Predicting Counterion Effects Using a Gold Affinity Index and a Hydrogen Bonding Basicity Index

Zhichao Lu, ^a Junbin Han, ^a Otome E. Okoromoba, ^a Naoto Shimizu, ^b Hideki Amii, ^b Cláudio F. Tormena, ^c Gerald B. Hammond, ^{a,*} Bo Xu^{d,*}

^a Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA. ^b Department of Chemistry and Chemical Biology, Graduate School of Engineering, Gunma University, Gunma 376-8515, Japan. ^c Institute of Chemistry, University of Campinas, Campinas, Brazil. ^d College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China.

<u>gb.hammond@louisville.edu</u>

bo.xu@dhu.edu.cn

Supporting Information

Table of Contents

1. General	
2. General procedure for kinetic measurements	
3. Synthesis of starting materials	
3.1 Synthesis of JohnPhosAuCl	
3.2 Synthesis of Tris(1,1,1-trifluoromethanesulfonyl)methyl silver(I)	4
3.3 Preparation of JohnPhosAuCl stock solution in CD ₂ Cl ₂ or CDCl ₃	4
3.4 Synthesis and preparation of starting material stock solution	4
3.5 Preparation of cationic gold stock solution (using JohnPhosAu ⁺ OTf as example)	4
3.6 Preparation of stock solution of organocatalyst	4
4. Gold affinity index and hydrogen bond basicity index	4
4.1 Gold affinity index	4
4.2 Hydrogen bond basicity index	8
4.3 Correlation between gold affinity and hydrogen bonding basicity	9
5. General procedures for model reactions	
General procedure for cycloisomerization of 1,6-enyne	
General procedure for cycloisomerization of propargyl amide	
General procedure for organo-enamine catalysis	11
6. Spectrum for ¹ H NMR monitoring of model reactions	11
Cycloisomerization of propargyl amide	11
Organo-enamine catalysis	
7. References	

1. General

¹H and ¹³C NMR spectra were recorded at 400 and 100 MHz respectively, using CDCl₃, CD₂Cl₂, d-THF as a solvent. The chemical shifts are reported in δ (ppm) values relative to CH₂Cl₂ (δ 5.33 for ¹H NMR and δ 54.2 ppm for ¹³C NMR), multiplicities are indicated by s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), h (hextet), m (multiplet) and br (broad). Coupling constants, *J*, are reported in Hertz. All air and/or moisture sensitive reactions were carried out under argon atmosphere.

Solvents (tetrahydrofuran, ether, dichloromethane and DMF) were chemically dried using a commercial solvent purification system. All other reagents and solvents were employed without further purification. The products were purified using a CombiFlash system or a regular glass column. TLC was developed on Merck silica gel 60 F254 aluminum sheets. KCTf₃ was purchased from Synquest Labs, $Ag^{+}[Al[(CF_3)_3C-O)]_4]^{-}$ was purchased from IoLiTec. All NMR solvents were from Cambridge Isotope Laboratories, Inc. All other chemicals like catalysts and ligands were purchased from Aldrich, Alfa Aesar or Strem.

2. General procedure for kinetic measurements

In some cases, 1,3,5-tri-tert-butylbenzene (internal standard) was used. The reactions were monitored with ¹H NMR (single pulse or 1 scan for fast reactions, 8 scans for slow reactions). Some NMR measurements were conducted using a NMR experiment array (a series of spectra measured at predetermined time intervals over a period by adjusting the pre-acquisition delay). NMR experiment array gives better precision for both concentration (*via* integration) and reaction time, because each measurement is conducted at almost identical shimming and temperature conditions.

3. Synthesis of starting materials

3.1 Synthesis of JohnPhosAuCl

JohnPhosAuCl were synthesized using a slightly modified version of a literature method.¹

Sodium tetrachloroaurate(III) dihydrate (1 mmol) was dissolved in water, and the orange solution was cooled in ice. To this solution, 2,2'-thiodiethanol (3 mmol) was slowly added (ca. 45 min) with stirring. A solution of the Johnphos ligand (1 mmol) in EtOH (if the ligand could not be dissolved, more EtOH was used) was added dropwise to yield a white solid. The solid was filtered off, washed with water followed by EtOH, and ultimately dried in vacuum.

