Supporting Information

Energy Efficiency and Performance Limiting Effects in Thermo-Osmotic Energy Conversion from Low-Grade Heat

Anthony P. Straub and Menachem Elimelech*

Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520-8286, United States

Contents:

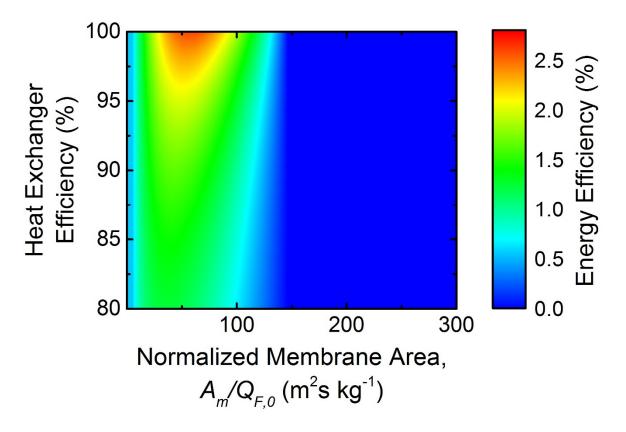
3 Pages

1 Supporting Figure

* Corresponding author; Address: P.O. Box 208286, Yale University, New Haven, CT 06520; Phone: +1 (203) 432-2789; Fax: +1 (203) 432-2881; email: menachem.elimelech@yale.edu

SUPPORTING DISCUSSION

Vapor Transport in a Deaerated System. Membranes operating under vacuum will demonstrate unique transport behavior. Because the mean free path increases substantially with a lower air pressure in the pores, even membranes with pore sizes as large as 500 nm will operate in the Knudsen transport regime.^{1–3} Models for transport through vapor-gap membranes under vacuum also include a small contribution from viscous transport through the pore. The permeability of a membrane operating in Poiseuille or viscous flow is expressed as²


$$B_{w}^{V} = \frac{r^{2} P_{m} \varepsilon}{8 \eta_{w} R T \tau \delta}$$
(S1)

where r is the membrane pore radius, P_m is the average pressure in the membrane pore, ε is the membrane porosity, η_w is the viscosity of water vapor, R is the ideal gas constant, T is the temperature, τ is the tortuosity, and δ is the thickness.

The permeability of the membrane under vacuum is calculated as the sum of the Knudsen permeability (eq 7 of the main text) and the permeability of the membrane under viscous flow (eq S1). In most cases, the viscous contribution is relatively low. For example, in a 100 μ m thick membrane with a 400 nm pore size, the Knudsen permeability is 5.60×10^{-6} kg m⁻²s⁻¹Pa⁻¹, whereas the viscous permeability is 0.47×10^{-6} kg m⁻²s⁻¹Pa⁻¹.

REFERENCES

- (1) Schofield, R. W.; Fane, A. G.; Fell, C. J. D. Gas and Vapour Transport through Microporous Membranes. II. Membrane Distillation. *J. Memb. Sci.* **1990**, *53*, 173–185.
- (2) Khayet, M. Membranes and Theoretical Modeling of Membrane Distillation: A Review. *Adv. Colloid Interface Sci.* **2011**, *164*, 56–88.
- Winter, D.; Koschikowski, J.; Ripperger, S. Desalination Using Membrane Distillation: Flux Enhancement by Feed Water Deaeration on Spiral-Wound Modules. *J. Memb. Sci.* 2012, 423–424, 215–224.

Figure S1. Energy conversion efficiency as a function of the heat exchanger efficiency and normalized membrane area (membrane area, A_m , divided by the initial feed flow rate, $Q_{F,0}$). The heat source temperature is 60 °C and the heat sink temperature is 20 °C. The hydraulic pressure difference between the two streams is 20000 kPa (200 bar), and balanced flow rates are assumed. The membrane permeability coefficient, B_w , is 1×10^{-6} kg m⁻²s⁻¹Pa⁻¹; the thermal conductivity of the membrane, K_m , is 0.04 W m⁻¹K⁻¹; the heat transfer coefficient, h, on both sides of the membrane is 5000 W m⁻²K⁻¹; and the thickness is 100 µm.