Supporting Information

Radical-Pair Based Magnetoreception Amplified by Radical Scavenging: Resilience to Spin Relaxation

Daniel R. Kattnig*

Living Systems Institute and Department of Physics, University of Exeter, Stocker Road, Exeter, Devon, EX4 4QD, U.K.

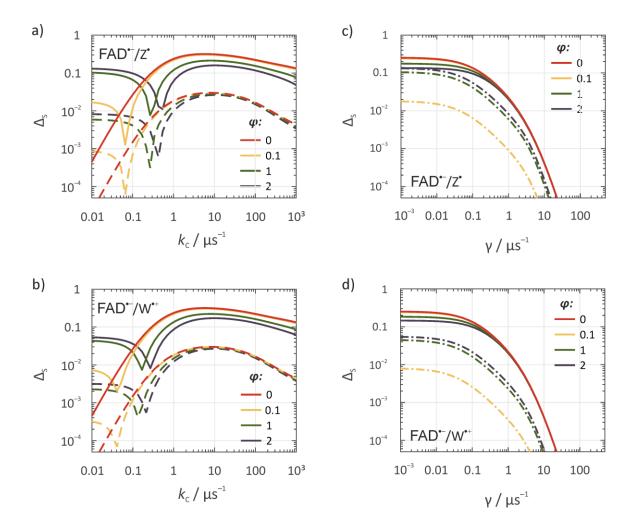
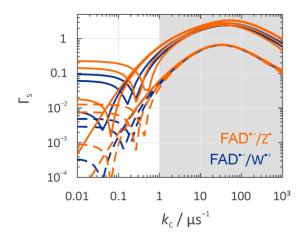
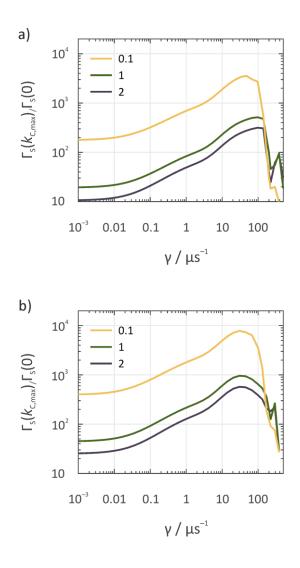
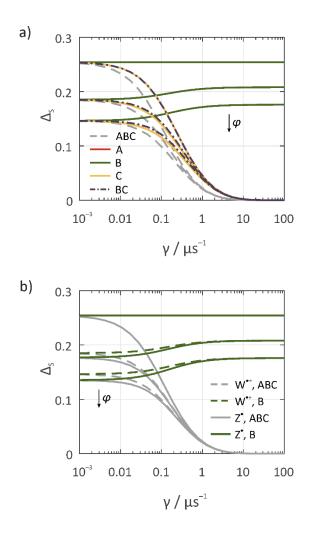

* Author for correspondence: <u>d.r.kattnig@exeter.ac.uk</u>

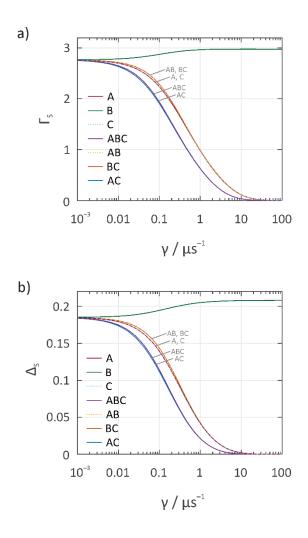
Table S1:	Hyperfine parameters.
Figure S1:	Absolute reaction anisotropy, Δ_s , as a function of k_c or γ of model three-radical system subject to radical scavenging and spin relaxation.
Figure S2:	Overlay of the data from Figure 2a and 2b.
Figure S3:	$\Gamma_{\rm s}$ ($k_{\rm c}$ =51.8 µs ⁻¹)/ $\Gamma_{\rm s}$ ($k_{\rm c}$ =0) as a function of the global spin relaxation rate γ .
Figure S4:	Dependence of absolute reaction anisotropy on the rate of random-field spin relaxa- tion in chosen parts of model three-radical systems.
Figure S5:	Anisotropic yields of the signalling state for a model [FAD ^{•–} W ^{•+}] radical pair subject to radical scavenging and spin relaxation affecting chosen radicals.
Figure S6:	Contour plots of Δ_s as a function of k_c and γ for a model [FAD ^{•–} W ^{•+}] radical pair with spin relaxation in all or individual radicals.
Figure S7:	Anisotropic yields of the signalling state for a triplet-born [FAD ^{•–} Z•] radical pair subject to radical scavenging.
Figure S8:	Anisotropic yields of the signalling state for a triplet-born [FADH [•] Z [•]] radical pair subject to radical scavenging.

