46 (bs, 1 H), $10.42(\mathrm{~s}, 1 \mathrm{H}), 9.37(\mathrm{~s}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.63-4.56$ (m, 1H), 4.29-4.21 (m, 1H), 3.81-3.72 (m, 1H), 3.42-3.36 (m, 1H), 3.26-3.12 (m, 4H), $1.32(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS m/z $404[\mathrm{M}+\mathrm{H}]^{+}$.

Scheme 8

Preparation of 2-[1-(4-Chlorophenyl)cyclopropanecarboxamido]-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide Hydrochloride (H2, 33 in Table 3).

Step One. 2-[1-(4-Chlorophenyl)cyclopropanecarboxamido]-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3-carboxamide (H2, 33 in Table 3). To a solution of 1-(4-chlorophenyl)cyclopropanecarboxylic acid ($\mathbf{H} 1,131 \mathrm{mg}, 0.666 \mathrm{mmol}$) in anhydrous methylene chloride (3 mL) was added oxalyl chloride $(0.100 \mathrm{~mL}, 1.17 \mathrm{mmol})$ followed by 2 drops of N, N-dimethylformamide at room temperature under nitrogen. After stirring at room temperature for 1 h , the reaction mixture was concentrated under reduced pressure. The resulting residue was dissolved in anhydrous tetrahydrofuran (3 mL). To the resulting solution was added diisopropylethylamine ($0.200 \mathrm{~mL}, 1.12 \mathrm{mmol}$) followed by a suspension of compound $\mathbf{A} \mathbf{2}$ ($150 \mathrm{mg}, 0.666 \mathrm{mmol}$) in anhydrous tetrahydrofuran (3 mL). After stirring at room temperature for 3 h , the reaction mixture was concentrated under reduced pressure and the resulting residue was purified by flash column chromatography on silica gel eluting with methylene chloride to methanol/methylene chloride (1:19). Further purification by trituration with acetonitrile gave compound $\mathbf{H} \mathbf{2}$ ($\mathbf{3 3}$ in Table 3) as a light yellow solid ($87 \mathrm{mg}, 32 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.79$ (bs, 1H), 7.47-7.42 (s, 4H), $5.56(\mathrm{bs}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 2 \mathrm{H}), 2.82-2.77(\mathrm{~m}, 4 \mathrm{H}), 2.62(\mathrm{q}, J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.78-1.74(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.12(\mathrm{~m}, 5 \mathrm{H})$; LRMS m/z $404[\mathrm{M}+\mathrm{H}]^{+}$.

Compounds prepared by Scheme 8

[2S]-N-\{3-carbamoyl-6-ethyl-4H,5H,6H,7H-thieno[2,3-c]pyridine-2-yl\}pyrrolidine-2-carboxamide ($\mathbf{3 0}$ in Table 3). LRMS m/z $323[\mathrm{M}+\mathrm{H}]^{+}$.

N'1-\{3-carbamoyl-6-ethyl-4H,5H,6H,7H-thieno[2,3-c]pyridine-2-yl\}-N1-(4-chlorophenyl)cyclopropane-1,1-dicraboxamide (31 in Table 3). LRMS $m / z 447$ $[\mathrm{M}+\mathrm{H}]^{+}$.

Preparation of 6-Ethyl-2-formamido-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3carboxamide Hydrochloride (I2, 29 in Table 3).

Step One. 6-Ethyl-2-formamido-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3carboxamide (I1). The mixture of compound $\mathbf{A 2}$ ($225 \mathrm{mg}, 1.00 \mathrm{mmol}$) in formic acid (5 mL) and water (1 mL) was stirred overnight at room temperature. After that time, the reaction mixture was concentrated under reduced pressure. The residue was mixed with saturated aqueous sodium bicarbonate (50 mL) and extracted with methylene chloride (3 $\times 150 \mathrm{~mL}$). The combined organic extracts were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with methanol/methylene chloride (15:85) to afford compound I1 as an off-white solid ($208 \mathrm{mg}, 82 \%$): ${ }^{1} \mathrm{H}$ NMR (300 MHz ,

DMSO-d6) $\delta 11.44$ (s, 1H), $8.40(\mathrm{~s}, 1 \mathrm{H}), 7.52(\mathrm{bs}, 1 \mathrm{H}), 7.03(\mathrm{bs}, 1 \mathrm{H}), 3.48(\mathrm{~s}, 2 \mathrm{H}), 2.76$ (d, $J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.54-2.47(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; LRMS $m / z 254[\mathrm{M}+\mathrm{H}]^{+}$.

Step Two. 6-Ethyl-2-formamido-4,5,6,7-tetrahydrothieno[2,3-c]pyridine-3carboxamide Hydrochloride (I2, 29 in Table 3). To the mixture of compound I1 (152 $\mathrm{mg}, 0.600 \mathrm{mmol}$) in water (6 mL) and methanol $(2 \mathrm{~mL})$ at room temperature was added 1 M hydrochloric acid $(1.00 \mathrm{~mL}, 1.00 \mathrm{mmol})$. After addition, the mixture was sonicated to form clear solution and then lyophilized to afford compound $\mathbf{I 2}$ (29 in Table 3) as a white solid ($165 \mathrm{mg}, 95 \%$): ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 11.49$ (s, 1H), 10.94 (bs, 1H), 8.44 (s, 1H), 7.61 (bs, 1H), 7.37 (bs, 1H), 4.55-4.49 (m, 1H), 4.25-4.17 (m, 1H), 3.293.07 (m, 6H), 1.31 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; LRMS m/z $254[\mathrm{M}+\mathrm{H}]^{+}$.

Scheme 10

Preparation of 2-[3-(4-Chlorophenyl)ureido)-7-ethyl-5,6,7,8-tetrahydro-4H-thieno[2,3-c]azepine-3-carboxamide Hydrochloride (J10, 43 in Table 5).

Step One. tert-Butyl 2-Amino-3-carbamoyl-5,6-dihydro-4H-thieno[2,3-c]azepine-7(8H)-carboxylate (S2) and tert-Butyl 2-Amino-3-carbamoyl-7,8-dihydro-4H-thieno[2,3-d]azepine-6(5H)-carboxylate ($\mathbf{J} 2$ and $\mathbf{J 3}$). The mixture of compound J1 $(1.00 \mathrm{~g}, 4.69 \mathrm{mmol}), 2$-cyanoacetamide ($394 \mathrm{mg}, 4.69 \mathrm{mmol}$), sulphur ($150 \mathrm{mg}, 4.69$ mmol), and morpholine ($410 \mathrm{mg}, 4.71 \mathrm{mmol}$) in ethanol (10 mL) was heated to reflux for 4 h under nitrogen. After cooled to room temperature, the reaction mixture was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with 4% methanol/methylene chloride to provide an
inseparable mixture of isomers $\mathbf{J} \mathbf{2}$ and compound $\mathbf{J} \mathbf{3}$ as a yellow solid ($564 \mathrm{mg}, 39 \%$): LRMS $m / z 312[\mathrm{M}+\mathrm{H}]^{+}$.

Step Two. tert-Butyl 3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-5,6-dihydro-4H-

