Supporting Information

Centrosymmetric (Hdima)₂[Ge₅B₃O₁₅(OH)] and Noncentrosymmetric Na₄Ga₃B₄O₁₂(OH): Solvo/Surfactant-Thermal Synthesis of Open-Framework Borogermanate and Galloborate

Su-Juan Yu,^{*a}</sup> <i>Xiang-Yu Gu*,^{*a*} *Ting-Ting Deng*,^{*a*} *Jian-Hao Huang*,^{*a*} *Jian-Wen Cheng*^{*,*a*} *and Guo-Yu Yang*^{**b*}</sup>

^aCollege of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
 ^bMOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.

Experimetal Section

 Table S1. X-ray crystallographic data for 1 and 2.

- Table S2. Selected bond lengths (Å) and bond valence sum (BVS) calculations for compound 1.
- **Table S3.** Hydrogen bond lengths (Å) and bond angles (°) in compound 1.
- Table S4. Selected bond lengths (Å) and bond valence sum (BVS) calculations for compound 2.
- **Figure S1.** (a) View of the single sheet constructed by $Ge_5B_3O_{18}(OH)$ clusters in 1;
 - (b) View 10R channels along *c* axis in 1;
 - (c) The packing structure of **1** with 6R channels along the *a* axis.

Figure S2. View of the linkage of BO₃ units and Ga^{3+} ions in **2**.

- Figure S3. IR spectra of 1 (a) and 2 (b).
- Figure S4. The experimental and simulated PXRD patterns of 1 and 2.
- Figure S5. TG curves of compound 1 (a) and 2 (b) under air atmosphere (10 °C/min).
- Figure S6. UV-vis diffuse reflectance spectrum of 1 (a) and 2 (b).
- Figure S7. The SHG signals of 2 and KDP.
- Figure S8. The excitation spectra of 2 in solid state at room temperature.

Experimetal Section

Synthesis of **1**. A mixture of GeO₂ (1 mmol, 0.1046 g) (99.999%), H₃BO₃ (10 mmol, 0.6183 g) (99.5%), DMA (5 ml) (99.0%) and dimethylamine (1 ml) (33.0%) was sealed in a 30 mL Teflon-lined bomb at 170 °C for 6 days and then cooled to room temperature. Colorless block crystals of **1** were obtained by filtration, washed with distilled water, and dried in air (25% yield based on GeO₂). Elemental analysis calcd (%) for C₄H₁₇B₃Ge₅N₂O₁₆: C 6.45, H 2.30, N 3.76; found: C 6.46, H 2.23, N 3.47. IR (KBr, cm⁻¹): 3242(m), 3039(m), 2790(m), 2510(w), 1635(w), 1600(w), 1469(w), 1405(w), 1356(w), 1030(m), 884(s), 828(s), 565(m), 523(w) (Figure. S3).

Synthesis of **2**. A mixture of NaBO₂·4H₂O (2 mmol, 0.308 g) (99.0%), Ga₂O₃ (0.5 mmol, 0.094 g) (99.99%), dimethylamine (1mL) (33.0%) and polyethylene glycol-200 (PEG-200, 5 mL) (99.5%) (pH = 9) was sealed in a 30 mL Teflon-lined bomb at 170 °C for 6 days and then cooled to room temperature. Colorless cubic crystals of **2** were obtained by filtration, washed with distilled water, and dried in air (18% yield based on Ga₂O₃). IR (KBr, cm⁻¹): 3440(s), 1628(m), 1285(vs), 715(vs) (Figure. S3).

