Supporting Information

Selective Surface Engineering of Heterogeneous Nanostructures: In-Situ Unravelling the Catalytic Mechanism on Pt-Au Catalyst

Fanpeng Kong¹, Chunyu Du^{1,*}, Jinyu Ye², Guangyu Chen¹, Lei Du¹, Geping Yin^{1,3,*}

¹MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, Harbin Institute of Technology, 150001, China

²State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of

Chemistry, Xiamen University, 361005, China

³State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of

Technology, 150001, China

Corresponding authors:

Chunyu Du: cydu@hit.edu.cn

Geping Yin: <u>yingphit@hit.edu.cn</u>

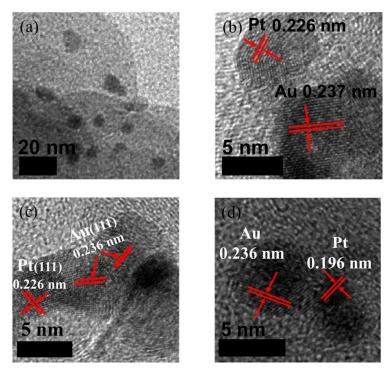
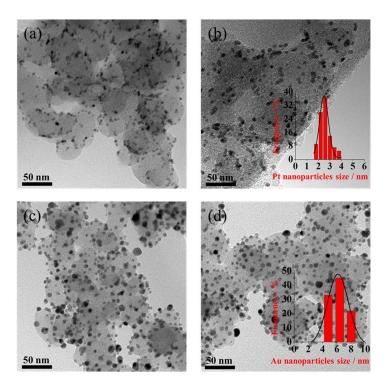



Figure S1. (a) TEM and (b)-(d) HR-TEM images of Pt₁-Au₁/C catalyst.

Figure S2. TEM images of Pt (a, b) and Au (c, d) nanoparticles on carbon support. The insets in Figure S2b and S2d are the size distribution of Pt and Au nanoparticles.

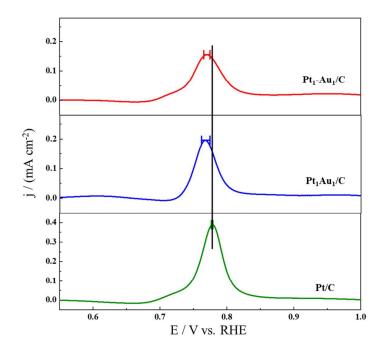


Figure S3. CO stripping voltammetry of Pt_1 - Au_1/C , Pt_1Au_1/C and Pt/C in 0.1 M HClO₄ at a scan rate of 10 mV s⁻¹.

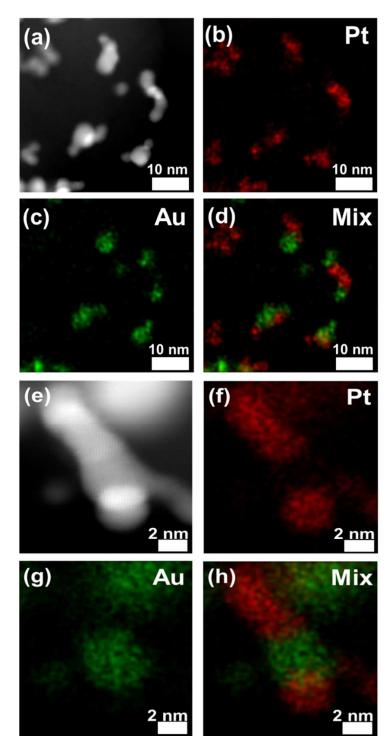
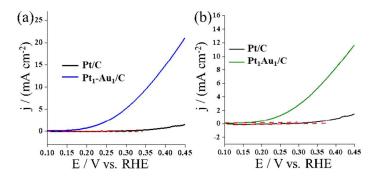



Figure S4. (a, e) HAADF/STEM image and (b-d, f-h) EDS elemental maps of Pt_1 -Au₁/C.