 thieno[2,3-c]azepine-7(8H)-carboxylate (S4) and tert-Butyl 3-Carbamoyl-2-[3-(4chlorophenyl) ureido]-7,8-dihydro-4H-thieno[2,3-d $]$ azepine- $6(5 H$)-carboxylate ($\mathbf{J 4}$ and J5). To the stirred mixture of compound $\mathbf{J} 2$ and $\mathbf{~ J} 3(300 \mathrm{mg}, 0.963 \mathrm{mmol})$ in $\mathrm{N}, \mathrm{N}-$ dimethylformamide (2 mL) at room temperature under nitrogen was added 4chlorophenyl isocyanate ($148 \mathrm{mg}, 0.964 \mathrm{mmol}$). After addition, the reaction mixture was stirred for 21 h . After this time, the reaction mixture was concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with 50% ethyl acetate/methylene chloride to provide an inseparable mixture of isomers $\mathbf{J 4}$ and $\mathbf{J 5}$ as a white solid ($375 \mathrm{mg}, 84 \%$): LRMS $\mathrm{m} / \mathrm{z} 487[\mathrm{M}+\mathrm{Na}]^{+}$.Step Three. 2-[3-(4-Chlorophenyl)ureido]-5,6,7,8-tetrahydro-4H-thieno[2,3-c]azepine-3-carboxamide Trifluoroacetae (S6) and 2-[3-(4-Chlorophenyl)ureido]-5,6,7,8-tetrahydro-4H-thieno[2,3- \boldsymbol{d}] azepine-3-carboxamide Trifluoroacetae (J6 and $\mathbf{J 7})$. To the mixture of compound $\mathbf{J} \mathbf{4}$ and $\mathbf{J 5}(374 \mathrm{mg}, 0.804 \mathrm{mmol})$ in methylene chloride (4 mL) was added trifluoroacetic acid (2 mL). After addition, the reaction mixture was stirred for 1 h and then concentrated under reduced pressure. The resulting residue was purified by reverse phase semi-preparative HPLC, eluting with 0.05% TFA in acetonitrile/water (gradient from 10% to 100%, Phenomenex Luna column) to afford compound $\mathbf{J 6}$ as a white solid ($188 \mathrm{mg}, 49 \%$) and compound $\mathbf{J 7}$ as a white solid (106 mg , 28%). Compound J6: ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.06$ (s, 1H), 10.05 (s, 1H), 8.77 (s, 2H), 7.70-7.30 (m, 6H), 4.32 (s, 2H), 3.37 (bs, 2H), 2.96-2.94 (m, 2H), 1.87 (bs, 2H); LRMS m/z 365 [M+H] ${ }^{+}$. Compound J7: ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.02$ (s, $1 \mathrm{H}), 9.94(\mathrm{~s}, 1 \mathrm{H}), 8.85(\mathrm{~s}, 2 \mathrm{H}), 7.70-7.30(\mathrm{~m}, 6 \mathrm{H}), 3.22(\mathrm{bs}, 4 \mathrm{H}), 3.08-2.98(\mathrm{~m}, 4 \mathrm{H})$; LRMS $m / z 365[\mathrm{M}+\mathrm{H}]^{+}$.

Step Four. 2-[3-(4-Chlorophenyl)ureido]-7-ethyl-5,6,7,8-tetrahydro-4H-thieno[2,3-c]azepine-3-carboxamide (J8). To the stirred mixture of compound $\mathbf{J 6}$ ($185 \mathrm{mg}, 0.386$ mmol), acetaldehyde (5 M solution in tetrahydrofuran, $0.160 \mathrm{~mL}, 0.800 \mathrm{mmol}$), and acetic acid (2 drops) in anhydrous methanol (6 mL) and anhydrous tetrahydrofuran (3 mL) at room temperature under nitrogen was added sodium cyanoborohydride (73.0 mg , $1.16 \mathrm{mmol})$. After addition, the reaction mixture was stirred for 17 h . After this time, the reaction mixture was diluted with methylene chloride (100 mL), washed with saturated aqueous sodium bicarbonate (30 mL), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with 20% to 60% methanol/methylene chloride to provide compound J8 as a light yellow solid (92 mg, 61\%): LRMS m/z $393[\mathrm{M}+\mathrm{H}]^{+}$.

Step Five. 2-[3-(4-Chlorophenyl)ureido]-7-ethyl-5,6,7,8-tetrahydro-4H-thieno[2,3$c]$ azepine-3-carboxamide Hydrochloride (J10, 43 in Table 5). To the stirred mixture of compound $\mathbf{J 8}(41.0 \mathrm{mg}, 0.104 \mathrm{mmol})$ in methanol (3 mL) and methylene chloride (3 mL) at room temperature was added hydrochloric acid (2 M in diethyl ether, 0.100 mL , $0.200 \mathrm{mmol})$. After addition, the reaction mixture was stirred for 5 min and concentrated
under reduced pressure. The resulting residue was dissolved in acetonitrile (1 mL) and water (1 mL) and lyophilized to provide compound $\mathbf{J 1 0}$ ($\mathbf{4 3}$ in Table 5) as an off-white solid ($45 \mathrm{mg}, 100 \%$): ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.12(\mathrm{~s}, 1 \mathrm{H}), 10.11(\mathrm{~s}, 1 \mathrm{H})$, $10.04(\mathrm{bs}, 1 \mathrm{H}), 7.70-7.30(\mathrm{~m}, 6 \mathrm{H}), 4.56-4.40(\mathrm{~m}, 2 \mathrm{H}), 3.59-3.36(\mathrm{~m}, 2 \mathrm{H}), 3.09-2.94(\mathrm{~m}$, 4H), 2.01-1.84 (m, 2H), 1.25 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS m/z $393[\mathrm{M}+\mathrm{H}]^{+}$.

Compounds Prepared by Scheme 10

2-[3-(4-Chlorophenyl)ureido]-5-ethyl-4,5,6,7-tetrahydrothieno[3,2-c]pyridine-3carboxamide Hydrochloride (41 in Table 5). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.58$ (s, 1H), 10.18 (s, 1H), 9.85 (bs, 1H), 7.65-7.15 (m, 6H), 4.52-3.68 (m, 3H), 3.29-3.00 $(\mathrm{m}, 5 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS $m / z 379[\mathrm{M}+\mathrm{H}]^{+}$.

2-[3-(4-Chlorophenyl)ureido]-6-ethyl-5,6,7,8-tetrahydro-4H-thieno[2,3-d]azepine-3carboxamide Hydrochloride (J11, 44 in Table 5). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) δ 10.27 (bs, 1H), 10.05 (s, 1H), 10.02 (s, 1H), 7.70-7.25 (m, 6H), 3.60-3.56 (m, 2H), 3.25$3.06(\mathrm{~m}, 8 \mathrm{H}), 1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; LRMS m/z $393[\mathrm{M}+\mathrm{H}]^{+}$.

Scheme 11

Preparation of (+/-)-2-[3-(4-Chlorophenyl)ureido]-5,6,7,8-tetrahydro-4H-5,8-epiminocyclohepta[b]thiophene-3-carboxamide Hydrochloride [(+/-)-K8 (97) and (+/-)-K9 (94) in Figure 2].

Step One. (+/-)-tert-Butyl 2-Amino-3-carbamoyl-5,6,7,8-tetrahydro-4H-5,8-epiminocyclohepta[b]thiophene-9-carboxylate $[(+/-)$-X2 and (+/-)-X3, mixture of regioisomers]. The stirred mixture of tert-butyl 3-oxo-8-azabicyclo[3.2.1]octane-8-
carboxylate (K1, $2.48 \mathrm{~g}, 11.0 \mathrm{mmol}$), 2-cyanoacetamide ($1.02 \mathrm{~g}, 12.1 \mathrm{mmol}$), morpholine $(1.92 \mathrm{~g}, 22.0 \mathrm{mmol})$, and $4 \AA$ molecular sieves $(4.00 \mathrm{~g})$ in ethanol $(100 \mathrm{~mL})$ and toluene $(60 \mathrm{~mL})$ was heated to reflux under nitrogen overnight. After this time, the reaction mixture was cooled to room temperature and filtered. The filter cake was washed with ethanol (30 mL) and filtered. The filtrate was concentrated. The resulting residue was purified by a silica gel plug eluting with methanol/methylene chloride (1:9) to provide a partially purified product which was used in the subsequent step without further purification $(1.10 \mathrm{~g})$: LRMS $m / z 192[\mathrm{M}+\mathrm{H}-\mathrm{Boc}]^{+}$. The stirred mixture of the product described above (1.10 g), sulfur ($145 \mathrm{mg}, 4.52 \mathrm{mmol}$), and morpholine ($656 \mathrm{mg}, 7.53$ mmol) in ethanol (40 mL) was heated to reflux overnight under nitrogen. After this time, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The resulting residue was mixed with saturated aqueous sodium bicarbonate $(30 \mathrm{~mL}$). The resulting aqueous mixture was extracted with methylene chloride (3×50 mL). The combined organic extracts were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with ethyl acetate/hexanes (8:2) to provide an inseparable regioisomers (+/-)-K2 and (+/-)-K3 as a yellow solid ($391 \mathrm{mg}, 11 \%$): ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 7.02$ (bs, 0.25 H), $6.70-6.40(\mathrm{~m}, 3.75 \mathrm{H}), 5.05$ (d, $J=5.4$ $\mathrm{Hz}, 0.86 \mathrm{H}), 4.62(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 0.14 \mathrm{H}), 4.32(\mathrm{bs}, 1 \mathrm{H}), 3.08-2.94(\mathrm{~m}, 1 \mathrm{H}), 2.30-1.81(\mathrm{~m}$, $4 \mathrm{H}), 1.61-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.36$ and $1.30(2 \mathrm{~s}, 9 \mathrm{H})$; LRMS m/z $325[\mathrm{M}+\mathrm{H}]^{+}$.

