1	
2	Supporting information
3	
4 5	Development of a terpenoid-production platform in Streptomyces
6	reveromyceticus SN-593
7	Ammara Khalid, ^{§,‡} Hiroshi Takagi, [†] Suresh Panthee, [†] Makoto Muroi, [§] Chappell Joe, [±]
8	Hiroyuki Osada, ^{§,‡} and Shunji Takahashi ^{†,} *
9	[†] Natural Product Biosynthesis Research Unit, RIKEN Centre for Sustainable Resource
10	Science, Hirosawa 2-1, Wako, Saitama 351-0198, Japan
11	[§] Chemical Biology Research Group, RIKEN Centre for Sustainable Resource Science,
12	Hirosawa, 2-1, Wako, Saitama 351-0198, Japan
13	[‡] Graduate School of Science and Engineering, Saitama University, Saitama 338-8570, Japan
14	[±] Pharmaceutical Sciences, University of Kentucky, 789 S Limestone Street, Lexington, KY
15	40536-0596
16	
17 18 19 20 21 22 23 24 25 26 27 28	 Table S1. RNA-seq analysis Table S2. Bacterial strains and plasmids used in this study Table S3. The primers used in this study Table S4. Codon optimized <i>fpps-ssl1-ssl3</i> gene sequences for <i>Streptomyces reveromyceticus</i> SN-593 Table S5. Gene expression profiles and gene organization for promoter screening Figure S1. In-frame deletion of <i>fur1</i> gene. Figure S2. Confirmation of the promoter-<i>fur22</i> gene fragment in the transformed strain. Figure S3. LC-MS analysis of FQs. Figure S4. 2-D gel electrophoresis analysis Figure S5. Reporter assay using the colour of FQ Figure S6. GC-MS analysis of BC and SQ
29	
30	
31	
32	
33	

Table S1. RNA-seq analysis

	Putative function	Median r	normalized *	RPKM
Gene ID		Day1	Day2	Day3
rvr6185	ribosomal protein L10	31,421	1,557	25,349
rvr4994	1L-myo-inositol-1-phosphate synthase	14,688	501	22,384
rvr6704	ferredoxin	12,950	4,000	31,302
rvr6682	peptide ABC transporter solute-binding protein	10,381	844	3,051
rvr6236	translation initiation factor IF-1	5,491	516	14,459
rvr4938	cytochrome bd-I oxidase subunit I	4,497	260	19,873
rvr6277	co-chaperonin GroES	3,445	407	2,911
rvr6238	ribosomal protein S13	3,422	222	2,723
rvr6217	ribosomal protein S17	2,326	861	2,862
rvr3590	hypothetical protein	2,314	381	3,816
rvr2313	cytochrome c oxidase subunit III	2,216	276	17,977
rvr6204	ribosomal protein S10	2,102	472	3,909
rvr6199	elongation factor EF-Tu	1,992	762	5,314
rvr6195	ribosomal protein S12	1,839	388	4,733
rvr6197	translation elongation factor G	1,818	621	2,747
rvr6222	ribosomal protein L5	1,318	603	1,913
rvr2133	branched-chain amino acid ABC transporter substrate-binding protein	1,278	287	924
rvr6219	ribosomal protein L14	1,278	1,044	2,221
rvr2046	glyceraldehyde 3-phosphate dehydrogenase	1,245	328	5,425
rvr9025	lipoprotein	1,223	164	6,018
rvr5758	transcriptional regulator	1,162	391	4,149
rvr3991	class I heat-shock protein	871	846	714
rvr3291	citrate synthase	321	179	3,282

List of highly expressed gene in *Streptomyces reveromyceticus* SN-593 SR1 strain. *RPKM, reads per kilobase
 of transcript per million mapped reads. The data were median normalized for each data set.