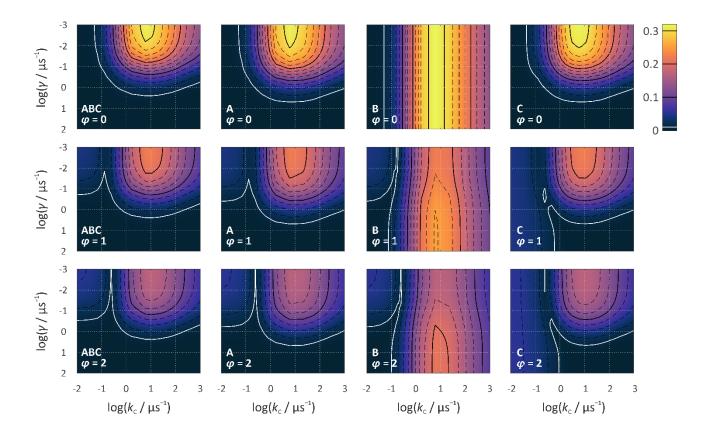

Table S1: Hyperfine parameters of the model systems used in this study. These hyperfine tensorsare identical to those used in reference [1]. See [2] for a detailed description of their derivation.

	FAD*-	
N5	$A_{N5} = \begin{pmatrix} -2.77 & 0.11 & 0\\ 0.11 & -2.47 & 0\\ 0 & 0 & 49.24 \end{pmatrix} \text{ MHz}$	
N10	$A_{N10} = \begin{pmatrix} -0.53 & -0.13 & 0\\ -0.13 & -0.55 & 0\\ 0 & 0 & 16.94 \end{pmatrix} \text{ MHz}$	
Н6	$A_{H6} = \begin{pmatrix} -7.20 & -3.57 & 0 \\ -3.57 & -13.20 & 0 \\ 0 & 0 & -12.15 \end{pmatrix} \text{ MHz}$	
3 × H8	$A_{H8} = \begin{pmatrix} 12.33 & 0 & 0 \\ 0 & 12.33 & 0 \\ 0 & 0 & 12.33 \end{pmatrix} \text{MHz}$	
2 × Ηβ	$A_{H\beta} = \begin{pmatrix} 11.41 & 0 & 0 \\ 0 & 11.41 & 0 \\ 0 & 0 & 11.41 \end{pmatrix} \text{ MHz}$	
Wc**		
N1	$A_{N10} = \begin{pmatrix} -0.94 & 2.59 & -3.79 \\ 2.59 & 9.26 & -14.90 \\ -3.79 & -14.90 & 18.72 \end{pmatrix} \text{MHz}$	


- 1. D. R. Kattnig and P. J. Hore, *Sci. Rep.*, 2017, **7**, 11640.
- 2. A. A. Lee, J. C. S. Lau, H. J. Hogben, T. Biskup, D. R. Kattnig and P. J. Hore, *J. R. Soc. Interface*, 2014, **11**, 20131063.


Figure S1: Absolute reaction anisotropy as a function of k_c or γ . Panels *a*) and *b*): Dependence of Δ_s on k_c in the absence (solid lines) and presence (dashed lines) of spin relaxation with $\gamma = \gamma_A = \gamma_B = \gamma_c = 1 \ \mu s^{-1}$ for various $\varphi = k_b/k_f$ as encoded by the different colours and summarized in the common legends. Panels *c*) and *d*): Dependence of Δ_s on $\gamma = \gamma_A = \gamma_B = \gamma_c$ for $k_c = 51.8 \ \mu s^{-1}$ (solid lines) and $k_c = 0 \ s^{-1}$ (no scavenging, dashed-dotted lines). All calculations are based on a spin system comprising N5 and N10 of FAD^{•-} in A^{•-} and no hyperfine coupled nuclei in C[•]. For panels *a*) and *c*) no hyperfine coupled nuclei are present in B^{•+} (FAD^{•-}/Z[•] model); for panels *b*) and *d*) N1 of W^{•+} has been included (FAD^{•-}/W^{•+} model). See Figure 2 of the main manuscript for additional details.


Figure S2: Overlay of the data from Figure 2a and 2b. The plot gives the relative anisotropy as a function of k_c for the FAD^{•-}/Z[•] (orange lines) and the FAD^{•-}/W^{•+} (blue lines) model in the absence (solid lines) and presence (dashed lines) of relaxation for four different values of φ . Refer to the caption of Figure 2 for details. Under conditions of significant radical scavenging (region shaded in grey) the relative anisotropies are nearly unaffected by the identity of B^{•+}.