Step Two. (+/-)-tert-Butyl 3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-5,6,7,8-

 tetrahydro-4H-5,8-epiminocyclohepta $[b]$ thiophene-9-carboxylate $[(+/-)-\mathrm{K} 4$, (regioisomer A) and (+/-)-K5 (regioisomer B)]. To the stirred mixture of regioisomers $(+/-)-\mathbf{K} 2$ and $(+/-)-\mathbf{K} \mathbf{3}(387 \mathrm{mg}, 1.20 \mathrm{mmol})$ in methylene chloride $(8 \mathrm{~mL})$ at room temperature under nitrogen was added 4 -chlorophenyl isocyanate ($221 \mathrm{mg}, 1.44 \mathrm{mmol}$). After addition, the reaction mixture was stirred overnight and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with ethyl acetate/hexanes (9:1) to provide regioisomer A (+/-)-K4 as a pale yellow solid ($396 \mathrm{mg}, 69 \%$) and regioisomer B (+/-)-K5 as a yellow solid (112 mg , 20%). Regioisomer A [(+/-)-K4]: ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 10.59-10.51$ (m, $1 \mathrm{H}), 10.06(\mathrm{~s}, 1 \mathrm{H}), 7.51-6.80(\mathrm{~m}, 6 \mathrm{H}), 5.03(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{bs}, 1 \mathrm{H}), 3.19-3.10$ $(\mathrm{m}, 1 \mathrm{H}), 2.29-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.65-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.36$ and $1.28(2 \mathrm{bs}, 9 \mathrm{H}) ;$ LRMS m/z 475 [M-H]. Regioisomer B [(+/-)-K5]: ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 11.09-11.01$ (m, $1 \mathrm{H}), 10.20(\mathrm{~s}, 1 \mathrm{H}), 7.62-6.70(\mathrm{~m}, 6 \mathrm{H}), 4.82(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{bs}, 1 \mathrm{H}), 2.15-1.52$ (m, 6H), $1.23(\mathrm{bs}, 9 \mathrm{H}) ;$ LRMS $m / z 475[\mathrm{M}+\mathrm{H}]^{+}$.Step Three. (+/-)-2-[3-(4-Chlorophenyl)ureido]-5,6,7,8-tetrahydro-4H-5,8-epiminocyclohepta[b]thiophene-3-carboxamide $[(+/-)-\mathrm{K} 6$ and (+/-)-K7, mixture of regioisomers). To the stirred mixture of regioisomers (+/-)-K4 and (+/-)-K5 (3.5:1) (500 $\mathrm{mg}, 1.05 \mathrm{mmol})$ in methylene chloride (20 mL) and toluene (3 mL) at room temperature under nitrogen was added trifluoroacetic acid ($4.60 \mathrm{~g}, 40.3 \mathrm{mmol}$). After addition, the reaction mixture was stirred for 4 h and concentrated under reduced pressure. The resulting residue was mixed with saturated aqueous sodium bicarbonate (30 mL). The resulting aqueous mixture was extracted with 5% methanol/methylene chloride (4×60 mL). The combined organic extracts were dried over anhydrous sodium sulfate, filtered,
and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with ammonium hydroxide/methanol/methylene chloride (1:14:85) to provide an inseparable regioisomers (+/-)-K6 and (+/-)-K7 (3.5:1) as a white solid ($321 \mathrm{mg}, 81 \%$): LRMS m/z $377[\mathrm{M}+\mathrm{H}]^{+}$.

Step Four. (+/-)-2-[3-(4-Chlorophenyl)ureido]-5,6,7,8-tetrahydro-4H-5,8-epiminocyclohepta[b]thiophene-3-carboxamide Hydrochloride [(+/-)-K8 (97) and (+/-)-K9 (94), mixture of regioisomers in Figure 2]. To the stirred mixture of regioisomers (+/-)-K6 and (+/-)-K7 (3.5:1) ($37 \mathrm{mg}, 0.10 \mathrm{mmol}$) in methanol at room temperature was added 1 M hydrochloric acid ($2.0 \mathrm{~mL}, 2.0 \mathrm{mmol}$). The mixture was sonicated for 20 min , diluted with water, and lyophilized to provide a mixture of regioisomers (+/-)-K8 (97 in Figure 2) and (+/-)-K9 (94 in Figure 2) as a 3.5:1 mixture of isomers as a white solid ($39 \mathrm{mg}, 96 \%$): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 11.05$ (s, $0.18 \mathrm{H}), 10.29$ and $10.28(2 \mathrm{~s}, 1 \mathrm{H}), 10.13(\mathrm{~s}, 0.82 \mathrm{H}), 9.52(\mathrm{bs}, 1 \mathrm{H}), 9.23$ and $9.21(2 \mathrm{~s}$, $0.18 \mathrm{H}), 9.01$ and $8.98(2 \mathrm{~s}, 0.82 \mathrm{H}), 7.55-7.20(\mathrm{~m}, 6 \mathrm{H}), 5.00-4.95(\mathrm{~m}, 1 \mathrm{H}), 4.31(\mathrm{bs}, 1 \mathrm{H})$, 3.26-3.16 (m, 1H), 2.98-2.72 (m, 1H), 2.28-2.05 (m, 3H), 1.84-1.76 (m, 1H); LRMS $\mathrm{m} / \mathrm{z} 377$ [M+H] .

Scheme 12

(+/-)-L4
Preparation of (+/-)-2-[3-(4-Chlorophenyl)ureido)-9-methyl-5,6,7,8-tetrahydro-4H-5,8-epiminocyclohepta[b]thiophene-3-carboxamide Hydrochloride [(+/-)-L4, 88 in Figure 2].

Step One. (+/-)-2-Amino-9-methyl-5,6,7,8-tetrahydro-4H-5,8-epiminocyclohepta[b]-thiophene-3-carboxamide [(+/-)-L2]. The stirred mixture of tropinone (L1, $3.00 \mathrm{~g}, 21.6$ mmol), 2-cyanoacetamide ($1.99 \mathrm{~g}, 23.7 \mathrm{mmol}$), sulphur ($830 \mathrm{mg}, 25.9 \mathrm{mmol}$), and morpholine ($3.75 \mathrm{~g}, 43.0 \mathrm{mmol}$) in ethanol (80 mL) was heated to reflux under nitrogen for 4 h . After this time, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The resulting residue was diluted with saturated aqueous sodium bicarbonate (60 mL) and extracted with methylene chloride (3×150 mL). The combined organic extracts were dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with methanol/methylene chloride (1:9) to provide compound (+/-)-L2 as a brown solid ($396 \mathrm{mg}, 8 \%$): LRMS $\mathrm{m} / \mathrm{z} 238[\mathrm{M}+\mathrm{H}]^{+}$.

Step Two. (+/-)-2-[3-(4-Chlorophenyl)ureido]-9-methyl-5,6,7,8-tetrahydro-4H-5,8-epiminocyclohepta[b]thiophene-3-carboxamide [(+/-)-L3]. To the stirred mixture of compound (+/-)-L2 ($375 \mathrm{mg}, 1.58 \mathrm{mmol}$) in methylene chloride $(10 \mathrm{~mL})$ at room temperature under nitrogen was added a solution of 4-chlorophenyl isocyanate (255 mg , $1.66 \mathrm{mmol})$ in methylene chloride (10 mL). The reaction mixture was stirred overnight and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with methanol/methylene chloride (15:85) to provide compound (+/-)-L3 as an off-white solid ($369 \mathrm{mg}, 60 \%$): ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 10.70(\mathrm{bs}, 1 \mathrm{H}), 10.05(\mathrm{bs}, 1 \mathrm{H}), 7.90-6.50(\mathrm{~m}, 6 \mathrm{H}), 4.11$ (bs, 1H), 2.99 (d, J $=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.35-1.95(\mathrm{~m}, 7 \mathrm{H}), 1.79(\mathrm{bs}, 1 \mathrm{H}), 1.48(\mathrm{bs}, 1 \mathrm{H}) ;$ LRMS m/z $391[\mathrm{M}+\mathrm{H}]^{+}$.

