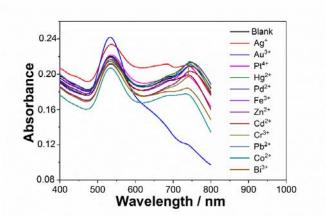
Supporting Information:

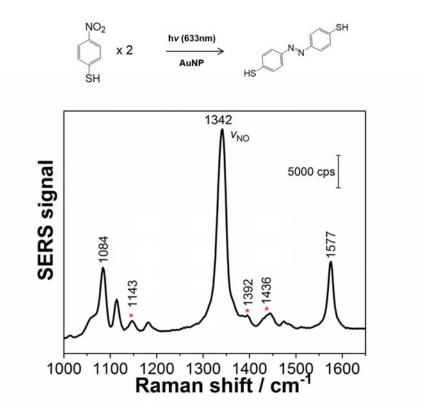
Role of metal cations in plasmon-catalyzed oxidation: a case

study of dimerization of *p*-aminothiophenol

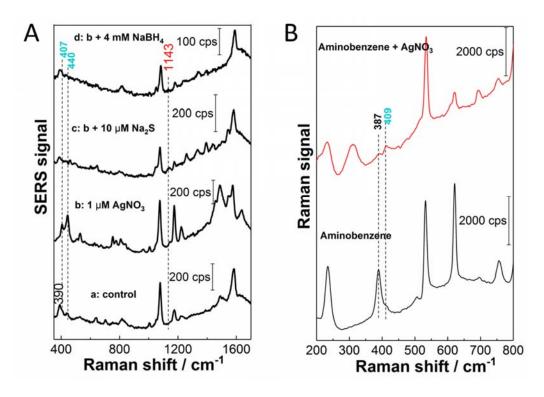
Zhiyang Zhang^{a,b}, Virginia Merk^a, Anja Hermanns^b, Wolfgang E. S. Unger^b, and Janina


Kneipp^{*a,b*}*

^{*a*} Humboldt-Universität zu Berlin, Department of Chemistry and School of Analytical Sciences Adlershof (SALSA), Brook-Taylor-Str. 2, 12489 Berlin, Germany


^b BAM Federal Institute for Materials Research and Testing, Richard-Willstätter-Str. 11, 12489 Berlin. Germany

