Supporting Information

Cu(I) Coordination Polymers as the Green Heterogeneous Catalysts for Direct C-H Bonds Activation of Arylalkanes to Ketones in Water with Spatial Confinement Effect

Xiaolu Wang, $^{\dagger, \#}$ Mengjia Liu, $^{\dagger, \#}$ Yuqing Wang, † Hongyan Fan, † Jie Wu, $^{*, \dagger}$ Chao Huang, $^{*, \sharp}$ Hongwei Hou $^{*, \dagger}$

[†]College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China.

[‡]Center for Advanced Materials Research, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China.

Contents

1.	General Method	S2
2.	Synthesis	S3
3.	Crystal Data Collection and Refinement	S5
4.	Additional structure figures and characterizations of Cu-complexes	S8
5.	Spectral copies of ¹ H NMR of compounds obtained in this study	S11
6.	References	S14

1. General Method. All reagents and solvents were commercially available and used as received without further purification. ^{1}H spectra were obtained with Bruker Avance-400 spectrometers. Chemical shifts are reported as δ (ppm) downfield with respect to an internal standard of tetramethylsilane (TMS). FT-IR spectra were recorded on a Bruker-ALPHA spectrophotometer with KBr pellets in 400-4000 cm $^{-1}$ region. Powder X-ray diffraction (PXRD) patterns were recorded using Cu K α 1 radiation on a PANalyticalX'Pert PRO diffractometer. Atomic absorption spectrum (AAS) was performed on a Z28000 graphite-oven atomic absorption Spectrophotometer.

2. Synthesis

Benzophenone. The concentrate was purified by silica gel column chromatography using petroleum ether/ethyl acetate = 10/1 as developing solvent to obtain a colorless solid 90mg (99%). This compound had been reported. HNMR (400 MHz, CDCl₃) δ : 7.85-7.76 (m, 1H), 7.64-7.55 (m, 1H), 7.48 (dd, J = 8.4, 7.0 Hz, 1H) ppm.

bis(4-fluorophenyl)methanone. The concentrate was purified by silica gel column chromatography using petroleum ether/ethyl acetate = 10/1 as developing solvent to obtain a colorless solid 101mg (93%). This compound had been reported.² ¹H NMR (400 MHz, CDCl₃) δ : 7.85-7.79 (m, 1H), 7.21-7.13 (m, 1H) ppm.

9-Fluorenone. The concentrate was purified by by silica gel column chromatography using petroleum ether/ethyl acetate = 10/1 as developing solvent to obtain a yellow solid 88mg (98%). This compound had been reported. HNMR (400 MHz, CDCl₃) δ : 7.63 (dt, J = 7.4, 0.9 Hz, 1H), 7.52-7.42 (m, 2H), 7.27 (td, J = 7.1, 1.6 Hz, 1H) ppm.

1-Indanone. The concentrate was purified by silica gel column chromatography using petroleum ether/ethyl acetate = 10/1 as developing solvent to obtain a white solid 62 mg (96%). This

compound had been reported.¹ H NMR (400 MHz, CDCl₃) δ : 7.76 (d, J = 7.7 Hz, 1H), 7.59 (td, J = 7.5, 1.2 Hz, 1H), 7.51-7.46 (m, 1H), 7.40-7.34 (m, 1H), 3.17-3.13 (m, 2H), 2.72-2.67 (m, 2H) ppm.

3,4-Dihydronaphthalen-1(2H)-one. The concentrate was purified by silica gel column chromatography using petroleum ether/ethyl acetate = 10/1 as developing solvent to obtain light yellow liquid 71 mg (98%). This compound had been reported. HNMR (400 MHz, CDCl₃) δ : 8.01 (d, J = 7.6 Hz, 1H), 7.45 (t, J = 7.4 Hz, 1H), 7.30 (t, J = 7.4 Hz, 1H), 7.23 (d, J = 7.6 Hz, 1H), 2.98 (t, J = 6.0 Hz, 2H), 2.63 (t, J = 6.4 Hz, 2H), 2.17-2.09 (m, 2H) ppm.

isobenzofuran-1(3H)-one. The concentrate was purified by silica gel column chromatography using petroleum ether/ethyl acetate = 10/1 as developing solvent to obtain light yellow liquid 58 mg (88%). This compound had been reported.¹ H NMR (400 MHz, CDCl₃) δ : 7.92 (d, J =7.7 Hz, 1H), 7.79-7.61 (m, 1H), 7.61-7.41 (m, 2H), 5.33 (s, 2H) ppm.

