Supporting Information for

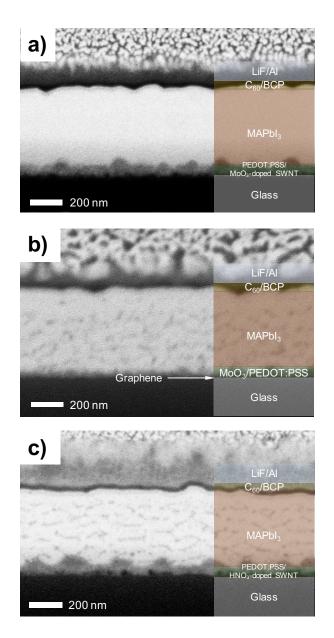
Carbon Nanotubes versus Graphene as Flexible Transparent Electrodes in Inverted Perovskite Solar Cells

Il Jeon,^{†+} Jungjin Yoon,^{‡+} Namyoung Ahn,[‡] Mohamed Atwa,[†] Clement Delacou,[†] Anton Anisimov,[#] Esko I. Kauppinen,[§] Mansoo Choi,^{‡*} Shigeo Maruyama,^{†,&*} and Yutaka Matsuo,^{†,£*}

†: Department of Mechanical Engineering, School of Engineering, The University of Tokyo, Tokyo 113- 8656, Japan

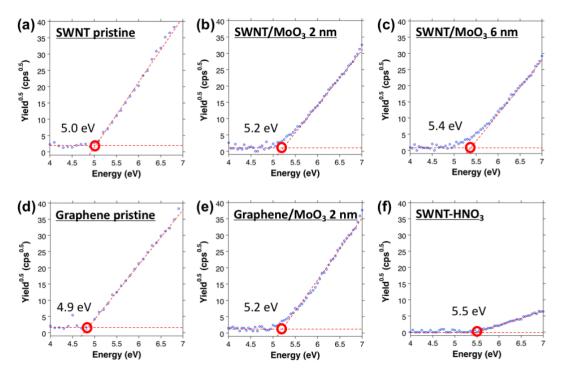
: Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul 08826, South Korea

#: Canatu Ltd., Konalankuja 5, FI-00390 Helsinki, Finland


§: Department of Applied Physics, Aalto University School of Science, FI-00076 Aalto, Finland

&: National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki 305-8564, Japan

£: Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Anhui 230026, China


Corresponding to: mchoi@snu.ac.kr, maruyama@photon.t.u-tokyo.ac.jp, matsuo@photon.t.u-tokyo.ac.jp

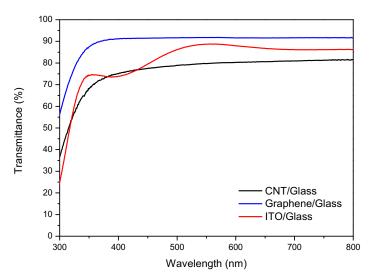
1. Cross-sectional SEM images

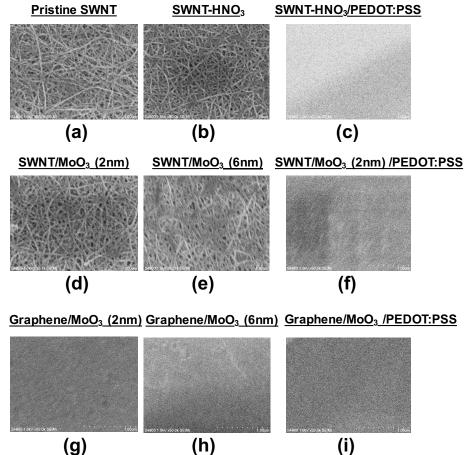
Figure S1. Cross-sectional SEM images of (a) the thin MoO_3 -doped SWNT-based PSCs, (b) the thin MoO_3 -doped graphene-based PSCs, and (c) the HNO_3-doped SWNT-based PSCs,

2. Photoelectron Yield Spectroscopy (PYS)

Figure S2. PYS data of (a) a pristine SWNT film on glass, (b) a glass/SWNT/MoO₃ (2nm) film, (c) a glass/SWNT/MoO₃ (6nm), (d) a pristine graphene film on glass, (e) a glass/graphene/MoO₃ (2 nm), and (f) a HNO₃-doped SWNT film on glass.

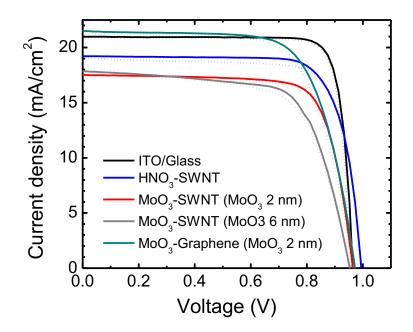
3. UV-Vis Transmittance data




Figure S3. UV-vis spectra of a SWNT film on glass, a graphene film on glass, and ITO on glass.