*E-mail: janina.kneipp@chemie.hu-berlin.de


Supporting Figures

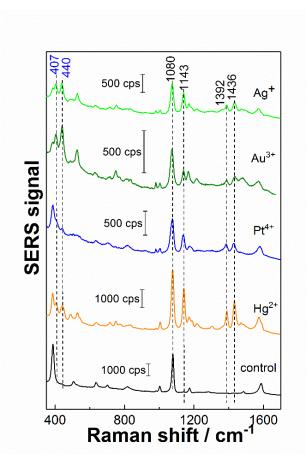
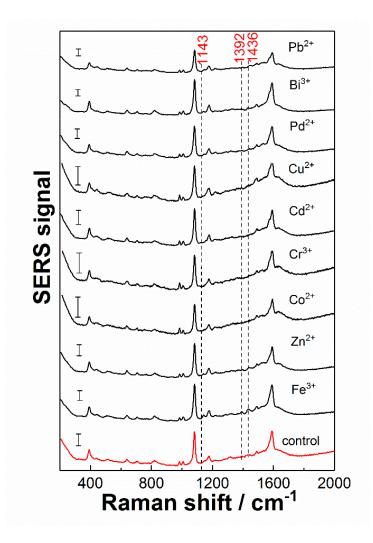
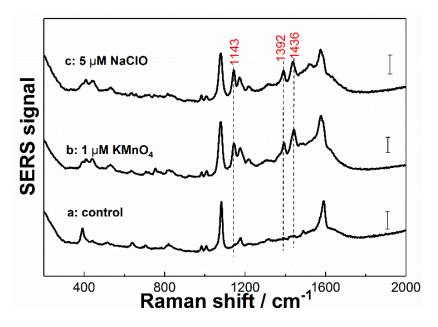
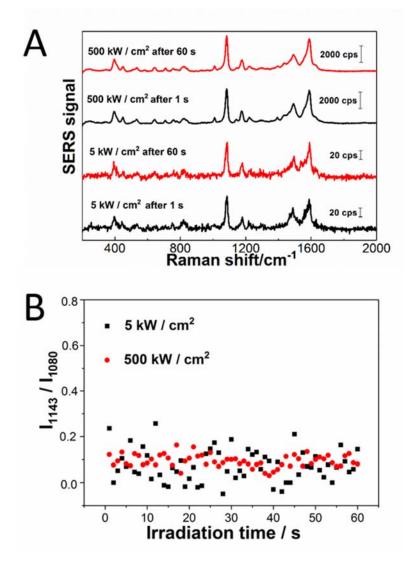
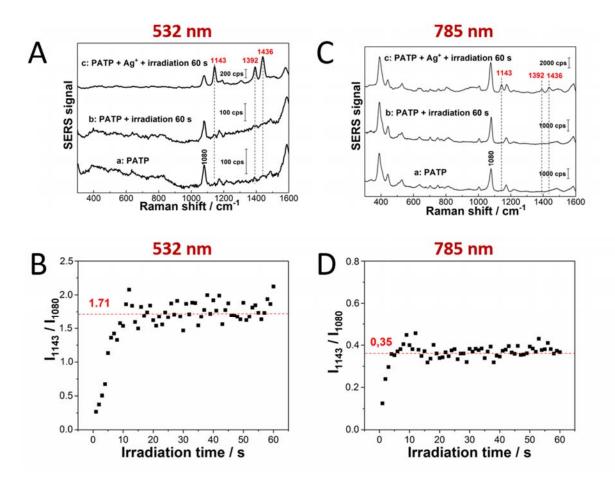

Figure S1 UV-Vis spectra of gold nanoparticles functionalized with PATP at pH 9 in the presence of different metal ions.

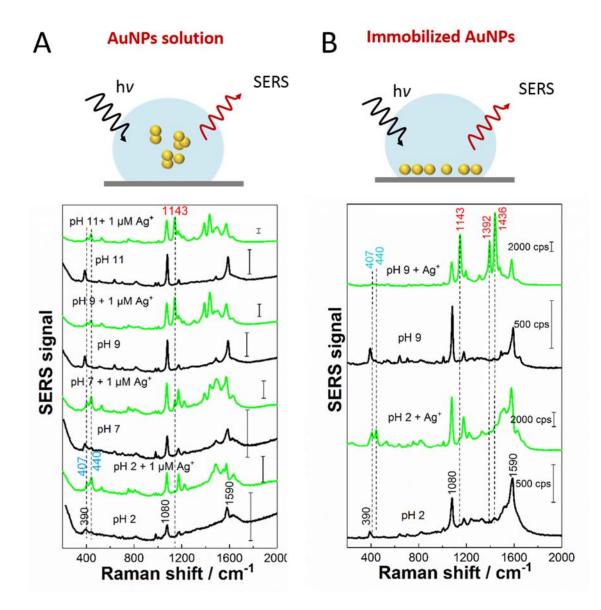
Figure S2 SERS spectra of immobilized gold nanoparticles modified with PNTP after irradiation for 6 s. ($\lambda_{excitation} = 633$ nm; laser intensity: 500 kW/cm²). * marked peaks are representative of DMAB.

Figure S3 (**A**) SERS spectra of gold nanoparticles (0.044 nM) with PATP (0.25 μ M) at pH 2 (a) before and (b) after incubation with 1.0 μ M Ag⁺ (control) (c) with further addition of Na₂S, and (d) NaBH₄. (**B**) Normal Raman spectra of aminobenzene before (black trace) and after adding AgNO₃ (red trace). (λ excitation = 633 nm; laser intensity: 500 kW/cm²)

Figure S4 SERS spectra (averages of 10 measurements) of gold nanoparticles with PATP at pH 9 before and after incubation with 1 μ M Ag⁺, 2 μ M Au³⁺, 5 μ M Pt⁴⁺ and 10 μ M Hg²⁺ ions. ($\lambda_{exc} = 785$ nm; laser intensity: 1.84 ×10⁶ W/cm², acquisition time 1 s).