1,2-diphenylethanone. The concentrate was purified by silica gel column chromatography using petroleum ether/ethyl acetate = 10/1 as developing solvent to obtain light yellow liquid 98 mg (72%). This compound had been reported.^{3 1}H NMR (400 MHz, CDCl₃) δ: 8.05-7.94 (m, 2H), 7.62-7.42 (m, 4H), 7.39-7.18 (m, 4H), 4.29 (s, 2H) ppm.

3. Crystal Data Collection and Refinement. Crystal Data Collection and Refinement. The data of the 1-3 were collected on a Rigaku Saturn 724 CCD diffractomer (Mo- $K\alpha$, $\lambda = 0.71073$ Å) at temperature of 20 ± 1 °C. Absorption corrections were applied by using numerical program. The data were corrected for Lorentz and polarization effects. The structures were solved by direct methods and refined with a full-matrix least-squares technique based on F^2 with the SHELXL-97 crystallographic software package. The hydrogen atoms were placed at calculated positions and refined as riding atoms with isotropic displacement parameters. Crystallographic data for 1-3 have been deposited at the Cambridge Crystallographic Data Centre with CCDC reference numbers 988513, 988512, and 1565786.

Table S1. Crystallographic data and structure refinement details for complex 1-3.

Complex	1	2	3
Formula	$C_{24}H_{18}CuIN_6O_3$	$C_{26}H_{21}BrCuN_7O_3$	$C_{24}H_{18}CuClN_6O_3$
$F_{ m w}$	628.88	622.95	537.43 g
Temp. (K)	293(2)	293(2)	293(2)
Wavelength (Å)	0.71073	0.71073	0.71073
Crystal system	monoclinic	Triclinic	orthorhombic
Space group	C2/c	Pī	Pbca
a (Å)	32.013(6)	9.002 (18)	6.997 (14)
b (Å)	7.894 (16)	11.618(2)	25.358(5)
c (Å)	20.331(4)	12.591(3)	25.482(5)
$\alpha(^{\circ})$	90	97.81(3)	90
β(°)	119.22(3)	103.15(3)	90
$\gamma(^{\circ})$	90	93.34(3)	90
$V(Å^3)$	4484.0(16)	1265.0(4)	4521.2 (155)
Z	8	2	8
$D_{ m calcd}.({ m g\cdot cm}^{ ext{-}3})$	1.863	1.636	1.578
Reflections collected /unique	18044 / 5342	14223 / 5917	17390 / 4184
$\mu (mm^{-1})$	2.393	2.487	1.125
F(000)	2480	628	2192
θ (°)	2.30-27.90	1.68-27.84	0.9254-0.87
GOF on F^2	1.126	1.135	1.158
$R_I(I>2sigma(I))^a$	0.0632	0.0652	0.0997
$wR_2(I>2sigma(I))^b$	0.1108	0.1437	0.2434

 $^{{}^{}a}R_{1} = \sum ||F_{0}| - |F_{c}|| / \sum |F_{0}|| \cdot {}^{b}wR_{2} = \left[\sum w (F_{0}^{2} - F_{c}^{2})^{2} / \sum w (F_{0}^{2})^{2}\right]^{1/2}.$

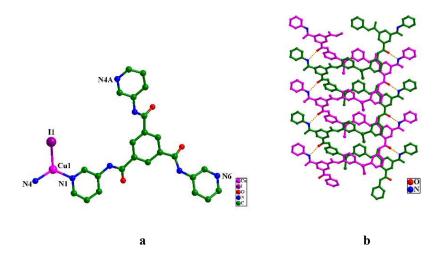
Table S2. Selected Bond Distances (Å) and Angles (deg) for 1-3.

