Supporting Information

N,S,P Co-Doped Carbon Nanodot Fabricated from Waste Microorganism and Its Application for Label-Free Recognition of Manganese(VII) and L-Ascorbic Acid and AND Logic Gate Operation

Xiaojuan $Gong^{a, \ddagger, *}$, Zengbo $Li^{a, \ddagger}$, Qin Hu^b , Ruixin Zhou^a, Shaomin Shuang^a, Chuan Dong^{a, *}

^aInstitute of Environmental Science, and School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006 (P. R. China)

^bDepartment of Chemistry, State University of New York at Buffalo, Buffalo, NY 14260, USA

*Corresponding author. Tel: +86-351-7011011; fax: +86-351-7011011.

E-mail addresses: gxj1124@sxu.edu.cn (X.G.), dc@sxu.edu.cn. (C.D.)

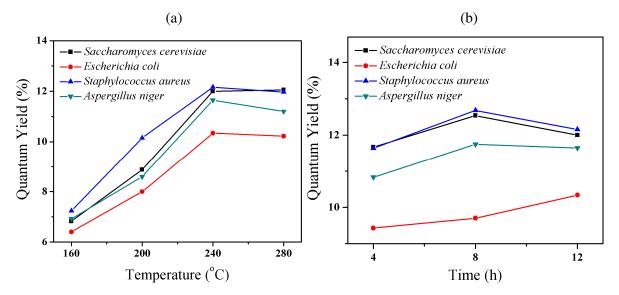


Figure S1. Effect of (a) reaction temperature and (b) reaction time on the quantum yield of N,S,P-CNDs fabricated by different kinds of microorganisms.

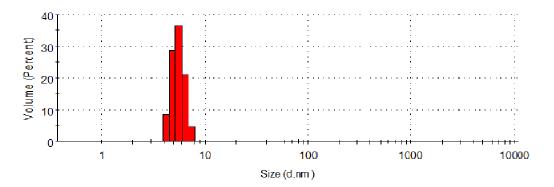


Figure S2. Size distribution histogram obtained from DLS measurement of $N,S,P-CND_{Sac}$ in aqueous solution.

Table S1. Elemental analysis of the as-fabricated N,S,P-CND_{Sac}: (a) elemental content and (b) relative number of atom in N,S,P-CND_{Sac}.

(a)							
Sample name	Elemental content (weight %)						
	С	Н	Ν	S	Р	O (calculated)	
N,S,P-CND _{Sac}	18.91	7.25	17.85	4.26	5.51	16.22	

(b)

Sample name	Relative number of atom						Empirical formula
	С	Н	Ν	S	Р	0	
N,S,P-CND _{Sac}	24	109	19	2	3	43	$C_{24}H_{109}N_{19}S_2P_3O_{43}$

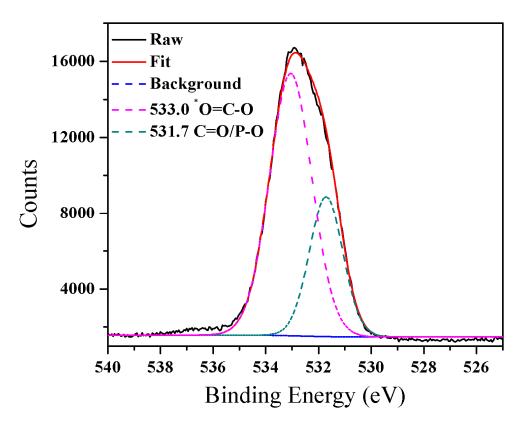


Figure S3. O 1s XPS of N,S,P-CND_{Sac}.

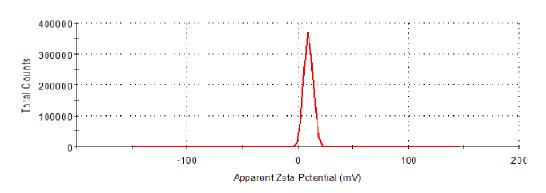


Figure S4. Zeta potential of N,S,P-CND_{Sac}.