Step Three. (+/-)-2-[3-(4-Chlorophenyl)ureido]-9-methyl-5,6,7,8-tetrahydro-4H-5,8-epiminocyclohepta[b]thiophene-3-carboxamide Hydrochloride [(+/-)-L4, 88 in Figure 2]. To the mixture of compound (+/-)-L3 ($78 \mathrm{mg}, 0.20 \mathrm{mmol}$) in methanol (3 mL) at $0{ }^{\circ} \mathrm{C}$ was added 1 M hydrochloric acid ($0.30 \mathrm{~mL}, 0.30 \mathrm{mmol}$). After addition, the mixture was stirred for 5 min , diluted with water (6 mL), and lyophilized to provide compound (+/-)-L4 (88 in Figure 2) as a white solid ($81 \mathrm{mg}, 95 \%$): ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 11.31$ (bs, 0.38 H), 10.34 and $10.32(2 \mathrm{~s}, 1 \mathrm{H}), 10.22-10.18(\mathrm{~m}, 1.62 \mathrm{H})$, 7.60-7.33 (m, 6H), 4.94-4.82 (m, 1H), 4.19-4.09 (m, 1H), 3.38-3.16 (m, 1H), 2.86-2.68 (m, 4H), 2.49-2.08 (m, 3H), 1.89-1.79 (m, 1H); LRMS m/z $391[\mathrm{M}+\mathrm{H}]^{+}$.

Scheme 13

Preparation of (-) and (+)-2-[3-(4-Chlorophenyl)ureido]-9-methyl-5,6,7,8-tetrahydro-4H-5,8-epiminocyclohepta[b]thiophene-3-carboxamide Hydrochloride [(-)-M3, (-)-89 in Table 8 and (+)-M4, (+)-90, ORC-13661 in Table 8].

Step One. Chiral separation of (-)-2-[3-(4-Chlorophenyl)ureido]-9-methyl-5,6,7,8-tetrahydro-4H-5,8-epiminocyclohepta[b]thiophene-3-carboxamide $[(-)-\mathrm{M} 3]$ and (+)-2-[3-(4-Chlorophenyl)ureido]-9-methyl-5,6,7,8-tetrahydro-4H-5,8-epiminocyclohepta[b]thiophene-3-carboxamide [(+)-M4]. Compound (+/-)-L3 (720 mg) was separated by chiral preparative HPLC ($20 \mu \mathrm{~m}$ CHIRALCEL OD, $5 \mathrm{~cm} \times 50 \mathrm{~cm}$, $100 \mathrm{~mL} / \mathrm{min}$ flow rate, $120 \mathrm{mg} / \mathrm{injection}$) eluting with 0.1% diethylamine in 20%
ethanol/heptane to provide (-)-M1 as a white solid ($268 \mathrm{mg}, 37 \%$), followed by (+)-M2 ($250 \mathrm{mg}, 35 \%$) as a white solid. Compound (-)-M1: LRMS m/z $391[\mathrm{M}+\mathrm{H}]^{+}$. Compound (+)-M2: LRMS $m / z 391[\mathrm{M}+\mathrm{H}]^{+}$.

Step Two. (-)-2-[3-(4-Chlorophenyl)ureido]-9-methyl-5,6,7,8-tetrahydro-4H-5,8-epiminocyclohepta[b]thiophene-3-carboxamide Hydrochloride [(-)-M3, (-)-89 in Table 8] and (+)-2-[3-(4-Chlorophenyl)ureido]-9-methyl-5,6,7,8-tetrahydro-4H-5,8-epiminocyclohepta[b]thiophene-3-carboxamide Hydrochloride [(+)-M4, 90 in Table 8]. To the stirred mixture of compound (-)-M1 ($240 \mathrm{mg}, 0.610 \mathrm{mmol}$) in methanol (30 mL) at room temperature was added 1 M hydrochloric acid ($1.25 \mathrm{~mL}, 1.25 \mathrm{mmol}$) dropwise. After addition, the mixture was stirred for 10 min . After this time, the mixture was diluted with water $(10 \mathrm{~mL})$ and lyophilized to provide compound (-)-M3 89 in Table 8] as a white solid ($255 \mathrm{mg}, 97 \%$): ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 11.24$ (bs, 0.40 H), 10.34 and $10.32(2 \mathrm{~s}, 1 \mathrm{H}), 10.19-10.16(\mathrm{~m}, 1.60 \mathrm{H}), 7.51-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~d}, J=9.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.95-4.82(\mathrm{~m}, 1 \mathrm{H}), 4.19-4.08(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.68(\mathrm{~m}, 4 \mathrm{H})$, $2.45-2.09(\mathrm{~m}, 3 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 1 \mathrm{H}) ;$ LRMS $\mathrm{m} / \mathrm{z} 391[\mathrm{M}+\mathrm{H}]^{+} ;[\alpha]_{\mathrm{D}}=-5.5^{\circ}(\mathrm{c}=0.2$, MeOH). 90: ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 11.20$ (bs, 0.34 H), 10.34 and 10.31 (2 s , $1 \mathrm{H}), 10.18(\mathrm{~s}, 1 \mathrm{H}), 10.16(\mathrm{bs}, 0.66 \mathrm{H}), 7.54-7.33(\mathrm{~m}, 6 \mathrm{H}), 4.94-4.90(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.06$ $(\mathrm{m}, 1 \mathrm{H}), 3.42-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.49-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.09(\mathrm{~m}, 1 \mathrm{H})$, $1.89-1.80(\mathrm{~m}, 1 \mathrm{H})$; LRMS $m / z 391[\mathrm{M}+\mathrm{H}]^{+} ;[\alpha]_{\mathrm{D}}=+3.5^{\circ}(\mathrm{c}=0.2, \mathrm{MeOH})$.
Free base (M1 and M2) optical rotations. 88: $-19.5^{\circ}(\mathrm{c}=0.2, \mathrm{MeOH}), \mathrm{T}=25^{\circ} \mathrm{C} .89$: $+18.5^{\circ}(\mathrm{c}=0.2, \mathrm{MeOH}), \mathrm{T}=25^{\circ} \mathrm{C}$.

Compounds Prepared by Scheme 13

(+)-[1R,8S]-4-\{[(4-Chlorophenyl)carbamoyl]amino\}-11-methyl-3-thia-11azatricyclo[6.2.1.0 ${ }^{2},{ }^{6}$] undeca-2(6),4-diene-5-carboxamide Hydrochloride [(+)-92 in Table 8]. ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 11.19$ (bs, 0.34 H), 10.35 and 10.30 (2 s , $1 \mathrm{H}), 10.18$ ($\mathrm{s}, 1 \mathrm{H}$), 10.17 (bs, 0.66 H), $7.50-7.33(\mathrm{~m}, 6 \mathrm{H}), 4.95-4.91(\mathrm{~m}, 1 \mathrm{H}), 4.20-4.06$ $(\mathrm{m}, 1 \mathrm{H}), 3.42-3.16(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.65(\mathrm{~m}, 4 \mathrm{H}), 2.49-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.09(\mathrm{~m}, 1 \mathrm{H})$, 1.89-1.80 (m, 1H); HRMS (ESI) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 391.09899$, found $391.09907 ;[\alpha]_{\mathrm{D}}=+38^{\circ}(\mathrm{c}=0.1 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{MeOH}), \mathrm{T}=22.2^{\circ} \mathrm{C}$.
(-)-[1S,8R]-4-\{[(4-Chlorophenyl)carbamoyl]amino\}-11-methyl-3-thia-11azatricyclo[6.2.1.0 ${ }^{2}$, ${ }^{6}$] undeca-2(6),4-diene-5-carboxamide Hydrochloride [(-)-93 in Table 8]. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 11.22$ (bs, 0.40 H), 10.34 and $10.32(2 \mathrm{~s}$, $1 \mathrm{H}), 10.19-10.16(\mathrm{~m}, 1.60 \mathrm{H}), 7.50-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.35(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.95-4.82$ (m, $1 \mathrm{H}), 4.19-4.09(\mathrm{~m}, 1 \mathrm{H}), 3.43-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.88-2.71(\mathrm{~m}, 4 \mathrm{H}), 2.45-2.09(\mathrm{~m}, 3 \mathrm{H}), 1.88-$ $1.81(\mathrm{~m}, 1 \mathrm{H})$; HRMS (ESI) m / z calculated for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 391.09899$, found $391.09944 ;[\alpha]_{\mathrm{D}}=-51.2^{\circ}(\mathrm{c}=0.102 \mathrm{~g} / 100 \mathrm{~mL}, \mathrm{MeOH}), \mathrm{T}=28.1^{\circ} \mathrm{C}$.

Scheme 14

Preparation of (+/-)-2-[3-(4-Chlorophenyl)ureido]-5,6,7,8-tetrahydro-4H-5,8-epiminocyclohepta[b]thiophene-3-carboxamide (N3, 97 in Figure 2).