Complex 1					
Cu(1)-N(1)	1.979(4)	C(12)-N(4)-Cu(1)#2	122.9(3)		
Cu(1)-N(4)#1	1.998(4)	C(15)-N(4)-Cu(1)#2	119.6(3)		
Cu(1)-I(1)	2.5602(9)	C(4)-N(1)-Cu(1)	123.6(3)		
N(1)-Cu(1)-N(4)#1	126.48(17)	C(1)-N(1)-Cu(1)	119.3(3)		
N(1)-Cu(1)-I(1)	120.57(12)	C(15)-N(4)-Cu(1)#2	119.6(3)		
N(4)#1-Cu(1)-I(1)	109.56(12)	C(4)-N(1)-Cu(1)	123.6(3)		

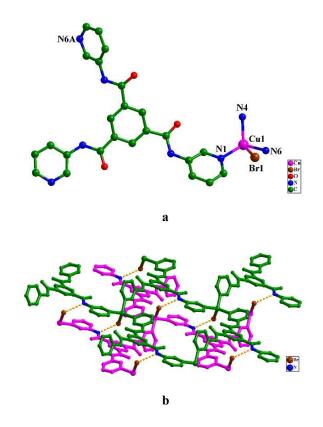
#1=-x+2, y-1, -z+3/2; #2=-x+2, y+1, -z+3/2

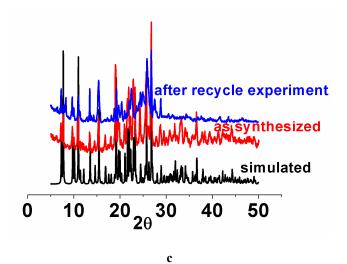
Complex 2					
Cu(1)-N(4)#1	2.042(4)	N(4)#1-Cu(1)-N(1)	119.20(16)		
Cu(1)-N(1)	2.047(4)	N(4)#1-Cu(1)-N(6)#2	106.77(17)		
Cu(1)-N(6)#2	2.097(5)	N(1)-Cu(1)-N(6)#2	109.05(17)		
Cu(1)-Br(1)	2.5025(11)	N(4)#1-Cu(1)-Br(1)	107.23(12)		
N(4)-Cu(1)#3	2.042(4)	N(1)-Cu(1)-Br(1)	112.70(13)		
N(6)-Cu(1)#4	2.097(5)	N(6)#2-Cu(1)-Br(1)	100.05(13)		
C(10)-N(4)-Cu(1)#3	123.2(3)	C(23)-N(1)-Cu(1)	118.4(3)		
C(9)-N(4)-Cu(1)#3	118.2(3)	C(24)-N(1)-Cu(1)	123.8(3)		
C(16)-N(6)-Cu(1)#4	122.4(3)	C(19)-N(2)-C(20)	125.9(4)		
C(15)-N(6)-Cu(1)#4	120.4(4)				

#1=x+1, y-1, z; #2=x, y-1, z-1; #3=x-1, y+1, z; #4 x, y+1, z+1.


Complex 3					
Cu(1)-N(4)#1	1.948(6)	N(4)#1-Cu(1)-N(1)	119.6(3)		
Cu(1)- $N(1)$	1.970(5)	N(4)#1-Cu(1)-N(6)#2	118.4(2)		
Cu(1)-N(6)#2	2.012(6)	N(1)-Cu(1)-N(6)#2	120.7(2)		
N(4)-Cu(1)#3	1.948(6)	C(5)-N(1)-C(1)	118.4(6)		
N(6)-Cu(1)#4	2.012(6)	C(5)-N(1)-Cu(1)	119.7(5)		
C(14)-N(4)-Cu(1)#3	115.4(5)	C(1)-N(1)-Cu(1)	121.6(5)		
C(18)-N(4)-Cu(1)#3	126.6(5)	C(6)-N(2)-C(4)	126.7(5)		
C(24)-N(6)-Cu(1)#4	126.3(5)	C(21)-N(6)-Cu(1)#4	116.0(4)		