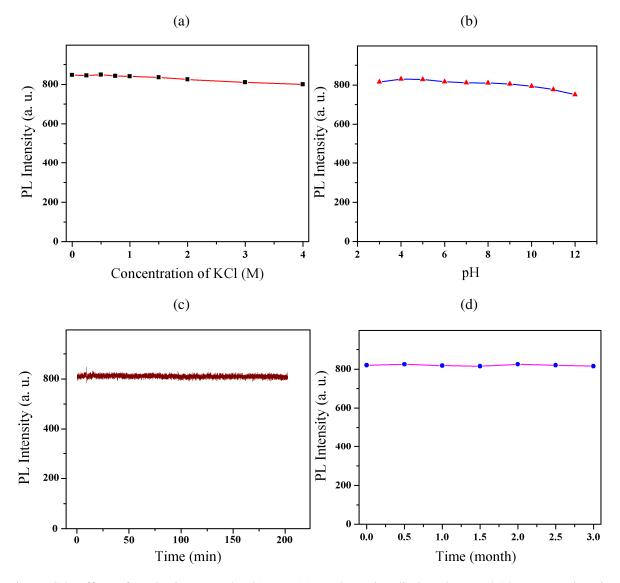


Figure S5. Effect of (a) ionic strength, (b) pH, (c) Xe lamp irradiation time and (d) storage time in room temperature on the fluorescence intensity of N,S,P-CND_{Sac} aqueous (0.1 mg/mL).

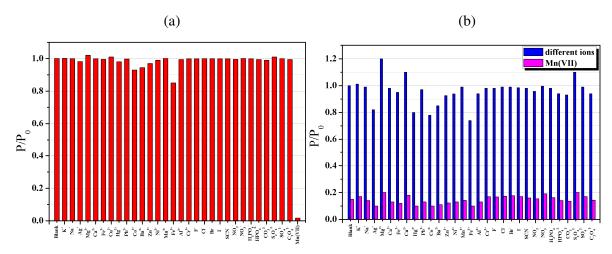


Figure S6. (a) Comparison of fluorescence intensity of N,S,P-CND_{*Sac*} (0.1 mg/mL) after the addition of Mn(VII) (0.5 mmol/L) or other different metal ions (0.5 mmol/L) or anion ions (0.5 mmol/L). (b) Comparison of fluorescence intensity of N,S,P-CND_{*Sac*} (0.1 mg/mL) after the addition of Mn(VII) (0.1 mmol/L) and other different metal ions (10 mmol/L) or anion ions (10 mmol/L).

Sample name	N,S,P-CND _{Sac}	N,S,P-CND _{Sac} /Mn(VII)		
$\tau_l(ns)/A_l(\%)$	3.52/56.01	3.56/58.00		
$\tau_2(ns)/A_2(\%)$	10.00/43.99	10.21/42.00		
Average τ (ns)	6.37	6.36		

Table S2. Double-exponential fitting of N,S,P-CND_{Sac} and N,S,P-CND_{Sac}/Mn(VII) decay curves.

Figure S7. Cell viability test of N,S,P-CND_{*Sac*} on HepG2 cells. The values represent percentage cell viability (mean $\% \pm$ SD, n = 6).

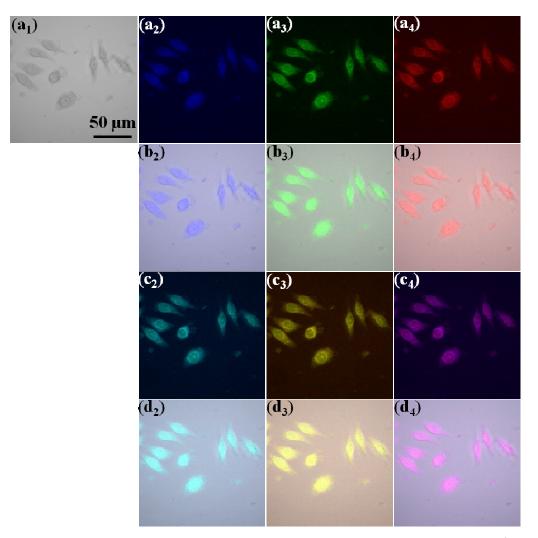


Figure S8. LSCM images of HepG2 cells incubated with 0.5 mg/mL N,S,P-CND_{Sac} at 37 °C for 4h. (a₁) shows the bright-field images of HepG2 cells. (a₂), (a₃) and (a₄) are cell images taken at $\lambda_{ex}/\lambda_{em}$ of 405/422 ± 25, 488/500 ± 25 and 543/650 ± 25 nm, respectively. (b₂), (b₃) and (b₄) are the merged images of (a₁) and (a₂), (a₁) and (a₃), and (a₁) and (a₄), respectively. (c₂), (c₃) and (c₄) are the merged images of (a₂) and (a₃), (a₃) and (a₄), and (a₂) and (a₄), respectively. (d₂), (d₃) and (d₄) are the merged images of (a₁) and (c₂), (a₁) and (c₃), and (a₁) and (c₄), respectively.