3.2 Synthesis of Tris(1,1,1-trifluoromethanesulfonyl)methyl silver(I)

In the suspension of water with silver carbonate (1.38 g, 5 mmol), tris[(trifluoromethyl)sulfonyl]methane (2.06 g, 5 mmol) was slowly added into the flask. After vigorous stirring for 2 hours, the product was collected by filtration and washed with water. Trace amount of water was removed by high vacuum.

3.3 Preparation of JohnPhosAuCl stock solution in CD₂Cl₂ or CDCl₃

The desired amount of L-AuCl was dissolved in corresponding amount of CD_2Cl_2 and then kept in freezer (-20 °C) until it was used.

3.4 Synthesis and preparation of starting material stock solution

All reaction starting materials were synthesized according to related reference paper.² The starting materials were then used for the preparation of 0.1 M or 0.2 M stock solution in CD_2Cl_2 .

3.5 Preparation of cationic gold stock solution (using JohnPhosAu⁺OTf⁻ as example)

Standard stock solutions of cationic gold catalyst were made when it was needed and were usually used in the same day. Weighing the L-Au(I)Cl complex into a vial and adding corresponding CDCl₃ or CD₂Cl₂, then 1.5 equiv of AgOTf was added and the vial was sonicated for 3 min at 0-5 °C. The vial was centrifuged and the clear solution was transferred to a clean glass vial with a screw cap. The solution was kept in freezer (-20 °C) until it was used.

3.6 Preparation of stock solution of organocatalyst

Stock solution (0.02 M) of MacMillan imidazolidinone organocatalyst with 1.5 equivalent NaBARF were made by weighting into a vial using tetrahydrofuran- d^8 as solvent. Sonication of mixed solution followed by filtration gave the standard stock solution. The solution was kept in the freezer (-20°C) until it was needed.

4. Gold affinity index and hydrogen bond basicity index

4.1 Gold affinity index

The affinity of the counterion towards cationic gold will depends on the size and charge distribution of the counterion. However, comprehensive data about counterions' gold affinity is not available, only a limited set is available in the literature.³ We used calculated gold-counterion dissociation energies to describe the bonding affinity.⁴ In our calculations, among common counterions, iodide (I⁻) is the strongest

cationic gold binder and SbF₆⁻ is the weakest counterion. For convenience, we set up the gold affinity index of counterions (GAI) by assign GAI (Γ) = 10 and GAI (SbF₆⁻) = 0.

Table S 1. Gold affinity scale of counterions.

L-Au-X DC	M→ L− A u +	$\stackrel{()}{X}$ (L = Me ₃ P)	
counterion	dissociation energy	gold affinity index	
counterion	$\Delta E (kJ/mol)^{a}$	(GAI)	
Cl	53.9	5.2	
Br	67.7	6.0	
I.	143.8	10	
TFA	74	6.3	
OAc	70.6	6.1	
OTs	28	3.8	
NTf ₂	10.4	2.9	
OTf	0	2.4	
BF_4	-35.1	0.5	
CTf ₃ ⁻	-40.5	0.2	
SbF ₆	-44.3	0	
$Al[(CF_3)_3C-O)]_4$	<-45	<0	
BArF ₄	<-45	<0	