Step 1. (+/-)-tert-Butyl 4-Amino-3-carbamoyl-5-thia-11azatricyclo[6.2.1.0 ${ }^{\mathbf{2}},^{6}$] undeca-2[6],3-diene-11-carboxylate (N2). Into a 500-mL 3necked round-bottom flask purged and maintained with an inert atmosphere of nitrogen, was placed a solution of (+/-)-tert-butyl-2-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate (N1) $(9.0 \mathrm{~g}, 40 \mathrm{mmol}, 1.00$ equiv) in ethanol (300 mL), 2-cyanoacetamide ($3.7 \mathrm{~g}, 44$ $\mathrm{mmol}, 1.10$ equiv), $\mathrm{S}_{8}(1.41 \mathrm{~g}, 1.10$ equiv), morpholine ($10.4 \mathrm{~g}, 3.00$ equiv). The resulting solution was stirred for 48 h at $50^{\circ} \mathrm{C}$ in an oil bath. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether ($1: 10 \sim 1: 1$). This yielded $9.5 \mathrm{~g}(73 \%)$ of (+/-)-tert-butyl-4-amino-3-carbamoyl-5-thia-11-azatricyclo[6.2.1.02, ${ }^{6}$]undeca-2[6],3-diene-11carboxylate (N2) as a yellow solid: LRMS $m / z 324[\mathrm{M}+\mathrm{H}]^{+}$.

Step 2. (+/-)-tert-Butyl 3-Carbamoyl-4-([(4-chlorophenyl]carbamoyl]amino)-5-thia-11-azatricyclo[6.2.1.0 ${ }^{2}$, ${ }^{6}$] undeca-2[6],4-diene-carboxylate (N3, 97 in Figure 2). Into a 500 mL 3 -necked round-bottom flask, was placed a solution of (+/-)-tert-butyl-4-amino-3-carbamoyl-5-thia-11-azatricyclo[6.2.1.0 $\left.{ }^{2},{ }^{6}\right]$ undeca-2[6],3-diene-11-carboxylate $\mathbf{N} 2(9.5 \mathrm{~g}$, $29 \mathrm{mmol}, 1.00$ equiv), 1 -chloro-4-isocyanatobenzene ($4.95 \mathrm{~g}, 32 \mathrm{mmol}, 1.10$ equiv) in dichloromethane (200 mL). The resulting solution was stirred overnight at room temperature. The resulting mixture was concentrated under vacuum. The residue was applied onto a silica gel column and eluted with ethyl acetate/petroleum ether (1:10 ~ 1:1). This resulted in $11.5 \mathrm{~g}(82 \%)$ of (+/-)-tert-butyl-3-carbamoyl-4-([(4-chlorophenyl]carbamoyl]amino)-5-thia-11-azatricyclo[6.2.1.0 $\left.{ }^{2},{ }^{6}\right]$ undeca-2[6],4-dienecarboxylate ($\mathbf{N} \mathbf{3}, 97$ in Figure 2) as a yellow solid: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.48$ $7.42(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.27(\mathrm{~m}, 2 \mathrm{H}), 5.20-5.18(\mathrm{br}, 1 \mathrm{H}), 4.59-4.52(\mathrm{br}, 1 \mathrm{H}), 2.53-2.49(\mathrm{~m}, 1 \mathrm{H})$, 2.39-2.04(m, 4H), 1.81-1.72(br, 1H), 1.46-1.38(m, 9H); LRMS m/z $477[\mathrm{M}+\mathrm{H}]^{+}$.

Scheme 15

Preparation of (-)-[1S,8R]-4-([(4-Chlorophenyl]carbamoyl]amino)-5-thia-11azatricyclo[6.2.1.0 ${ }^{2,}{ }^{6}$] undeca-2[6],4-diene-carboxamide Hydrochloride [(-)-05, (-)-98 in Table 8] and (+)-[1R,8S]-4-([(4-chlorophenyl]carbamoyl]amino)-5-thia-11azatricyclo[6.2.1.0 $\left.{ }^{2},{ }^{6}\right]$ undeca-2[6],4-diene-carboxamide Hydrochloride [(+)-O6, (+)99 in Table 8].

Step 1. (-)-tert-Butyl 3-Carbamoyl-4-([(4-chlorophenyl]carbamoyl]amino)-5-thia-11-azatricyclo[6.2.1.0 $\left.{ }^{2},{ }^{6}\right]$ undeca-2[6],4-diene-carboxylate $[(-)-\mathrm{O} 1]$ and (+)-tert-Butyl 3-Carbamoyl-4-([(4-chlorophenyl]carbamoyl]amino)-5-thia-11-
azatricyclo[6.2.1.0 ${ }^{2}$, ${ }^{6}$] undeca-2[6],4-diene-carboxylate [(+)-O2]. 11.6g of (+/-)-tert-butyl-3-carbamoyl-4-([(4-chlorophenyl]carbamoyl]amino)-5-thia=11azatricyclo[6.2.1.0 ${ }^{2}$, ${ }^{6}$]undeca-2[6],4-diene-carboxylate (N3) was separated by Supercritical Fluid Chromatography (SFC) using a ChiralPak IF column with Mobile Phase A: $\mathrm{CO}_{2}: 50$, Mobile Phase B: $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 1: 50$, to yield (-)-tert-butyl-3-carbamoyl-4-([(4-chlorophenyl]carbamoyl]amino)-5-thia-11azatricyclo[6.2.1.0 $\left.{ }^{2},{ }^{6}\right]$ undeca-2[6],4-diene-carboxylate $[(-)-\mathbf{O 1}]$ and (+)-tert-butyl-3-carbamoyl-4-([(4-chlorophenyl]carbamoyl]amino)-5-thia-11azatricyclo[6.2.1.0 $\left.{ }^{2},{ }^{6}\right]$ undeca-2[6],4-diene-carboxylate [(+)-O2].

Step 2. (-)-[1S,8R]-4-([(4-Chlorophenyl]carbamoyl]amino)-5-thia-11azatricyclo[6.2.1.0 ${ }^{2}$, ${ }^{6}$]undeca-2[6],4-diene-carboxamide [(-)-O3]. Into a $250-\mathrm{mL} 3$ 3necked round-bottom flask, was placed a solution of (-)-tert-butyl-3-carbamoyl-4-([(4-chlorophenyl]carbamoyl]amino)-5-thia-11-azatricyclo[6.2.1.0 ${ }^{2}$, ${ }^{6}$]undeca-2[6],4-dienecarboxylate [(-)-01, $5.0 \mathrm{~g}, 11 \mathrm{mmol}, 1.00$ equiv] in dichloromethane $(100 \mathrm{~mL})$, trifluoroacetic acid $(20 \mathrm{~mL})$. The resulting solution was stirred for 30 min at room temperature. The resulting mixture was concentrated under vacuum. The residue was
diluted with 100 mL of EtOAc , washed with $2 \times 100 \mathrm{~mL}$ of sodium bicarbonate $/ \mathrm{H}_{2} \mathrm{O}$ and $2 \times 100 \mathrm{~mL}$ of brine. The organic phase was dried over anhydrous sodium sulfate. The solids were filtered out. This resulted in $3.5 \mathrm{~g}(89 \%)$ of (-)-O3 as a yellow solid: LRMS $m / z 377[\mathrm{M}+\mathrm{H}]^{+}$.

Step 3. (-)-[1S,8R]-4-([(4-Chlorophenyl]carbamoyl]amino)-5-thia-11azatricyclo[6.2.1.0 ${ }^{2}$, ${ }^{6}$]undeca-2[6],4-diene-carboxamide Hydrochloride [(-)-05, 98 in Table 8]. Into a $250-\mathrm{mL}$ 3-necked round-bottom flask, was placed a solution of (-)-[1S,8R]-4-([(4-chlorophenyl]carbamoyl]amino)-5-thia-11-azatricyclo[6.2.1.0 $\left.{ }^{2},{ }^{6}\right]$ undeca-2[6],4-diene-carboxamide $[(-)-\mathbf{O 3}, 3.5 \mathrm{~g}, 9.3 \mathrm{mmol}, 1.00$ equiv] in methanol $(100 \mathrm{~mL})$ and $1 \mathrm{M} \mathrm{HCl}(18.6 \mathrm{~mL})$. The resulting solution was stirred for 30 min at $0^{\circ} \mathrm{C}$ in an ice/salt bath. The resulting mixture was concentrated under vacuum. This resulted in 3.2520 g (85\%) of (-)-[1S,8R]-4-([(4-chlorophenyl]carbamoyl]amino)-5-thia-11azatricyclo[6.2.1.0 ${ }^{2}$, $]$ undeca-2[6],4-diene-carboxamide hydrochloride [(-)-05, $\mathbf{9 8}$ in Table 8] as a pink solid: ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$) $\delta 10.27(\mathrm{~s}, 1 \mathrm{H}), 10.10(\mathrm{~s}, 1 \mathrm{H}), 9.46$ (br, 1H), $8.99(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.17(\mathrm{~m}, 6 \mathrm{H}), 5.0(\mathrm{~s}, 1 \mathrm{H}), 4.32(\mathrm{~s}, 1 \mathrm{H}), 3.31-$ $3.24(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.09(\mathrm{~m}, 3 \mathrm{H}), 1.82-1.69(\mathrm{br}, 1 \mathrm{H})$; HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 377.08334$, found 377.08347 ; [$\left.\alpha\right]_{\mathrm{D}}$ (free base) $+3.66^{\circ}(\mathrm{c}=0.25, \mathrm{MeOH})$.