Empirical formula	$C_4H_{17}B_3Ge_5N_2O_{16}$	B ₄ Ga ₃ HNa ₄ O ₁₃
$M_{ m r}$	744.58	553.37
crystal system	Triclinic	cubic
space group	<i>P</i> -1	<i>F-43c</i>
<i>a</i> (Å)	8.0917(2)	13.6737(2)
<i>b</i> (Å)	9.0697(3)	13.6737(2)
<i>c</i> (Å)	14.3025(4)	13.6737(2)
α (°)	97.213(2)	90
β (°)	101.552(2)	90
γ (°)	105.263(2)	90
$V(\text{\AA}^3)$	974.31(5)	2556.57(6)
Ζ	2	8
D_c (g cm ⁻³)	2.538	2.875
μ (mm ⁻¹)	7.705	6.482
<i>F</i> (000)	716	2096
crystal size (mm)	0.16×0.14×0.08	$0.15 \times 0.15 \times 0.15$
index ranges	1.48-27.66	2.98-27.47
GOF	1.024	1.201
collected reflcns	33417	8516
unique reflens (R_{int})	4544 (0.0653)	257 (0.0302)
observed reflens $[I > 2\sigma(I)]$	3745	242
refined parameters	276	27
$R_1^{a}/wR_2^{b} [I > 2\sigma(I)]$	0.0296/0.0615	0.0233/0.0717
R_1^{a}/wR_2^{b} (all data)	0.0421/0.0658	0.0242/0.0730
largest difference peak/hole	0.585/-0.580	0.767/ -0.580

 Table S1. X-ray crystallographic data for 1 and 2.

 $\frac{1}{aR_1 = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|, \ bwR_2 = \{\Sigma [w(F_0^2 - F_c^2)^2] / \Sigma [w(F_0^2)^2] \}^{1/2}.$

Bond	Distance	BVS	BVS	Bond	Distance	BVS	BVS
	(Å)		(Sum)		(Å)		(Sum)
Ge(1)-O(5)	1.730(3)	1.063	4.025	Ge(5)-O(15)	1.733(3)	1.053	4 105
Ge(1)-O(9)	1.741(3)	1.028	_ 4.035	Ge(5)-O(16)	1.736(2)	1.043	- 4.105
Ge(1)-O(16A)	1.754(3)	0.988		Ge(5)-O(14)	1.741(3)	1.027	_
Ge(1)-O(6)	1.765(3)	0.956		Ge(5)-O(12)	1.756(3)	0.982	
Ge(2)-O(8)	1.714(3)	1.115	4.170	B(1)-O(1)	1.362(5)	1.011	2 001
Ge(2)-O(15B)	1.737(3)	1.040		B(1)-O(2)	1.366(5)	0.999	2.991
Ge(2)-O(7)	1.744(3)	1.018		B(1)-O(3)	1.373(5)	0.981	
Ge(2)-O(6)	1.751(3)	0.997		B(2)-O(4)	1.456(5)	0.784	2 000
Ge(3)-O(10)	1.729(3)	1.066	4.044	B(2)-O(2)	1.468(5)	0.759	2.990
Ge(3)-O(9)	1.734(3)	1.049	4.044	B(2)-O(5)	1.475(5)	0.745	
Ge(3)-O(14)	1.759(3)	0.973		B(2)-O(13A)	1.497(4)	0.702	
Ge(3)-O(11)	1.765(3)	0.956		B(3)-O(4)	1.455(5)	0.786	2 001
Ge(4)-O(13)	1.731(3)	1.060	4.070	B(3)-O(3)	1.471(5)	0.753	_ 2.991
Ge(4)-O(7C)	1.734(3)	1.049	4.079	B(3)-O(10A)	1.479(4)	0.737	
Ge(4)-O(12)	1.753(3)	0.991		B(3)-O(8)	1.490(4)	0.715	
Ge(4)-O(11)	1.757(3)	0.979					

Table S2. Selected bond lengths (Å) and bond valence sum (BVS) calculations for compound 1^a .

^aSymmetry codes: A: *x* + 1, *y*, *z*; B: -*x* - 3, -*y*, -*z* + 2; C: *x* - 1, *y* - 1, *z*.

Table S3. Hydrogen bond lengths (Å) and bond angles (°) in compound 1^a.

D-H···A	d(D-H)	d(H···A)	$d(D \cdot \cdot \cdot A)$	\angle (DHA)
O(1)-H(1)O(3)#1	0.82	1.93	2.744(4)	169.1
N(1)-H(1D)O(6)#1	0.90	2.24	3.056(4)	151.2
N(1)-H(1E)O(10)#1	0.90	2.10	2.895(5)	147.6
N(2)-H(2E)O(13)#1	0.90	1.87	2.766(4)	170.5
N(2)-H(2D)O(2)#2	0.90	1.89	2.786(5)	172.2
N(1)-H(1E)O(8)#3	0.90	2.12	2.898(5)	144.5

^aSymmetry codes: #1: -x - 2, -y - 1, -z + 1; #2: x + 2, y + 1, z; #3: -x - 1, -y, -z + 1.