^a Theoretical calculation using B₃LYP⁵ hybrid functional and Lanl₂DZ⁶ with pseudo potential for Au, an all electron QZP⁷ basis set for Sb and $6-311+g(d.p)^8$ for remains atoms, solvent effect was included using SMD⁹ model for DCM. All calculation were performed using Gaussiano9.¹⁰

complex	E (Complex)	$E(Au^{+})$	E (counterion)	$\Sigma(E_{Au^+} + E_{counterion})$	dissociation Energy (a.u)	relative Dissociation energy (kcal mol ⁻¹)
					8j ()	
(CH ₃) ₃ P-Au-Cl	-1056.8614	-596.370514	-460.2522334	-1056.622747	149.756893	35.7
(CH ₃) ₃ P-Au-BF ₄	-1021.056207	-596.370514	-424.4990705	-1020.869585	117.1071712	3.0
(CH ₃) ₃ P-Au-OAc	-825.1183349	-596.370514	-228.5021965	-824.8727105	154.1317672	40.0
(CH ₃) ₃ P-Au-OTs	-1491.406712	-596.370514	-894.8430369	-1491.213551	121.2105219	7.1
(CH ₃) ₃ P-Au-OTf	-1558.050317	-596.370514	-961.4979922	-1557.868506	114.0882206	0.0
(CH ₃) ₃ P-Au-NTf2	-2423.744338	-596.370514	-1827.20535	-2423.575864	105.7191825	-8.4
(CH ₃) ₃ P-Au-BArf4	-4244.347863	-596.370514	-3647.877069	-4244.247583	62.92638905	-51.2
(CH ₃) ₃ P-Au-CTf3	-3293.234021	-596.370514	-2696.726866	-3293.09738	85.74390767	-28.3
(CH ₃) ₃ P-Au-SbF6	-7511.448345	-596.370514	-6914.906983	-7511.277497	107.2090795	-6.9

Table S 2. Theoretical calculation using B3LYP hybrid functional and Lanl2DZ with pseudo potential for Au, an all electron QZP basis set for Sb and 6-31g(d,p) for remains atoms:

The energies are in a.u. (atomic unit), expect otherwise stated.

complex	E (Complex)	$E(Au^+)$	E (counterion)	dissociation energy	dissociation Energy	relative Dissociation
					(kcal/mol)	energy (kcal mol ⁻¹)
(CH ₃) ₃ P-Au-Cl	-1056.953825	-596.427412	-460.3037273	-1056.731139	139.7375664	31.8
(CH) D An DE	1021 2671	506 427412	424 670604	1021 107106	100 2070604	7.6
$(C\Pi_3)_3\Gamma$ -Au- $D\Gamma_4$	-1021.2071	-390.427412	-424.079094	-1021.10/100	100.3979004	-7.0
(CH ₃) ₃ P-Au-OAc	-825.2508789	-596.427412	-228.6024863	-825.029898	138.6677246	30.7
(CH ₃) ₃ P-Au-OTs	-1491.631388	-596.427412	-895.0145449	-1491.441957	118.8697841	10.9
	1550 220002	506 107 110	0(1 720 400 4	1550 157001	107.0000040	^
$(CH_3)_3P$ -Au-OTT	-1558.329903	-596.427412	-961.7304094	-1558.157821	107.9829248	0.0
(CH ₂)₂P-Au-NTf2	-2424 206358	-596 427412	-1827 61046	-2424 037872	105 7264616	-2.3
(0113)31 114 11112	2121.200000	0,0.12,112	1027.01010	2121.007072	100.7201010	
(CH ₃) ₃ P-Au-BArf4	*					
(CH ₃) ₃ P-Au-CTf3	-3293.874231	-596.427412	-2697.305526	-3293.732937	88.66346069	-19.3
(CH) D An Shee	7511 727824	506 427412	6015 150662	7511 597074	88 221007	10.7
(CI13)3F-AU-SOF0	-/311./2/824	-390.42/412	-0915.159002	-/311.30/0/4	00.321707	-17./

Table S 3. Theoretical calculation using B3LYP hybrid functional and Lanl2DZ with pseudo potential for Au, an all electron OZP basis set for Sb and 6-311++g(d,p) for remains atoms.

The energies are in a.u. (atomic unit), except the relative energy which is in kcal mol⁻¹.

Table S 4. Theoretical calculation using B3LYP hybrid functional and Lanl2DZ with pseudo potential for Au, an all electron QZP basis set for Sb and 6-311++g(d.p) for remains atoms, solvent effect was included using SMD model for DCM.

