Supporting Information # Synthesis of Ag₃PO₄ Crystals with Tunable Shapes for Facet-Dependent Optical Property, Photocatalytic Activity and Electrical Conductivity Examinations Meng-Shan Hsieh, † Huang-Jen Su, ‡ Pei-Lun Hsieh, § Yun-Wei Chiang, † and Michael H. Huang *,† [†]Department of Chemistry, [‡]Interdisciplinary Program of Sciences, and [§]Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan E-mail: hyhuang@mx.nthu.edu.tw ## **Experimental Section** **Electron Paramagnetic Resonance Analysis.** To detect hydroxyl radicals generated from a photocatalyst, DMPO (5,5-dimethyl-1-pyrroline N-oxide) is commonly introduced as a spin trapping agent. A 0.1 M DMPO solution was prepared by adding 67.9 mg of DMPO to 6 mL of deionized water. The 6 mL of 0.1 M DMPO solution was carefully injected through 2 mL of activated carbon solution in a syringe fitted with a 0.45 µm filter at the syringe tip. The injection was repeated two more times to ensure clean EPR spectra can be obtained. The synthesized Ag₃PO₄ cubes (732 nm), rhombic dodecahedra (362 nm), and tetrahedra (600 nm) with particle surface area ratios of 1:2.02:2.99 initially stored in ethanol were dried and weighted. 10.9, 5.4, and 3.6 mg of Ag₃PO₄ cubes, rhombic dodecahedra, and tetrahedra having the same total particle surface area (0.0882 m²) were dispersed in 1 mL of deionized water with sonication, then 1 mL of 0.1 M DMPO was added into the solution. The solution was irradiated by a 500-W Xenon lamp with stirring for 5 min and sent for EPR analysis immediately. The EPR signals of radicals spin-trapped by DMPO were all recorded at ambient temperature. The settings of EPR instrument were: microwave frequency 9.80 GHz, microwave power 15.0 mW, sweep width 100 G, modulation frequency 100 kHz, and modulation amplitude 1 G. **Electrical Conductivity Measurements.** For electrical conductivity measurements on single Ag₃PO₄ crystals, tungsten probes were prepared from tungsten wires (99.95%, Alfa Aesar). A direct current (15 V and 1.5 A) was applied to sharpen the wire tips by electrolysis in a 2.0 M NaOH solution. After finishing electrolysis in 1 min, the tungsten wire tips have reduced to ~ 300 nm. To remove the tungsten oxide layer on the wire surface, the probe tips were immersed into a 10 M KOH solution for 5 s. Separately, a Si (111) substrate was annealed at 900 °C in air atmosphere in a tube furnace for 48 h to form a SiO₂ layer thicker than 500 nm on the substrate as an insulating layer to prevent leakage current flowing from the Ag₃PO₄ crystal to the Si substrate. Next, a dilute solution of Ag₃PO₄ crystals was dropped on the thermally treated Si substrate. After evaporating the droplet, the Si substrate with Ag₃PO₄ particles was loaded inside a JEOL 7000F scanning electron microscope. The treated tungsten probes were installed on a nanomanipulator (Kammrath & Wiess GmbH), which was connected to a Keithley Model 4200-SCS source measurement unit. The nanomanipulator was loaded inside the same electron microscope. The two tungsten probes were first brought in contact with an electric current applied until a linear I-V curve was obtained. This I-V curve signifies purely metallic contact has been formed and any surface oxide was removed. #### At room temp. **Scheme S1.** Illustration of the general procedure used to make Ag₃PO₄ crystals with tunable shapes. **Table S1.** Exact reagent amounts used in the growth of Ag_3PO_4 crystals with tunable shapes. | Shape | H ₂ O | 0.4 M