Compounds Prepared by Scheme 15

(+)-2-[3-(4-Chlorophenyl)ureido]-5,6,7,8-tetrahydro-4H-5,8-epiminocyclohepta[b]thiophene-3-carboxamide Hydrochloride [95 in Table 8]. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 11.04$ (m, 1H), 10.31 (s, 1H), 9.83 (bs, 1H), 9.28 (bs, 1H), 7.75-6.90(m, 6H), $4.94(\mathrm{bs} 1 \mathrm{H}), 4.30(\mathrm{bs}, 1 \mathrm{H}), 3.30-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.99-2.89(\mathrm{~m}, 1 \mathrm{H})$, 2.29-2.02 (m, 3H), 1.90-1.79 (m, 1H); LRMS m/z $377[\mathrm{M}+\mathrm{H}]^{+} ;[\alpha]_{\mathrm{D}}+42.5^{\circ}(\mathrm{c}=0.2$, $\mathrm{MeOH}), \mathrm{T}=25^{\circ} \mathrm{C}$.
(-)-2-[3-(4-Chlorophenyl)ureido]-5,6,7,8-tetrahydro-4H-5,8-epiminocyclohepta[b]thiophene-3-carboxamide Hydrochloride [96 in Table 8]. ${ }^{1} \mathrm{H}$ NMR (300 MHz, DMSO- d_{6}) $\delta 11.05$ (s, 1H), 10.31 (s, 1H), 9.80 (bs, 1H), 9.26 (bs, 1H), $7.80-6.79$ (m, 6H), 4.94 (bs, 1H), 4.30 (bs, 1H), 3.31 (d, $J=15.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.96 (d, $J=$ $16.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.03(\mathrm{~m}, 3 \mathrm{H}), 1.95-1.85(\mathrm{~m}, 1 \mathrm{H})$; HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 377.08334$, found 377.08349 ; $[\alpha]_{\mathrm{D}}-39.5^{\circ}(\mathrm{c}=0.2, \mathrm{MeOH}), \mathrm{T}=$ $25^{\circ} \mathrm{C}$.
(+)-[1R,8S]-4-([(4-chlorophenyl]carbamoyl]amino)-5-thia-11-
azatricyclo[6.2.1.0 $\left.{ }^{2},{ }^{6}\right]$ undeca-2[6],4-diene-carboxamide Hydrochloride $\mathbf{O 6}$ [99 in Table 8]. ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{DMSO}$): $\delta 10.27$ ($\mathrm{s}, 1 \mathrm{H}$), 10.13 ($\mathrm{s}, 1 \mathrm{H}$), 9.64 (br, 1H), $9.01(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.21(\mathrm{~m}, 6 \mathrm{H}), 5.0(\mathrm{~s}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 1 \mathrm{H}), 3.31-3.24(\mathrm{~m}, 1 \mathrm{H})$, $2.80(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.08(\mathrm{~m}, 3 \mathrm{H}), 1.82-1.77(\mathrm{br}, 1 \mathrm{H})$; HRMS (ESI) m / z calculated for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{O}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+} 377.08334$, found 377.08357 ; [$\left.\alpha\right]_{\mathrm{D}}$ (free base) $3.44^{\circ}(c=0.25, \mathrm{MeOH})$.

Scheme 16

Preparation of 3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-6-isobutyl-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-6-ium Iodide (P2) (71 in Table 7).

Step One. 3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-6-isobutyl-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c] pyridin-6-ium Iodide ($\mathbf{P} 2,71$ in Table 7). A solution of compound $\mathbf{P 1}(30 \mathrm{mg}, 0.074 \mathrm{mmol})$ and iodomethane ($14 \mathrm{mg}, 0.096 \mathrm{mmol}$) in N, N dimethylformamide (1.5 mL) was stirred at room temperature for 18 h . After this time, the reaction mixture was concentrated under reduced pressure. The resulting residue was triturated with methylene chloride to afford compound $\mathbf{P 2}$ (71 in Table 1) as a light yellow solid ($27 \mathrm{mg}, 68 \%$): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6$) $\delta 10.81(\mathrm{~s}, 1 \mathrm{H}), 10.26$ (s, $1 \mathrm{H}), 7.80-6.90(\mathrm{~m}, 6 \mathrm{H}), 4.59$ (s, 2H), 3.70-3.63 (m, 2H), 3.41-3.31 (m, 2H), 3.19-3.12 $(\mathrm{m}, 2 \mathrm{H}), 3.10(\mathrm{~s}, 3 \mathrm{H}), 2.36-2.34(\mathrm{~m}, 1 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 3H); LRMS m/z $421[\mathrm{M}]^{+}$.

Compounds Prepared by Scheme 16

3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-6-ethyl-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-6-ium Iodide (68 in Table 7). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.80(\mathrm{~s}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H}), 7.72-7.29(\mathrm{~m}, 5 \mathrm{H}), 7.14$ (bs, 1H), 4.59-4.52 (m, 2H), 3.71-3.58 (m, 2H), 3.51-3.42 (m, 2H), 3.20-3.10 (m, 2H), 3.05 (s, 3H), 1.34 (t, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS $m / z 393[\mathrm{M}]^{+}$.

3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-6,6-diethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-6-ium Iodide (69 in Table 7). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO-d6) $\delta 10.79$ (s, 1 H), 10.26 ($\mathrm{s}, 1 \mathrm{H}$), 7.80-7.00 (m, 6H), 4.56 ($\mathrm{s}, 2 \mathrm{H}$), 3.65-3.35 (m, 6H), 3.13-3.10 (m, $2 \mathrm{H}), 1.28(\mathrm{t}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H})$; LRMS $m / z 407[\mathrm{M}]^{+}$.

3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-6-methyl-6-neopentyl-4,5,6,7-
tetrahydrothieno[2,3-c]pyridin-6-ium Iodide (72 in Table 7). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.81(\mathrm{~s}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H}), 7.80-6.90(\mathrm{~m}, 6 \mathrm{H}), 4.68-4.63(\mathrm{~m}, 2 \mathrm{H}), 3.71-$ 3.67 (m, 2H), 3.18-3.09 (m, 7H), 1.18 (s, 9H); LRMS m/z $435[\mathrm{M}]^{+}$.

3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-6-(cyclopropylmethyl)-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-6-ium Iodide (73 in Table 7). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.80(\mathrm{~s}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.00(\mathrm{~m}, 6 \mathrm{H}), 4.62(\mathrm{ABq}, J=15.0 \mathrm{~Hz}$,
$2 \mathrm{H}), 3.75-3.41(\mathrm{~m}, 3 \mathrm{H}), 3.28-3.12(\mathrm{~m}, 6 \mathrm{H}), 1.26-1.23(\mathrm{~m}, 1 \mathrm{H}), 0.75(\mathrm{bs}, 2 \mathrm{H}), 0.41(\mathrm{bs}$, 2H); LRMS m/z $419[\mathrm{M}+\mathrm{H}]^{+}$.

3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-6-(cyclobutylmethyl)-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-6-ium Iodide (74 in Table 7). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.80(\mathrm{~s}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.00(\mathrm{~m}, 6 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H}), 3.65-3.45(\mathrm{~m}$, $4 \mathrm{H}), 3.14(\mathrm{bs}, 2 \mathrm{H}), 3.03(\mathrm{~s}, 3 \mathrm{H}), 2.98-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.20-1.70(\mathrm{~m}, 6 \mathrm{H})$; LRMS m/z 433 $[\mathrm{M}+\mathrm{H}]^{+}$.

3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-6-(cyclopentylmethyl)-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-6-ium Iodide (75 in Table 7). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.81(\mathrm{~s}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.00(\mathrm{~m}, 6 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 3.70-3.46(\mathrm{~m}$, 4H), 3.17-3.14 (m, 2H), $3.10(\mathrm{~s}, 3 \mathrm{H}$), 2.42-2.39 (m, 1H), 1.99-1.20 (m, 8H); LRMS m/z $447[\mathrm{M}+\mathrm{H}]^{+}$.