Bond	Distance	BVS	BVS	Bond	Distance	BVS	BVS
	(Å)		(Sum)		(Å)		(Sum)
Ga-O(1)	1.8345(18)	0.762	3.048	Na(1)-O(1D)	2.410(3)	0.182	1.196
Ga-O(1A)	1.8344(18)	0.762		Na(1)-O(1F)	2.410(3)	0.182	
Ga-O(1B)	1.8344(18)	0.762		Na(1)-O(2)	2.524(5)	0.141	
Ga-O(1C)	1.8344(18)	0.762	-	Na(1)-O(2E)	2.524(5)	0.141	
B-O(1)	1.3762(19)	0.971	2.913	Na(2)-O(2E)	2.490(14)	0.151	0.604
B-O(1)	1.3762(19)	0.971	-	Na(2)-O(2G)	2.490(14)	0.151	1
B-O(1I)	1.3762(19)	0.971	-	Na(2)-O(2H)	2.490(13)	0.151	
Na(1)-O(1E)	2.2293(19)	0.275		Na(2)-O(2)	2.490(13)	0.151	
Na(1)-O(1)	2.2293(19)	0.275	-			-	

Table S4. Selected bond lengths (Å) and bond valence sum (BVS) calculations for compound 2^a.

^aSymmetry codes: A: -y + 1, x + 1, -z + 3/2; B: y - 1, -x + 1, -z + 3/2; C: -x, -y + 2, z; D: -x + 0, z + 0, -y + 3/2; E: x, -y + 3/2, -z + 3/2; F: -x + 0, -z + 3/2, y + 0; G: -x - 1/2, y, -z + 3/2; H: -x - 1/2, -y + 3/2, z; I: -z + 1/2, x + 1, -y + 3/2.

Figure S1. (a) View of the single sheet constructed by $Ge_5B_3O_{18}(OH)$ clusters in 1; (b) View 10R channels along *c* axis in 1; (c) The packing structure of 1 with 6R channels along the *a* axis. Organic templates are located in the porous layers and interlayers.

Figure S2. View of the linkage of BO_3 units and Ga^{3+} ions in **2**.

Figure S3. IR spectra of 1 (a) and 2 (b).

The IR spectrum of **1** show the presence of BO₃ triangles, BO₄ tetrahedra and GeO₄ tetrahedra in the structure. The IR spectrum of **1** displays strong absorption bands around 1356 cm⁻¹ for the BO₃ groups. The bands for the BO₄ groups for both compounds appear around 1030 cm⁻¹. The absorption peaks around 828-884 cm⁻¹ can be assigned to the asymmetrical stretch of the GeO₄ groups. The absorption bands of the symmetrical stretch of the Ge-O bonds are shown in the region of 523-565 cm⁻¹. The IR spectrum of **2** shows absorption band centered at 3440 and 1628 cm⁻¹ can be assigned to the characteristic peak of OH vibration. Two sharp bands at 715 and 1285 cm⁻¹ are attributed to the stretching and bending of BO₃.

Figure S4. The experimental and simulated PXRD patterns of 1 and 2.

Figure S5. TG curves of compound 1 (a) and 2 (b) under air atmosphere (10 °C/min).

The curves shows that the compound 1 and 2 remains stable up to 330 °C and 160°C, respectively. On further heating, a gradual weight loss of 13.2% and 2.57% were observed for 1 (calcd 13.6%) and 2 (calcd 3.07%), which are assigned to the removal of organic templates and OH groups for 1 and OH groups for 2, respectively.

Figure S6. UV-vis diffuse reflectance spectrum of 1-2.

Figure S7. The SHG signals of 2 and KDP.

SHG measurement was performed on ground crystals of **2** using the Kurtz–Perry method. 1064 nm radiation was used as the fundamental frequency light while the SHG wavelength was 532 nm.

Figure S8. The excitation spectra of 2 in solid state at room temperature.