NH₄NO₃ | 0.2 M
NaOH | 0.05 M
AgNO ₃ | 0.1 M
K₂HPO₄ | Total
volume | |--|------------------|-----------------|---------------|-----------------------------|------------------|-----------------| | Cubes | 8920.0 μL | 100 μL | 180 μL | 400 μL | 400 μL | 10 mL | | Rhombic Dodecahedra | 8420.0 μL | 600 μL | 180 μL | 400 μL | 400 μL | 10 mL | | {100}-Truncated
Rhombic Dodecahedra | 8120.0 μL | 600 μL | 180 μL | 550 μL | 550 μL | 10 mL | | Tetrahedra | 1887.4 μL | 218.8 μL | 393.8 μL | 500 μL | 0.7 M
7000 μL | 10 mL | | Tetrapods | 1887.4 μL | 281.3 μL | 506.3 μL | 500 μL | 0.7 M
7000 μL | 10 mL | ### At room temp. **Scheme S2.** Illustration of the procedure used to make smaller Ag_3PO_4 rhombic dodecahedra and tetrahedra. **Table S2.** Exact reagent amounts used in the growth of smaller Ag₃PO₄ rhombic dodecahedra and tetrahedra. | Shape | H₂O | 0.4 M
NH ₄ NO ₃ | 0.2 M
NaOH | 0.05 M
AgNO₃ | 0.1 M
K₂HPO₄ | Total
volume | 95 %
C₂H₅OH | |---------------------|-----------|--|---------------|-----------------|------------------|-----------------|----------------| | Rhombic Dodecahedra | 8495 μL | 600 μL | 180 μL | 325 μL | 400 μL | 10 mL | 7.5 mL | | Tetrahedra | 2062.4 μL | 218.8 μL | 393.8 μL | 325 μL | 0.7 M
7000 μL | 10 mL | 7.5 mL | **Figure S1.** Size distribution histograms of Ag_3PO_4 (a) cubes, (b) rhombic dodecahedra, (c) $\{100\}$ -truncated rhombic dodecahedra, (d) tetrahedra, and (e) tetrapods. The measured lengths are indicated. **Table S3.** Average Ag₃PO₄ crystal sizes and their standard deviations. | Shapes | Average particle size (nm) | Standard deviation
(%) | | |-------------------------------------|----------------------------|---------------------------|--| | Cupes | 534 ± 47 | 9 | | | Rnombic Dodecahedra | 1057 ± 60 | 6 | | | {100}-Truncated Rhombic Dodecahedra | 1158 ± 77 | 7 | | | Tetrahedra | 1283 ± 121 | 9 | | | Tetrapods | 1890 ± 269 | 14 | | **Figure S2.** Photographs and SEM images showing different growth rates in the formation of Ag_3PO_4 (a) cubes, (b) tetrapods, and (c) rhombic dodecahedra through observation of their solution color changes as a function of reaction time. **Figure S3.** Size distribution histograms of smaller Ag₃PO₄ (a) rhombic dodecahedra and (b) tetrahedra. The measured lengths are indicated. **Table S4.** Average sizes of the smaller Ag₃PO₄ rhombic dodecahedra and tetrahedra. | Shape | Average particle size (nm) | Standard deviation (%) | | |---------------------|----------------------------|------------------------|--| | Rhombic Dodecahedra | 417 + 18 | 4 | | | Tetrahedra | 648 ⊥ 76 | 12 | | **Table S5.** Reaction conditions and procedures used to make Ag₃PO₄ cubes and rhombic dodecahedra with tunable sizes. Ethanol was used only for preparing 298 nm rhombic dodecahedra. Due to the fast reaction, consistent control of particle sizes was not always achieved despite following the same reaction conditions. | zes was not always achieved despite following the same reaction conditions. | | | | | | | | | |--|-------|------------------|--|---------------|-----------------------------|--|-----------------|--| | Cı | ubes | H ₂ O | 0.4 M