Figure S5. Partial enlargement of the CV curves for Pt_1 -Au₁/C and Pt/C (a), Pt_1Au_1/C and Pt/C (b) in Ar saturated 0.5 M HCOOH + 0.1 M HClO₄ at a rotation rate of 1600 rpm (scan rate: 50 mV s⁻¹). (The intersection of the formic acid oxidation curves and the horizontal line at j=0 is chosen as the onset potential)

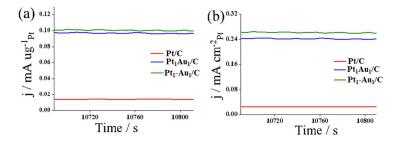


Figure S6. Chronoamperometry curves of HCOOH electrooxidation on Pt/C, Pt_1Au_1/C and Pt_1-Au_1/C in Ar saturated solution of 0.5 M HCOOH + 0.1 M HClO₄ at 0.4 V.

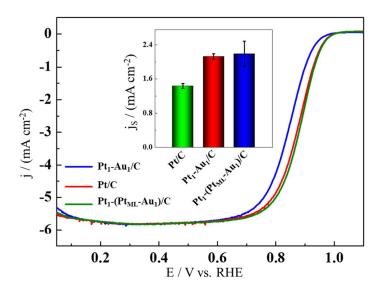
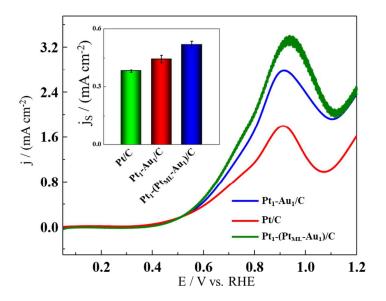
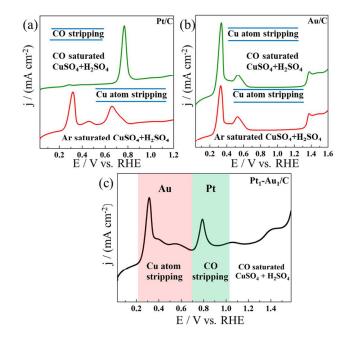
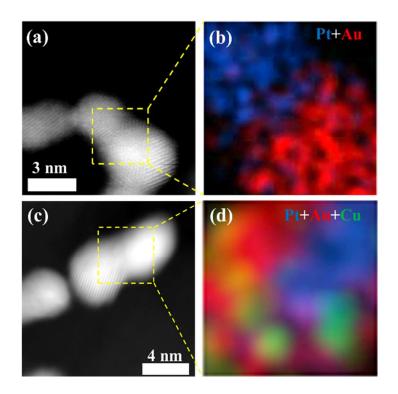
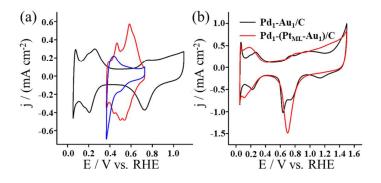
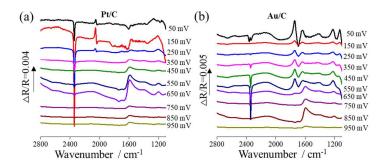


Figure S7. Polarization curves of oxygen reduction and specific activity at 0.85 V of

Pt/C, Pt_1 -Au₁/C and Pt_1 -(Pt_{ML} -Au₁)/C.


Figure S8. Cyclic voltammetry and specific activity at 0.6 V of Pt/C, Pt₁-Au₁/C and Pt₁-(Pt_{ML}-Au₁)/C in Ar saturated 0.5 M ethanol + 0.1 M HClO₄ at a scan rate of 50 mV/s.