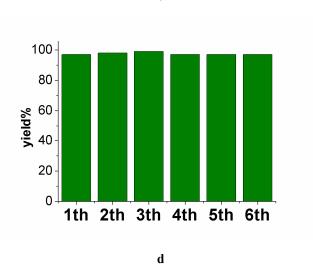
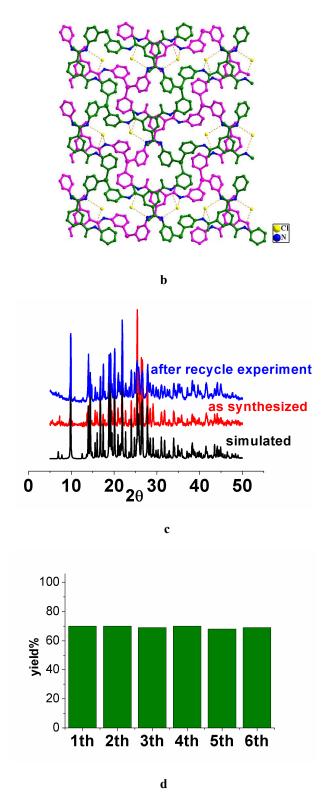
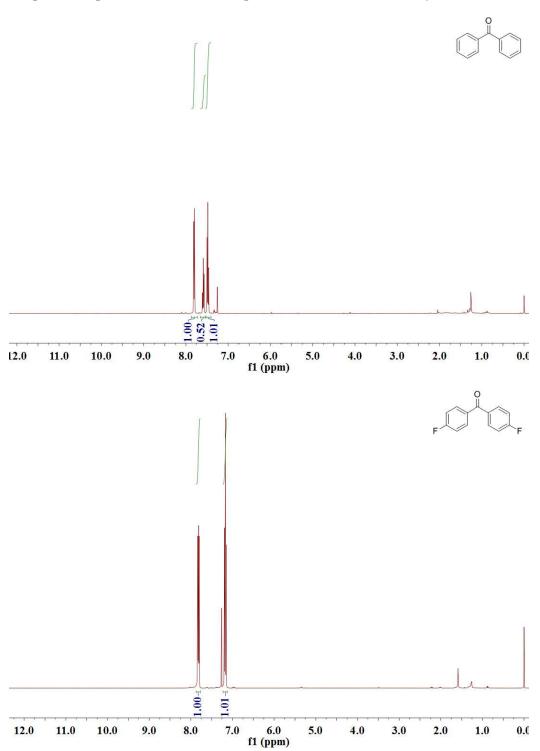
#1=x,-y+1/2, z+1/2; #2=-x+5/2,-y+1, z+1/2; #3=x,-y+1/2, z-1/2; #4=-x+5/2,-y+1, z-1/2.

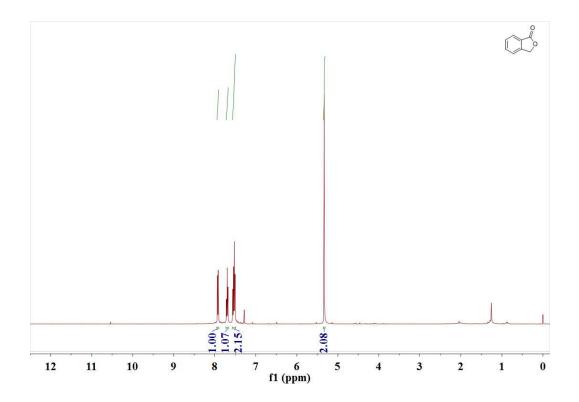

 Table S3. Hydrogen Bonds of complexes 1-3.