Complex	E (Complex)	$E(Au^{+})$	Е	dissociation	dissociation	relative Dissociation
			(counterion)	energy	Energy (a.u)	energy (kcal mol ⁻¹)
(CH ₃) ₃ P-Au-Cl	-1056.981007	-596.522897	-460.4002443	-1056.923141	36.31124266	12.9
$(CH_3)_3P$ -Au-BF ₄	-1021.311095	-596.522897	-424.7642585	-1021.287156	15.02208739	-8.4
(CH ₃) ₃ P-Au-OAc	-825.2776554	-596.522897	-228.690414	-825.213311	40.37675444	16.9
(CH ₃) ₃ P-Au-OTs	-1491.672795	-596.522897	-895.1018309	-1491.624728	30.16258592	6.7
(CH ₃) ₃ P-Au-OTf	-1558.361856	-596.522897	-961.8016013	-1558.324498	23.44276958	0.0
(CH ₃) ₃ P-Au-NTf2	-2424.233873	-596.522897	-1827.669696	-2424.192593	25.90398931	2.5
(CH ₃) ₃ P-Au-BArf4					Not converge	
					-	
(CH ₃) ₃ P-Au-CTf3	-3293.904531	-596.522897	-2697.359714	-3293.882611	13.7548937	-9.7
(CH ₃) ₃ P-Au-SbF6	-7511.773802	-596.522897	-6915.230429	-7511.753326	12.8484555	-10.6

4.2 Hydrogen bond basicity index

Because the measurement of pK_{BHX} is based on the complexation of a hydrogen bond acceptor with a substituted phenol.¹¹ We calculated the H-bonding bonding energies of phenol with various anions, and these energies correlated very well with the experimental pK_{BHX} of the corresponding *n*-Bu₄N⁺ salts (¹¹ In our calculations, among common counterions, acetate (OAc-) is the strongest hydrogen bonding acceptor and CTf₃⁻ is the weakest. For convenience, we set up a hydrogen bonding basicity index of counterions (HBI) by assign HBI (OAc⁻) = 10 and HBI (CTf₃⁻) = 0. In this scale, HBI of strong bases like OH⁻ will be greater than 10.

Table S 5. Hydrogen bond basicity index.

(V -)	H-bonding	hydrogen bond basicity ind	
(X)	energy $\Delta E (kJ/mol)^{a}$	(HBI)	
OAc	149.7	10	
TFA	122.1	7.2	
TsO	93.1	4.3	
Cl	115.3	6.5	
Br	91.1	4.1	
I	76.9	2.6	
OTf	83.9	3.4	
PF_6	82.2	3.2	
BF_4	102.2	5.2	
SbF ₆	78.5	2.8	
NTf ₂	60.6	1.0	
CTf ₃	50.7	0	

$$Ph \xrightarrow{O}_{H} + X^{\bigcirc} \xrightarrow{Ph \xrightarrow{O}_{H}} Ph \xrightarrow{O}_{H} \xrightarrow{X^{\bigcirc}} BE = (E_1 + E_2) - E_3$$

^a Bonding energies were calculated at B₃LYP/6-₃₁g.

counterion	phenol	H-bond acceptor	phenol-acceptor complex	H-bond bonding
				energy Kcal/mol
OAc-	-307.464905	-228.497887	-536.019828	149.7
TsO	-307.464905	-894.832407	-1202.332758	93.1
TFA	-307.464905	-526.237588	-833.748981	122.1
Cl	-307.464905	-460.252232	-767.761034	115.3
Br	-307.464905	-2573.958562	-2881.458166	91.1
I	-307.464905	-11.472208	-318.966388	76.9
OTf	-307.464905	-961.497969	-1268.994838	83.9
PF6	-307.464905	-940.642767	-1248.138966	82.2
BF4	-307.464905	-424.499245	-732.003091	102.2
SbF6	-307.464905	-604.709546	-912.204364	78.5
CTf3	-307.464905	-2696.727262	-3004.211485	50.7
NTf2	-307.464905	-1827.205401	-2134.69339	60.6

Table S 6. Theoretical calculation using B3LYP hybrid functional for hydrogen bonding energies.