4. Four-probe measurement

Samples	Sheet Resistance (Ω sq. ⁻¹)	
Pristine SWNT	<i>ca.</i> 250	
HNO₃-SWNT	51 ±10	
2-nm-thick MoO3 on SWNT	218 ±5	
6-nm-thick MoO3 on SWNT	201 ±7	
Pristine graphene	625 ±107	
2-nm-thick MoO₃ on graphene	501 ±43	


Table S1. Sheet resistance data of different carbon electrode films.

5. SEM top images

Figure S4. SEM images of (a) a pristine SWNT film, (b) a HNO_3 -doped SWNT film, (c) a HNO_3 -doped SWNT film with a PEDOT:PSS overcoat, (d) a 2-nm-thick MoO_3 -deposited SWNT film, (e) a 6-nm-thick MoO_3 -deposited SWNT film, (f) a 2-nm-thick MoO_3 -deposited SWNT film with a PEDOT:PSS overcoat (g) a pristine graphene (h) a 2-nm-thick MoO_3 -deposited graphene, and (i) a 2-nm-thick MoO_3 -deposited graphene with a PEDOT:PSS overcoat.

6. Hysteresis Data

Figure S5. J-V hysteresis curves of the devices tested in this study. Reverse bias is represented in solid lines, and forward bias is represented in dotted lines.

7. Statistical Analysis

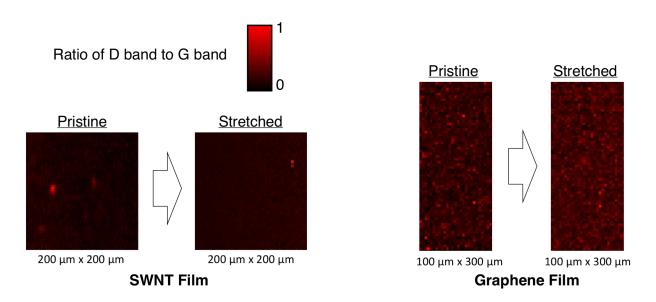
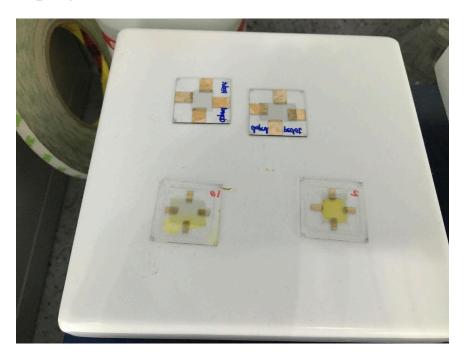

Substrate	Anode	V _{oc} (V)	J _{SC} (mA cm ⁻²)	FF	PCE
	SWNT/MoO ₃ (2nm)/PEDOT:PSS	0.94 ±0.05	18.6 ±0.9	0.68 ±0.05	11.8% ±1.0
glass	SWNT/MoO ₃ (6nm)/PEDOT:PSS	0.90 ±0.04	18.5 ±0.4	0.67 ±0.03	11.1% ±0.7
	graphene/ MoO ₃ (2nm)/PEDOT:PSS	0.98 ±0.02	21.3 ±0.5	0.69 ±0.04	14.2% ±0.7
	SWNT-HNO ₃ /PEDOT:PSS	0.94 ±0.06	19.8 ±0.6	0.74 ±0.03	13.7% ±1.3
PEN	SWNT/MoO ₃ /PEDOT:PSS	0.92 ±0.01	18.5 ±0.7	0.60 ±0.05	10.2% ±0.9
	graphene/MoO ₃ /PEDOT:PSS	0.99 ±0.01	19.9 ±0.2	0.68 ±0.09	13.4% ±0.2

Table S2. Statistical analysis of the carbon electrode-based PSCs in this work.

8. Four-Probe Tests involving Bending and Stretching


Samples	Sheet Resistance (Ω sq. ⁻¹)		
SWNT on PDMS	250 ±30		
SWNT on PDMS after 200 times stretching	261 ±25		
graphene on PDMS	625 ±107		
graphene on PDMS after 200 times stretching	771 ±214		

9. Raman Mapping

Figure S6. Raman spectroscopy mapping image of the SWNT film and graphene film. The image indicates ratio of D band to G band in which defects are indicated by the color, red.

10. HNO₃ doping on SWNT on PEN

Figure S7. Picture of HNO₃-doped SWNT on PEN.