Supplementary Information for

Selective and Sensitive Detection of Methylcytosine by Aerolysin Nanopore under Serum Condition

Jie Yu, Chan Cao and Yi-Tao Long*

Key Laboratory for Advanced Materials & School of Chemistry and Molecular Engineering, East China University of Science and Technology,

Shanghai, 200237, P.R. China.

*E-mail: ytlong@ecust.edu.cn

Table of contents

Figure S1

Dwell time of DNA oligomers traversing aerolysin nanopore

Figure S2

Histograms of the residual current blockade for DNA oligomers

Figure S3

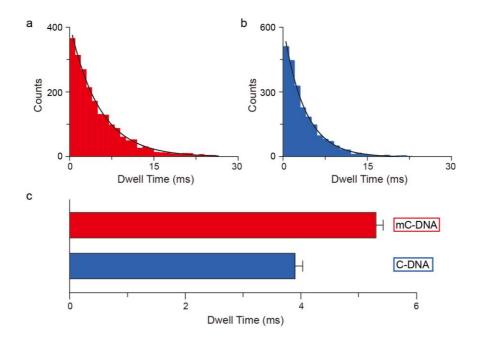

Residual current blockade for methylated and unmethylated DNA

Table S1

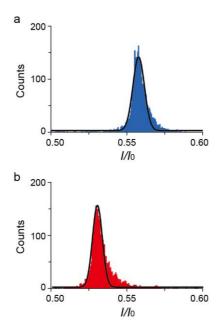

Mean values of event frequency for DNA oligomers at different applied potentials

Table S2

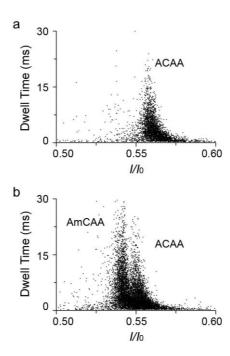

Comparison of mean event frequency of DNA oligomers with different concentration ratios

Figure S1. Dwell time of DNA oligomers traversing aerolysin nanopore. The dwell time histograms of (a) mC-DNA and (b) C-DNA were all fitted to single exponential function. (c) Mean values of dwell time of mC-DNA and C-DNA. The values were 5.3 ± 0.1 and 3.9 ± 0.1 ms, respectively. Data were based on at least three separate experiments and were recorded in 1 M KCl, 10 mM Tris, 1 mM EDTA, pH 8.0 at +80 mV.

Figure S2. Histograms of the residual current blockade for (a) C-DNA and (b) mC-DNA. Values were obtained by fitting the current distribution with the Gaussian function. C-DNA and mC-DNA generated a current blockade of $I/I_0 = 0.56$ and $I/I_0 = 0.53$, respectively. Data were recorded in 1 M KCl, 10 mM Tris, 1 mM EDTA, pH 8.0 at +80 mV.

Figure S3. Scatter plots induced by the addition of DNA oligomers. ACAA and AmCAA were added into *cis* chamber in succession. Distributions for the addition of (a) ACAA, (b) ACAA and AmCAA were shown. Statistical results shown that ACAA could be distinguished from AmCAA. Data were recorded in 1 M KCl, 10 mM Tris, 1 mM EDTA, pH 8.0 at +80 mV.

Table S1. Mean values of event frequency for DNA oligomers at different applied potentials. Values were obtained from the slopes that linear fitted to number-versus-time curves. Data were recorded for 5 min using a single aerolysin nanopore. Experiments were performed in triplicate and the standard deviation were shown.

Potential (mV)	Event Frequency (s ⁻¹)	
	mC-DNA	C-DNA
60	2.39 ± 0.04	1.74 ± 0.06
80	7.10 ± 0.02	5.93 ± 0.05
100	17.72 ± 0.20	14.76 ± 0.06
120	30.17 ± 0.06	28.24 ± 0.07
140	42.11 ± 0.21	40.77 ± 0.12

Table S2. Comparison of mean event frequency of DNA oligomers with different concentration ratios. Values were obtained from the slopes that linear fitted to number-versus-time curves. Data were recorded for 5 min using a single aerolysin nanopore. Experiments were performed in triplicate and the standard deviation were shown.

Ratio	Event Frequency (s ⁻¹)	
(mC-DNA : C-DNA)	mC-DNA	C-DNA
0:1	0	5.93 ± 0.05
1:0	7.10 ± 0.02	0
1:1	6.63 ± 0.05	4.98 ± 0.08
2:1	12.23 ± 0.13	4.98 ± 0.03
3:1	16.99 ± 0.07	6.46 ± 0.08
3:2	20.00 ± 0.07	10.70 ± 0.05