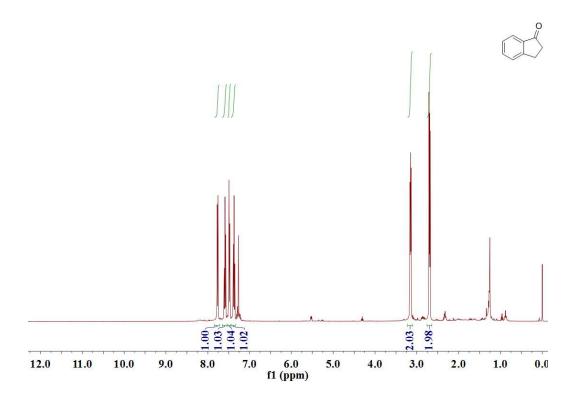

Comple	D-H···A	d(D-H)	d(H···A)	d(D···A)	<(D-H···A)
X		(Å)	(Å)	(Å)	(deg)
1	$N(5)-H(5A) \cdots O(2)\#2$	0.86	2.15	2.983(5)	162.1
2	N(3)-H(3) ···Br(1)#1	0.86	2.76	3.578(4)	160.2
				,	
	N(2)-H(2A)···Cl(1)#1	0.86	2.50	3.234(5)	143.4
3	N(3)-H(3A)···Cl(1)#2	0.86	2.50	3.326(5)	161.3
	N(5)-H(5A)···Cl(1)#2	0.86	2.53	3.333(5)	156.2
Symmetry codes: #1= -x+2,-y+1,-z; #2= x,y-1,z.					

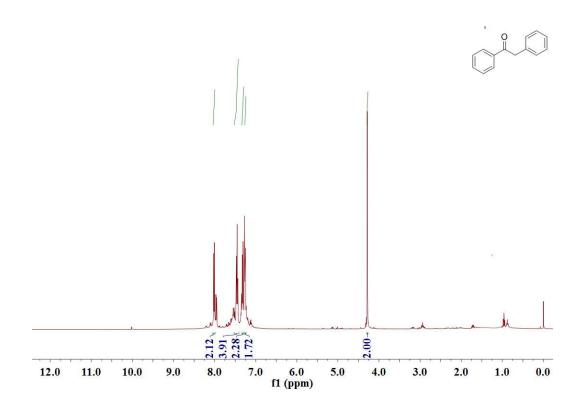
4. Additional structure figures of Cu-complexes

Figure S1. (a) Coordination environments of the Cu(I) ions in 1. Hydrogen atoms are omitted for clarity; (b) Intermolecular hydrogen bonding interactions in 1.


Figure S2. (a) Coordination environments of the Cu(I) ions in 2. Hydrogen atoms are omitted for clarity; (b) Intermolecular hydrogen bonding interactions in 2; (c) Recycling test for the conversion of alkanes into ketones with 2; (d) Comparison of the PXRD patterns of 2 before and after recycles experiments.




Figure S3. (a) Coordination environments of the Cu(I) ions in **3**. Hydrogen atoms are omitted for clarity; (b) Intermolecular hydrogen bonding interactions in **3**; (c) Recycling test for the conversion of alkanes into ketones with **3**; (d) Comparison of the PXRD patterns of **3** before and after recycles experiments.

5. Spectral copies of ¹H NMR of compounds obtained in this study.

7. References.

- (1) Hossain, M. M.; Shyu, S. G. Biphasic copper-catalyzed C-H bond activation of arylalkanes to ketones with tert-butyl hydroperoxide inwater at room temperature. *Tetrahedron.* **2016**, *72*, 4252-4257
- (2) Verma, S.; Baig, R. B. N.; Nadagouda, N. N.; Varma, R. S. Photocatalytic C–H Activation of Hydrocarbons over VO@g-C3N4. *ACS Sustainable Chem. Eng.* **2016**, *4*, 2333–2336.
- (3) Miao C.; Zhao, H.; Zhao, Q.; Xia, C.; Sun, W. NHPI and ferric nitrate: a mild and selective system for aerobic oxidation of benzylic methylenes. *Catal. Sci. Technol.* **2016**, *6*, 1378–1383
- (4) Sheldrick, G. M. A short history of SHELX. Acta Crystallogr. Sect. A: Found. Crystallogr. 2008, A64, 112-122.