Figure S9. LSV of Pt/C (a) and Au/C (b) in Ar saturated 0.1 M HClO₄ solution after Cu UPD in Ar and CO saturated 50 mM CuSO₄ + 50 mM H₂SO₄ solution. LSV of Pt₁-Au₁/C (c) in Ar saturated 0.1 M HClO₄ solution after Cu deposition in CO saturated 50 mM CuSO₄ + 50 mM H₂SO₄ solution. Interestingly, the CO stripping peak on Pt₁-Au₁/C is more positive than that of Pt/C in this figure, which is contrary to Figure S3. The different shifts should be ascribed to the presence of Cu²⁺ ions, whose competitive adsorption has severe impact on the CO stripping on Pt.

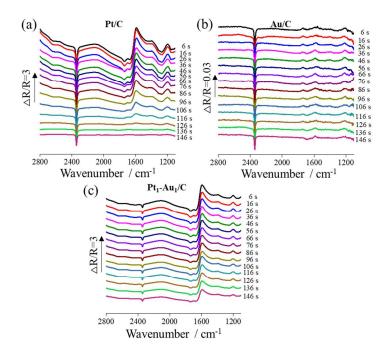

Figure S10. (a) HAADF/STEM image of Pt_1 -Au₁/C and (b) EDS elemental map overlapping Pt (blue) and Au (red). (c) HAADF/STEM image of Pt_1 -(Cu-Au₁)/C and (d) EDS elemental map overlapping Pt (blue), Au (red) and Cu (green). In order to guarantee that the Au signal is not masked by Cu, the Au surface is partially covered by Cu atoms.

Figure S11. (a) Cyclic voltammetry for under potential deposition of Cu on Pd/C in Ar (red line) and CO (blue line) saturated 50 mM H_2SO_4 and 50 mM CuSO₄, and for Pd/C in Ar saturated 0.1 M HClO₄ (black line) at the scan rate of 50 mV s⁻¹. (b) Cyclic voltammetry for Pd₁-Au₁/C and Pd₁-(Pt_{ML}-Au₁)/C in Ar saturated 0.1 M HClO₄ at the scan rate of 50 mV s⁻¹.

Figure S12. In-situ FTIR spectra on Pt/C (a) and Au/C (b) at different potentials in $0.5 \text{ M HCOOH} + 0.1 \text{ M HClO}_4$ solution.

Figure S13. Time resolved in-situ FTIR spectra of Pt/C (a), Au/C (b) and Pt₁-Au₁/C (c) at 350 mV in 0.1 M HClO₄ mixed solution recorded after the addition of HCOOH.

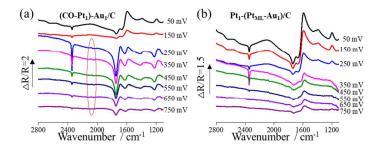


Figure S14. In-situ FTIR spectra on $(CO-Pt_1)-Au_1/C$ (a) and $Pt_1-(Pt-Au_1)/C$ (b) at different potentials in 0.5 M HCOOH + 0.1 M HClO₄ solution.

	Pt loading (%)	Au loading (%)	Pt/Au molar ratio	Surface Pt/Au molar ratio
Pt/C	16.5			
Au/C		19.2		
Pt ₁ Au ₁ /C	8.9	9.53	0.94	1.08
Pt ₁ -Au ₁ /C	13.6	15.8	0.87	1.18

 Table S1. Measured bulk and surface composition of different catalysts by ICP and XPS.

Table S2. The Cu content of Cu/Pt and Cu/Au surface after Cu deposition in Ar and CO saturated 50 mM $CuSO_4 + 50$ mM H_2SO_4 . (Cu content was measured by ICP and the detection limit is 0.005 ppm.)

	Cu ion content (ppm)
Pt (Cu UPD in Ar saturated solution)	0.027
Pt (Cu UPD in CO saturated solution)	0.003
Au (Cu UPD in Ar saturated solution)	0.021
Au (Cu UPD in CO saturated solution)	0.028