4.3 Correlation between gold affinity and hydrogen bonding basicity

Figure S1. Lack of correlation between gold affinity and hydrogen bond basicity.

5. General procedures for model reactions

General procedure for cycloisomerization of 1,6-enyne

The model reaction was conducted in a NMR tube: 50 μ l standard stock solution of cationic gold catalyst (JohnPhosAu⁺X⁻, 0.01 mol/L) was directly added into NMR tube. Then 1,6-enyne (0.1 mmol, 22 mg) in 0.45 mL CDCl₃ was transferred into the tube. All reactions were conducted at room temperature and the progress of the reaction was monitored by ¹H NMR.

General procedure for cycloisomerization of propargyl amide

The model reaction was conducted in a NMR tube: 50 μ l standard stock solution of cationic gold catalyst (JohnPhosAu⁺X⁻, 0.01 mol/L) was directly added into NMR tube. Then propargyl amide (0.1 mmol, 15.9 mg) in 0.45 mL CD₂Cl₂ was transferred into tube. All reactions were conducted at room temperature and the progress of the reaction was monitored by ¹H NMR.

General procedure for organo-enamine catalysis

The model reaction was conducted in a NMR tube. Ketoaldehyde **9** (10.8 mg, 0.05 mmol) was dissolved in 0.375 mL tetrahydrofuran-d₈ and 0.125 mL stock solution of catalyst and was introduced to a NMR tube. After a short time sonification (about 1 min), corresponding hydrogen bonding acceptor (TBA⁺X⁻) was added into the NMR tube at room temperature, and the mixture was sonicated for 1 min. All reactions were kept at room temperature and the progress of the reaction was monitored by¹ H NMR.

6. Spectrum for ¹H NMR monitoring of model reactions

Cycloisomerization of propargyl amide

Figure S2. Monitoring of organo-enamine catalysis using NMR (OTf⁻ as counterion)

Organo-enamine catalysis

7. References

1. Nieto-Oberhuber, C.; López, S.; Echavarren, A. M. J. Am. Chem. Soc. 2005, 127, 6178-6179.

2. (a) Wipf, P.; Aoyama, Y.; Benedum, T. E. Org. Lett. 2004, 6, 3593-3595; (b) Buzas, A. K.; Istrate, F.

M.; Gagosz, F. Org. Lett. 2007, 9, 985-988; (c) Davies, P. W.; Martin, N. Org. Lett. 2009, 11, 2293-2296;

(d) Xu, B.; Hammond, G. B. Angew. Chem. Int. Ed. 2008, 47, 689-692.

- 3. Zhdanko, A.; Maier, M. E. ACS Catal. 2014, 4, 2770-2775.
- 4. Kovács, G.; Ujaque, G.; Lledós, A. J. Am. Chem. Soc. 2008, 130, 853-864.

5. (a) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B 1988, 37, 785-789; (b) Becke, A. D. Phys. Rev. A

- **1988**, *38*, 3098-3100; (c) Becke, A. D. J. Chem. Phys. **1993**, *98*, 5648-5652.
- 6. Hay, P. J.; Wadt, W. R. J. Chem. Phys. 1985, 82, 270-283.
- 7. Barbieri, P. L.; Fantin, P. A.; Jorge, F. E. Mol. Phys. 2006, 104, 2945-2954.
- 8. Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650-654.
- 9. Marenich, A. V.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2009, 113, 6378-6396.
- 10. Frisch, M. J.; et al. Gaussian 09, revision D.01; Gaussian, Inc.: Wallingford, CT, 2009.

11. Laurence, C.; Brameld, K. A.; Graton, J. r. m.; Le Questel, J.-Y.; Renault, E. J. Med. Chem. 2009, 52, 4073-4086.