3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-6-(cyclohexylmethyl)-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-6-ium Iodide (76 in Table 7). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.81(\mathrm{~s}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.00(\mathrm{~m}, 6 \mathrm{H}), 4.58(\mathrm{~s}, 2 \mathrm{H}), 3.75-3.60(\mathrm{~m}$, 2 H), 3.28-3.12 (m, 4H), $3.09(\mathrm{~s}, 3 \mathrm{H}), 2.10-1.55(\mathrm{~m}, 6 \mathrm{H}), 1.40-1.00(\mathrm{~m}, 5 \mathrm{H})$; LRMS m / z $461[\mathrm{M}+\mathrm{H}]^{+}$.

6-(4-tert-Butoxy-4-oxobutyl)-3-carbamoyl-2-[3-(4-chlorophenyl)ureido]-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-6-ium Trifluoroacetate (78 in Table 7). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO-d6) $\delta 10.83$ (s, 1H), 10.27 (s, 1H), 7.80-6.90 (m, 6H), 4.59 (s, 2H), 3.68-3.37 (m, 4H), 3.16-3.14 (m, 2H), 3.11 (s, 3H), 2.35-1.97 (m, 4H), 1.41 (s, 9H); LRMS $m / z 507[\mathrm{M}+\mathrm{H}]^{+}$.

6-(5-tert-Butoxy-5-oxopentyl)-3-carbamoyl-2-[3-(4-chlorophenyl)ureido]-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-6-ium Iodide (79 in Table 7). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.80(\mathrm{~s}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H}), 7.80-6.90(\mathrm{~m}, 6 \mathrm{H}), 4.56(\mathrm{~s}, 2 \mathrm{H}), 3.70-$ $3.36(\mathrm{~m}, 4 \mathrm{H}), 3.15(\mathrm{bs}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.50(\mathrm{~m}, 4 \mathrm{H}), 1.41(\mathrm{~s}$, 9H); LRMS $m / z 521[\mathrm{M}+\mathrm{H}]^{+}$.

6-(6-tert-Butoxy-6-oxohexyl)-3-carbamoyl-2-[3-(4-chlorophenyl)ureido]-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-6-ium Iodide (80 in Table 7). ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.81(\mathrm{~s}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.00(\mathrm{~m}, 6 \mathrm{H}), 4.60-4.50(\mathrm{~m}, 2 \mathrm{H})$, $3.68-3.35(\mathrm{~m}, 4 \mathrm{H}), 3.15(\mathrm{bs}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H}), 2.25-2.22(\mathrm{~m}, 2 \mathrm{H}), 1.78-1.53(\mathrm{~m}, 4 \mathrm{H})$, $1.40(\mathrm{~s}, 9 \mathrm{H}), 1.32-1.27(\mathrm{~m}, 2 \mathrm{H})$; LRMS $m / z 535[\mathrm{M}+\mathrm{H}]^{+}$.

3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-6-(3-methoxypropyl)-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-6-ium Iodide (81 in Table 7). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.81(\mathrm{~s}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H}), 7.70-7.00(\mathrm{~m}, 6 \mathrm{H}), 4.65-4.59(\mathrm{~m}, 2 \mathrm{H}), 3.69-$ $3.41(\mathrm{~m}, 6 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.16-3.14(\mathrm{~m}, 2 \mathrm{H}), 3.09(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 2 \mathrm{H})$; LRMS $m / z 437[\mathrm{M}+\mathrm{H}]^{+}$.

3'-Carbamoyl-2'-[3-(4-chlorophenyl)ureido]-5',7'-dihydro-4'H-spiro[pyrrolidine-1,6'-thieno[2,3-c]pyridin]-1-ium Bromide (82 in Table 7). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.81(\mathrm{~s}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H}), 7.71-6.99(\mathrm{~m}, 6 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 3.74-3.69(\mathrm{~m}$, 2H), 3.63-3.50 (m, 4H), 3.22-3.16 (m, 2H), 2.18-2.10 (m, 4H); LRMS m/z $405[\mathrm{M}+\mathrm{H}]^{+}$.

3'-Carbamoyl-2'-[3-(4-chlorophenyl)ureido]-5',7'-dihydro-4'H-spiro[morpholine-4,6'-thieno[2,3-c]pyridin]-4-ium Iodide (83 in Table 7). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO$\left.d_{6}\right) \delta 10.80(\mathrm{~s}, 1 \mathrm{H}), 10.27(\mathrm{~s}, 1 \mathrm{H}), 7.80-6.90(\mathrm{~m}, 6 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 4.15-3.85(\mathrm{~m}, 6 \mathrm{H})$, 3.58-3.50 (m, 4H), 3.18 (bs, 2H); LRMS m/z $421[\mathrm{M}+\mathrm{H}]^{+}$.

3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-5-ethyl-5-methyl-5,6-dihydro-4H-thieno[2,3-c]pyrrol-5-ium Iodide (84 in Table 7). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- $d 6$) δ $11.14(\mathrm{~s}, 1 \mathrm{H}), 10.37(\mathrm{~s}, 1 \mathrm{H}), 7.70-6.90(\mathrm{~m}, 6 \mathrm{H}), 5.00-4.97(\mathrm{~m}, 1 \mathrm{H}), 4.88-4.82(\mathrm{~m}, 2 \mathrm{H})$, 4.73-4.68 (m, 1H), 3.72-3.66(m, 2H), $3.25(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$; LRMS m/z $379[\mathrm{M}+\mathrm{H}]^{+}$.

1-\{3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-4,5,6,7-tetrahydrobenzo[b]thiophen-6-yl\}-1-methylazetidin-1-ium Iodide (85 in Table 7). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 10.94(\mathrm{~s}, 1 \mathrm{H}), 10.20(\mathrm{~s}, 1 \mathrm{H}), 7.80-6.70(\mathrm{~m}, 6 \mathrm{H}), 4.67-3.89(\mathrm{~m}, 5 \mathrm{H}), 3.12-2.70(\mathrm{~m}, 8 \mathrm{H})$, 2.35-1.65 (m, 3H); LRMS m/z $419[\mathrm{M}+\mathrm{H}]^{+}$.

3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]- N, N, N-trimethyl-4,5,6,7-tetrahydrobenzo[b]thiophen-6-aminium Iodide (86 in Table 7). ${ }^{1} \mathrm{H}$ NMR (300 MHz , DMSO- d_{6}) $\delta 10.94$ (s, 1H), $10.20(\mathrm{~s}, 1 \mathrm{H}), 7.80-6.70(\mathrm{~m}, 6 \mathrm{H}), 3.76$ (bs, 1H), 3.29-2.80 (m, 13H), 2.27 (bs, 1H), 1.77-1.74 (m, 1H); LRMS m/z 407 [M+H] ${ }^{+}$.

Scheme 17

Preparation of 3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-6-(cyclobutylmethyl)-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-6-ium Chloride (Q2, 77 in Table 7).

Step One. 3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-6-(cyclobutylmethyl)-6-ethyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-6-ium Chloride (Q2, 77 in Table 7). A solution of compound CC1 ($400 \mathrm{mg}, 1.06 \mathrm{mmol}$) and (bromomethyl)cyclobutane (1.59 g , 10.7 mmol) in N, N-dimethylformamide (5 mL) was heated to $80^{\circ} \mathrm{C}$ in a sealed tube for 22 h . After this time, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. The resulting residue was purified by flash column chromatography on silica gel eluting with methanol to 5% ammonium hydroxide/methanol followed by reverse phase semi-preparative HPLC eluting with 0.05% TFA in acetonitrile/water (gradient from 10% to 100%, Phenomenex Luna
column). The product was dissolved in a mixture of methanol (2 mL), methylene chloride (5 mL), and hydrochloride (2 M in diethyl ether, 1 mL). The resulting solution was concentrated under reduced pressure to afford compound $\mathbf{Q 2}$ (77 in Table 7) as an off-white solid ($55 \mathrm{mg}, 11 \%$): ${ }^{1} \mathrm{H}$ NMR (500 MHz, DMSO- d_{6}) $\delta 10.79(\mathrm{~s}, 1 \mathrm{H}), 10.29(\mathrm{~s}$, $1 \mathrm{H}), 7.70-6.90(\mathrm{~m}, 6 \mathrm{H}), 4.55-4.45(\mathrm{~m}, 2 \mathrm{H}), 3.61-3.58(\mathrm{~m}, 2 \mathrm{H}), 3.41-3.35(\mathrm{~m}, 4 \mathrm{H}), 3.20-$ $3.05(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.20-1.70(\mathrm{~m}, 6 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) ;$ LRMS m / z 447 [M+H] .