Figure S5 SERS spectra (averages of 10 measurements) of gold nanoparticles with PATP at pH 9 before and after incubation with different metal ions for 10 min at room temperature. ($\lambda_{excitation} = 633$ nm; laser intensity: 500 kW/cm², acquisition time 1s) Scale bars: 200 cps.


Figure S6 SERS spectra of gold nanoparticles with PATP at pH 9 before and after incubation with 1.0 μ M KMO₄ and 5 μ M NaClO for 10 min at room temperature. (λ_{exc} = 633 nm; laser intensity: 500 kW/cm², acquisition time 1 s). Scale bars: 200 cps

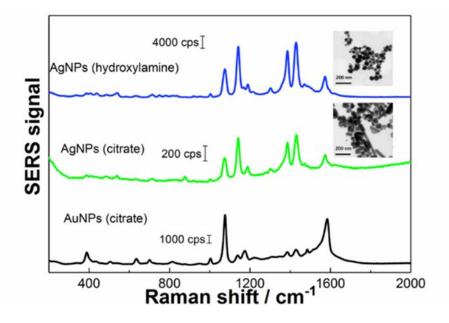

Figure S7 (A) SERS spectra of gold nanoparticles with PATP obtained after irradiation with a laser intensity of 5 kW/cm² and 500 kW/cm² after 1 s (black traces) and 60 s (red traces), respectively. **(B)** Signal intensity ratio I_{1143}/I_{1080} in the SERS spectra of gold nanoparticles with PATP in the absence of Ag⁺ at pH 9 as a function of irradiation time using an intensity of 5 kW/cm² (black squares) and 500 kW/cm² (red dots). ($\lambda_{excitation} = 633$ nm, acquisition time: 1 s) Spectra were excited with the same laser intensity as that used for irradiation.

Figure S8 SERS spectra of gold nanoparticles with PATP in the absence and presence of Ag^+ before and after irradiation for 60 s using (**A**) an excitation laser at 532 nm with an intensity of 1.4×10^6 W/cm² and (**C**) an excitation laser at 785 nm with an intensity of 4.6×10^5 W/cm² (**B**) and (**D**) Signal intensity ratio I₁₁₄₃/I₁₀₈₀ determined from SERS spectra obtained in the presence of Ag^+ as a function of irradiation time with the two laser wavelengths, respectively.

Figure S9 (**A**) SERS spectra of gold nanoparticles with PATP in the absence and presence of Ag⁺ at pH 2, pH 7, pH 9, and pH 11, respectively ($\lambda_{\text{excitation}} = 633$ nm; laser intensity: 500 kW/cm², acquisition time 1s). Scale bars: 200 cps. (**B**) SERS spectra of immobilized gold nanoparticles functionalized with PATP on a glass slide before and after incubation with Ag⁺ at pH 2 and pH 9 (($\lambda_{\text{excitation}} = 633$ nm, laser intensity 50 W/cm², acquisition time: 1 s).

Figure S10 SERS spectra of citrate reduced gold nanoparticles, citrate reduced¹ silver nanoparticles, and hydroxylamine reduced² silver nanoparticles with PATP. Insets: TEM images of citrate reduced and hydroxylamine reduced silver nanoparticles. ($\lambda_{excitation} = 633$ nm; laser intensity: 500 kW/cm², acquisition time 1 s).

References

- (1) Lee, P.; Meisel, D. J. Phys. Chem. 1982, 86, 3391-3395.
- (2) Leopold, N.; Lendl, B. J. Phys. Chem. B 2003, 107, 5723-5727.