Figure S3: Ratio of the relative anisotropy Γ_s of the signalling state in the presences and absence of radical scavenging, $\Gamma_s (k_c=51.8 \ \mu s^{-1})/\Gamma_s (k_c=0)$, as a function of the relaxation rate γ for various $\varphi = k_b/k_f$ (as encoded by the different colours and summarized in the legend) for a) the FAD^{•-}/Z[•] and b) the FAD^{•-}/W^{•+} model. Random field spin relaxation was present in all radicals: $\gamma = \gamma_A = \gamma_B = \gamma_C$. $B_0 = 50 \ \mu T$ and $k_f = 0.1 \ \mu s^{-1}$.

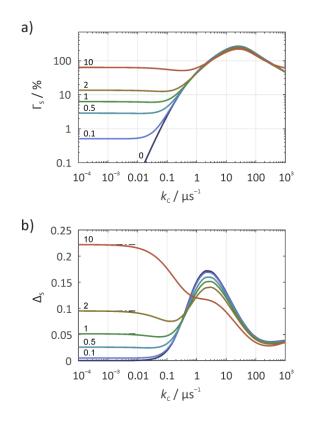

Figure S4: Dependence of Δ_s on the rate of random-field spin relaxation in chosen parts of the threeradical system for $\varphi = k_b/k_f = 0$, 1, and 2. Panel *a*) applies to the scavenged FAD^{•–}/W^{•+} scenario. In panel *b*) the FAD^{•–}/W^{•+} model is compared to the FAD^{•–}/Z[•] model. The legends name the radicals that are impacted by spin relaxation. $k_c = 51.8 \,\mu s^{-1}$. Further details are available from the caption of Figure 3 of the main document.

Figure S5: Dependence of Γ_s (a) and Δ_s (b) on the rate of random-field spin relaxation of the electron spins in various radicals of a model [FAD^{•-} W^{•+}] radical pair subject to radical scavenging. Pertinent parameters: $\varphi = k_b/k_f = 1$; $B_0 = 50 \,\mu\text{T}$; $k_f = 0.1 \,\mu\text{s}^{-1}$; $k_c = 51.79 \,\mu\text{s}^{-1}$; $A^{\bullet-}$, $B^{\bullet+}$ and C^{\bullet} comprised N5 and N10 of FAD^{•-}, N1 of Wc^{•+} and no magnetic nuclei, respectively.

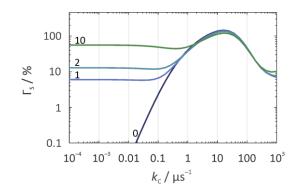


Figure S6: Contour plots of Δ_s as a function of k_c and γ for three different $\varphi = 0, 1, \text{ and } 2$ (*rows*) and random field relaxation in all three radicals (*left*) or either A, B, or C (*right*). The white and the (up to) three solid black contour lines corresponds to 1 %, 10%, 20% and 30%, respectively. The 1 % contour is used in the main text to discuss the resilience of the compass to spin relaxation. A^{•–}, B^{•+} and C[•] comprised N5 and N10 of FAD^{•–}, N1 of W_c^{•+} and no magnetic nuclei, respectively. All simulation parameters were the same as for Figure 2 of the main manuscript.

Figure S7: Anisotropic yields of the signalling state for a triplet-born [FAD⁻⁻ Z[•]] radical pair subject to radical scavenging. *a*) relative anisotropy (Γ_s), *b*) absolute anisotropy (Δ_s), both as a function of the scavenging rate constant, k_c , for various values of ϕ (indicated in the figure). The radical triad comprised N5, N10, H6, H8 (3 ×) and H β (2 ×) in FAD⁻⁻ and no hyperfine interactions in Z[•] or the scavenger. Comparison with calculations for the analogous singlet-born radical pair (see [1]) reveals that for $\phi = 0$, the anisotropy of the singlet states is independent of the initial spin multiplicity. Furthermore, for $\phi = 0$, the maximal $\Gamma_s = 2.7$ occurs at $k_c = 25.4 \,\mu s^{-1}$.

1. D. R. Kattnig and P. J. Hore, *Sci. Rep.*, 2017, **7**, 11640.

Figure S8: Relative anisotropy of the signalling state for a triplet-born [FADH[•] Z[•]] radical pair subject to radical scavenging. Γ_s is plotted as a function of the scavenging rate constant, k_c , for various values of ϕ (indicated in the figure). The radical triad comprised N5, N10 and H5 in FADH[•] and no hyperfine interactions in Z[•] or the scavenger. Hyperfine parameters have been taken from [2].

2. A. A. Lee, J. C. S. Lau, H. J. Hogben, T. Biskup, D. R. Kattnig and P. J. Hore, *J. R. Soc. Interface*, 2014, **11**, 20131063.