Compounds Prepared by Scheme 17

3-Carbamoyl-2-[3-(4-chlorophenyl)ureido]-6-isopropyl-6-methyl-4,5,6,7-tetrahydrothieno[2,3-c]pyridin-6-ium Iodide (70 in Table 7). ${ }^{1} \mathrm{H}$ NMR (500 MHz , DMSO- d_{6}) $\delta 10.80(\mathrm{~s}, 1 \mathrm{H}), 10.26(\mathrm{~s}, 1 \mathrm{H}), 7.80-7.00(\mathrm{~m}, 6 \mathrm{H}), 4.66-4.47(\mathrm{~m}, 2 \mathrm{H}), 3.85-$ $3.54(\mathrm{~m}, 3 \mathrm{H}), 3.14(\mathrm{bs}, 2 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 1.41-1.36(\mathrm{~m}, 6 \mathrm{H})$; LRMS m/z $407[\mathrm{M}+\mathrm{H}]^{+}$.

Scheme 18

Preparation of 2-\{[(4-Chlorophenyl)carbamoyl]amino\}-6-\{3-[3-(1H-indol-3-yl)propanamido]propyl\}-4H,5H,6H,7H-thieno[2,3-c]pyridine-3-carboxamide (R3, 67 in Table 6).

Step 1. 6-(3-Aminopropyl)-2-\{[(4-chlorophenyl)carbamoyl]amino\}-4H,5H,6H,7H-thieno[2,3-c]pyridine-3-carboxamide (R1). A stirred suspension of tert-butyl-N-[3-(2-\{[(4-benzoylphenyl)carbamoyl]amino\}-3-carbamoyl-4H,5H,6H,7H-thieno[2,3-c]pyridin-6-yl)propyl]carbamate ($\mathbf{R 1}$) ($70 \mathrm{mg}, 0.14 \mathrm{mmol}$) in 4 mL of methylene chloride at room temperature was treated with 2 mL of TFA. The resulting solution was stirred at room temperature for 40 min whereupon it was concentrated in a rotary evaporator. The product was taken up in MeOH and the solution concentrated in vacuo (x2) to afford (R2) as a light tan solid in quantitative yield: LRMS $m / z 408[\mathrm{M}+\mathrm{H}]^{+}$.

2-\{[(4-Chlorophenyl)carbamoyl]amino\}-6-\{3-[3-(1H-indol-3-yl)-
propanamido]propyl\}-4H,5H,6H,7H-thieno[2,3-c]pyridine-3-carboxamide (R3, 67 in Table 6). To a stirred solution of 6-(3-aminopropyl)-2-\{[(4chlorophenyl)carbamoyl]amino $\}-4 \mathrm{H}, 5 \mathrm{H}, 6 \mathrm{H}, 7 \mathrm{H}$-thieno[2,3-c]pyridine-3-carboxamide
(R2) (0.14 mmol) in anhydrous THF (1.5) were added triethylamine ($93 \mu \mathrm{~L}, 0.66 \mathrm{mmol}$), 3-indolepropionic acid ($31 \mathrm{mg}, 0.16 \mathrm{mmol}$), EDC $\cdot \mathrm{HCl}(31 \mathrm{mg}, 0.16 \mathrm{mmol})$, $\mathrm{HOBt}(25$ $\mathrm{mg}, 0.16 \mathrm{mmol}$) and the resultant mixture was stirred at room temperature for 8 h . Upon completion, the solvent was removed in vacuo and the oil was taken up in methylene chloride. The organics were washed with water (x2) and dried (anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$) and evaporated to afford the crude product 67 which was purified by flash chromatography Isolera system (SiO_{2} gel as stationary phase, 12 g HP column, dry loading) using methylene chloride-methylene chloride/ $\mathrm{MeOH}(0 \%-12 \% \mathrm{MeOH}$ in methylene chloride) to afford 67 (Table 6) as a brown solid ($31 \mathrm{mg}, 37 \%$ yield): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOH}-$ $\left.d_{4}\right) \delta 7.55(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.12-6.95(\mathrm{~m}$, 3 H), 3.38 (bs, 2H), 3.17 (t, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}$), 3.06 (t, $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.82-2.74$ (m, 2H), 2.68-2.61 (m, 2H), $2.55(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.36-2.27(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.54$ (m, 2H); LRMS $m / z 579[\mathrm{M}+\mathrm{H}]^{+}$.

Compounds Prepared by Scheme 18

2-\{[(4-Chlorophenyl)carbamoyl]amino\}-6-\{3-[3-(pyridin-3-yl)propanamido]propyl\}$\mathbf{4 H , 5 H}, 6 \boldsymbol{H}, \mathbf{7 H}$-thieno[2,3-c]pyridine-3-carboxamide (65 in Table 6). ${ }^{1} \mathrm{H}$ NMR (300 $\mathrm{MHz}, \mathrm{MeOH}-d 4) \delta 8.13-8.04(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.81(\mathrm{~m}, 1 \mathrm{H}), 7.75-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.57-$ $7.22(\mathrm{~m}, 4 \mathrm{H}), 3.52(\mathrm{bs}, 2 \mathrm{H}), 3.42-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.87-2.72(\mathrm{~m}$, $4 \mathrm{H}), 2.65-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.59(\mathrm{~m}, 2 \mathrm{H})$; LRMS m/z $541[\mathrm{M}+\mathrm{H}]^{+}$.

2-\{[(4-Chlorophenyl)carbamoyl]amino\}-6-\{3-[3-(naphthalen-1-yl)propanamido]propyl\}-4H,5H,6H,7H-thieno[2,3-c]pyridine-3-carboxamide (66 in Table 6). ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{MeOH}-d_{4}$) $\delta 8.13-8.04(\mathrm{~m}, 1 \mathrm{H}), 7.88-7.81(\mathrm{~m}, 1 \mathrm{H})$, $7.75-7.68(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.22(\mathrm{~m}, 8 \mathrm{H}), 3.52(\mathrm{bs}, 2 \mathrm{H}), 3.42-3.33(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{t}, J=6.6$ $\mathrm{Hz}, 2 \mathrm{H}), 2.87-2.72(\mathrm{~m}, 4 \mathrm{H}), 2.65-2.56(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.73-1.59(\mathrm{~m}, 2 \mathrm{H})$; LRMS $m / z 590[\mathrm{M}+\mathrm{H}]^{+}$.

References

(1) Franzblau, S. G.; DeGroote, M. A.; Cho, S. H.; Andries, K.; Nuermberger, E.; Orme,
I. M.; Mdluli, K.; Angulo-Barturen, I.; Dick, T.; Dartois, V.; Lenaerts, A. J.

Comprehensive Analysis of Methods Used for the Evaluation of Compounds against Mycobacterium Tuberculosis. Tuberculosis (Edinb). 2012, 92, 453-488.
(2) Gumbo, T.; Lenaerts, A. J.; Hanna, D.; Romero, K.; Nuermberger, E. Nonclinical Models for Antituberculosis Drug Development: A Landscape Analysis. J Infect Dis. 2015, 211 Suppl 3, S83-95.
(3) Finlayson, K.; Pennington, A. J.; Kelly, J. S. [3h]Dofetilide Binding in Shsy5y and Hek293 Cells Expressing a Herg-Like K+ Channel? Eur. J. Pharmacol. 2001, 412, 203212.
(4) Testai, L.; Bianucci, A. M.; Massarelli, I.; Breschi, M. C.; Martinotti, E.; Calderone, V. Torsadogenic Cardiotoxicity of Antipsychotic Drugs: A Structural Feature, Potentially Involved in the Interaction with Cardiac Herg Potassium Channels. Curr. Med. Chem. 2004, 11, 2691-2706.
(5) Gerets, H. H.; Tilmant, K.; Gerin, B.; Chanteux, H.; Depelchin, B. O.; Dhalluin, S.; Atienzar, F. A. Characterization of Primary Human Hepatocytes, Hepg2 Cells, and Heparg Cells at the Mrna Level and Cyp Activity in Response to Inducers and Their Predictivity for the Detection of Human Hepatotoxins. Cell Biol. Toxicol. 2012, 28, 6987.
(6) Dambach, D. M.; Andrews, B. A.; Moulin, F. New Technologies and Screening Strategies for Hepatotoxicity: Use of in Vitro Models. Toxicol. Pathol. 2005, 33, 17-26.