NH ₄ NO ₃ | 0.2 M
NaOH | 0.05 M
AgNO ₃ | 0.1 M
K ₂ HPO ₄ | Total
volume | | | 36 | 5 nm | 8380 μL | 150 μL | 270 μL | 600 μL | 600 μL | 10 mL | | | 46 | i2 nm | 8920 μL | 100 μL | 180 μL | 400 μL | 400 μL | 10 mL | | | 53 | 0 nm | 8920 μL | 100 μL | 180 μL | 400 μL | 400 μL | 10 mL | | | 64 | 8 nm | 8920 μL | 100 μL | 180 μL | 400 μL | 400 μL | 10 mL | | | Stir for 2 min Keep for 2 min Small size At room temp. 0.1 M K ₂ HPO ₄ 0.4 M NaOH AgNO ₃ NaOH AgNO ₃ Stir for 2 min Keep for 2 min Small size 95 % C ₂ H ₅ OH 3 times | | | | | | | | | | Stir for 10 min Stir for 2 min | | | | | | | | | | RD | H ₂ O | 0.4 M
NH ₄ NO ₃ | 0.2 M
NaOH | 0.05 M
AgNO ₃ | 0.1 M
K ₂ HPO ₄ | Total
volume | 95 %
C₂H₅OH | |---------|------------------|--|---------------|-----------------------------|--|-----------------|----------------| | 289 nm | 8495 μL | 600 μL | 180 μL | 325 μL | 600 μL | 10 mL | 7.5 mL | | 643 nm | 8420 μL | 600 μL | 180 μL | 400 μL | 400 μL | 10 mL | Х | | 993 nm | 8420 μL | 600 μL | 180 μL | 400 μL | 400 μL | 10 mL | X | | 1314 nm | 8420 μL | 600 μL | 180 μL | 400 μL | 400 μL | 10 mL | Х | **Figure S4.** (a–d) SEM images of Ag₃PO₄ cubes with edge lengths of (a) 365, (b) 462, (c) 530, and (d) 648 nm. Insets show their solution colors. (e) Diffuse reflectance spectra of these Ag₃PO₄ cubes. (f) Tauc plot of these Ag₃PO₄ cubes to determine their indirect optical band gaps. (g) Volumes of these cubes and their band gaps and the corresponding light wavelengths. **Figure S5.** (a–d) SEM images of Ag₃PO₄ rhombic dodecahedra with opposite face distances of (a) 289, (b) 643, (c) 993, and (d) 1314 nm. Insets show their solution colors. (e) Volumes of these rhombic dodecahedra and their band gaps and the corresponding light wavelengths. **Figure S6.** (a) SEM images of Ag₃PO₄ tetrahedra with an average edge length of 673 nm. Insets show the solution color. (b) Diffuse reflectance spectra of the Ag₃PO₄ tetrahedra. (c) Tauc plot of the Ag₃PO₄ tetrahedra to determine their indirect optical band gaps. (d) Tauc plots for Ag₃PO₄ rhombic dodecahedra, cubes, and tetrahedra having similar particle sizes for comparison of their band gap values. (e) Volumes of the particles shown in panel d and their band gaps and the corresponding light wavelengths. **Figure S7.** SEM images of Ag₃PO₄ (a, d) cubes, (b, e) rhombic dodecahedra, and (c, f) tetrahedra before (a–c) and after (d–f) 90 min of the photoirradiation experiment. **Figure S8.** Calculations of the surface area and volume of a single Ag₃PO₄ (a) cube, (b) tetrahedron, and (c) rhombic dodecahedron. **Figure S9.** UV-vis absorption spectra of methyl orange as a function of irradiation time using Ag_3PO_4 (a) cubes, (b) rhombic dodecahedra, and (c) tetrahedra as the photocatalysts. **Figure S10.** SEM images of Ag_3PO_4 (a) cubes, (b) rhombic dodecahedra, and (c) tetrahedra used for EPR measurements. **Figure S11.** XRD patterns of Ag₃PO₄ cubes before and after the photocatalysis experiment. The standard patterns of Ag₃PO₄ and Ag are shown. **Figure S12.** (a–c) Multiple I-V curves measured on a single Ag_3PO_4 (a) cube, (b) rhombic dodecahedron, and (c) tetrahedron. (d) One I-V curve obtained with W probes contacting the {110} and {100} faces of a Ag_3PO_4 {100}-truncated rhombic dodecahedron.