Supporting Information

Synthesis of Stable [28 π] *m*-Benzihexaphyrins (1.0.0.1.1.1)

Sunit Kumar and Mangalampalli Ravikanth*

Indian Institute of Technology, Powai, Mumbai, 400076, India, Fax: 91-22-5723480;

Tel: 91-22-5767176; E-mail: ravikanth@chem.iitb.ac.in

S. No.	Contents	Page No.
1	Figure S1a: Comparison of absorption spectra of compounds 1-4 (1×10 ⁻⁵ M) free base and in presence of TFA (excess of equivalents) recorded in CHCl ₃ solution at room temperature.	S3
2	Figure S1b: Absorption spectra of compounds 1 (1×10^{-5} M) in presence of various acids (excess of equivalents) recorded in CHCl ₃ solution at room temperature.	S3
3	Figure S2a. Partial ¹ H NMR spectra of compound 1 (3×10 ⁻³ M) in the presence of different concentrations of TFA in CDCl ₃ at 233 K. Concentration of TFA was varied from 0-20 equiv.	S4
4	Figure S2b. NOE spectra of compound $1H^{2+}$ recorded in CDCl ₃ at 233 K.	S5
5	Figure S2c. Comparison of ¹ H NMR spectra of compound 1-4 recorded in CDCl ₃	S5
6	Figure S3. HR mass spectrum of compound 5	S6
7	Figure S4. ¹ H NMR spectrum of compound 5 recorded in CDCl ₃	S7
8	Figure S5. ¹³ C NMR spectrum of compound 5 recorded in CDCl ₃	S7
9	Figure S6. HR mass spectrum of compound 6	S8
10	Figure S7. ¹ H NMR spectrum of compound 6 recorded in CDCl ₃	S9
11	Figure S8. ¹³ C NMR spectrum of compound 6 recorded in CDCl ₃	S9
12	Figure S9. HR mass spectrum of compound 1	S10
13	Figure S10. ¹³ C NMR spectrum of compound 1 recorded in CDCl ₃	S11
14	Figure S11. HR mass spectrum of compound 2	S12
15	Figure S12. ¹ H NMR spectrum of compound 2 recorded in CDCl ₃ .	S13
16	Figure S13. ¹³ C NMR spectrum of compound 2 recorded in CDCl ₃	S13

 17	Figure S14. HR mass spectrum of compound 3	S14
18	Figure S15. ¹ H NMR spectrum of compound 3 recorded in CDCl ₃	S15
19	Figure S16. ¹ H- ¹ H COSY spectrum of compound 3 recorded in CDCl ₃ .	S16
20	Figure S17. ¹³ C NMR spectrum of compound 3 recorded in CDCl ₃	S17
21	Figure S18. HR mass spectrum of compound 4	S18
22	Figure S19. ¹ H NMR spectrum of compound 4 recorded in CDCl ₃	S19
23	Figure S20. ¹ H- ¹ H COSY spectrum of compound 4 recorded in CDCl ₃ .	S20
24	Figure S21. ¹³ C NMR spectrum of compound 4 recorded in CDCl ₃	S21

Figure S1a: Comparison of absorption spectra of compounds **1-4** (1×10^{-5} M) free base and in presence of TFA (excess of equivalents) recorded in CHCl₃ solution at room temperature.

Figure S1b: Absorption spectra of compounds $\mathbf{1}$ (1×10⁻⁵ M) in presence of various acids (excess of equivalents) recorded in CHCl₃ solution at room temperature.

Figure S2a. Partial ¹H NMR spectra of compound **1** (3×10⁻³ M) in the presence of different concentrations of TFA in CDCl₃ at 233 K. Concentration of TFA was varied from 0-20 equiv.

Figure S2b. NOE spectrum of compound $1H^{2+}$ recorded in CDCl₃ at 233 K.

Figure S2c. Comparison of ¹H NMR spectra of compound 1-4 recorded in CDCl₃.

Source

5

DEPARTMENT OF CHEMISTRY, I.I.T.(B)

Acquisition Date 10/5/2017 4:07:08 PM D:\Data\OCT 2017\MR-SK-BITHIA.d Analysis Name

Method Tune_pos_NAF-500.m Operator iitb

Analysis Info

MR-SK-BITHIA Sample Name Instrument maXis impact 282001.00081 Comment C14H10S2

Acquisition Parameter Source Type Ion Polarity Set Nebulizer 0.3 Bar ESI Positive 3700 V -500 V Set Capillary Set Dry Heater Set Dry Gas 180 °C Focus Active Scan Begin Scan End Set End Plate Offset Set Collision Cell RF 50 m/z 4.0 l/min 700 m/z 900.0 Vpp Set Divert Valve

Figure S3. HR mass spectrum of compound 5

Figure S4. ¹H NMR spectrum of compound 5 recorded in CDCl₃

Figure S5. ¹³C NMR spectrum of compound 5 recorded in CDCl₃

$$H_3C$$

$$OH$$

$$HO$$

$$CH_3$$

Figure S6. HR mass spectrum of compound 6

Figure S7. ¹H NMR spectrum of compound 6 recorded in CDCl₃

Figure S8. ¹³C NMR spectrum of compound 6 recorded in CDCl₃

$$H_3C$$
 CH_3
 H_3C
 CH_3

Figure S9. HR mass spectrum of compound 1

Figure S10. ¹³C NMR spectrum of compound 1 recorded in CDCl₃

$$H_3C$$
 S
 S
 CH_3
 H_3C
 CH_3

Figure S11. HR mass spectrum of compound 2

Figure S12. ¹H NMR spectrum of compound 2 recorded in CDCl₃.

Figure S13. ¹³C NMR spectrum of compound 2 recorded in CDCl₃

Figure S14. HR mass spectrum of compound 3

Figure S15. ¹H NMR spectrum of compound 3 recorded in CDCl₃.

Figure S16. ¹H-¹H COSY spectrum of compound 3 recorded in CDCl₃.

Figure S17. ¹³C NMR spectrum of compound 3 recorded in CDCl₃

Figure S18. HR mass spectrum of compound 4

Figure S19. ¹H NMR spectrum of compound 4 recorded in CDCl₃.

mr-sk-se-spha-cosy

Figure S20. ¹H-¹H COSY NMR spectrum of compound 4 recorded in CDCl₃.

Figure S21. ¹³C NMR spectrum of compound 4 recorded in CDCl₃