- . -

Strain and plasmid	Relevant characteristics	Reference
Strains		
Streptomyces sp. SN-593	Wild-type reveromycin A-producing strain	1
SR1	Streptomyces sp. SN-593 that disrupted revC and revD genes $(\Delta revC\Delta rev)$	2
SR1-VC	SR1::pTYM19	This study
SR1-NC	SR1::pTYM19::aphIIp-rvr4129	This study
SR1-1	SR1::pTYM19::aphIIp-fur22 (rvr4131)	3
SR1-2	SR1::pTYM19:: <i>rvr1215p-fur22</i>	This study
SK1-3	SR1::p1 Y M19::rvr1220p-jur22	This study
SR1-4	SR1::p14M19:: <i>rvr2028p-jur22</i>	This study
SRI-5	SR1::p1YM19::rvr2030p-jur22	This study
SR1-6	SR1::pTYM19::rvr2133p-fur22	This study
SR1-7	SR1::pTYM19::rvr2353p-fur22	This study
SR1-8	SR1::pTYM19::rvr2436p-fur22	This study
SR1-9	SR1::pTYM19::rvr3032p-fur22	This study
SR1-10	SR1::pTYM19::rvr3087p-fur22	This study
SR1-11	SR1::pTYM19::rvr3168p-fur22	This study
SR1-12	SR1::pTYM19::rvr3291p-fur22	This study
SR1-13	SR1::pTYM19::rvr3493p-fur22	This study
SR1-14	SR1::pTYM19::rvr3650p-fur22	This study
SR1-15	SR1::pTYM19::rvr3991p-fur22	This study
SR1-16	SR1::pTYM19::rvr4050p-fur22	This study
SR1 10 SR1 17	SR1::pTYM10::p μ 4030p μ 22	This study
SR1-17	SR1p11M19v14941p-ju122	This study
SRI-18	SR1::p14M19::rvr3/38p-jur22	This study
SK1-19	SK1::p14M19::rvr0185p-jur22	This study
SR1-20	SR1::pTYM19::rvr6204p-fur22	This study
SR1-21	SR1::pTYM19::rvr6279p-fur22	This study
SR1-22	SR1::pTYM19::rvr6682p-fur22	This study
SR1-23	SR1::pTYM19::rvr7845p-fur22	This study
SR1-24	SR1::pTYM19::rvr7933p-fur22	This study
SR1-25	SR1::pTYM19::rvr7936p-fur22	This study
SR1-26	SR1::pTYM19::rvr7941p-fur22	This study
SR1-27	SR1::pTYM19::rvr9107p-fur22	This study
SR1-28	SR1-1::pKU492Acos::fur1p-fpps-ssl1-ssl3	This study
SR1-29	SR1-5::pKU492Acos::fur1p-fpps-ss11-ss13	This study
SR2	The <i>fur1</i> gene deletion was introduced in SR1	This study
SR2-PF	SR2::pKU492Acos::fur1p-fpps-ssl1-ssl3	This study
SR2-1	SR2::pTYM19::aphIIp-fur22	This study
SR2-2	SR2::pTYM19::rvr2030p-fur22	This study
SR2-3	SR2-PF::pTYM19::aphIIp-fur22	This study
SR2-4	SR2-PF::pTYM19::rvr2030p-fur22	This study
SR2-5	SR2-PF::pTYM19::rvr2353p-fur22	This study
SR2-6	SR2-PF::pTYM19::rvr3650p-fur22	This study
SR2-7	SR2-PF::pTYM19::rvr9107p-fur22	This study
E. coli DH5α	Cloning host; F Φ 80dlacZ Δ M15 Δ (lacZYA-argF)U169 endA1 recA1 deoR hsdR17($r_{K} m_{K}^{+}$) phoA, supE44 λ thi-1 gyrA96 relA1	
E. coli -conjugation	E. coli GM2929 hsdS::Tn10 carrying pUB307-aph::Tn7	4
<i>E. coli</i> -BW25113	The derivative of the F ⁻ , λ^{-} , <i>E.coli</i> K-12 strain BD792 [CGSC6159]	5

1 Table S2. Bacterial strains and plasmids used in this study

Plasmids		
pKD13	Template plasmid for FRT-flanked kanamycin resistant gene	CGSC ⁵
pKD78	Red recombinase expression plasmid	CGSC
pCP20	Ampicillin and chloramphenicol resistance plasmid that shows temperature sensitive replication and thermal induction of FLP synthase	CGSC 6
pIM	DNA region from BamHI and KpnI site was removed from	2
pIM-fur1	pIM containing approximately 6 kb DNA containing <i>fur1</i> gene in HindIII site	This study
pIM-∆ <i>fur1</i>	<i>fur1</i> gene disruption vector	This study
pTYM19	Actinomycete-Escherichia coli integration vector	7
pTYM19::aphIIp	The aphII promoter was ligated into EcoRI and BamHI site	2
pTYM19::aphIIp-fur22	The <i>fur22</i> (<i>rvr4131</i>) transcriptional regulator gene was inserted in BamHI and HindIII site of pTYM19:: <i>aphIIp</i>	3
pTYM19::aphIIp-rvr4129	# The <i>rvr4129</i> gene was inserted in BamHI and HindIII site of pTYM19:: <i>aphIIp</i>	This study
pTYM19::fur22	The aphII promoter was removed from pTYM19::aphIIp-fur22	This study
pKU492Acos_aac(3)IV	Actinomycete TG1 integration vector	8
pKU492Acos:: <i>fur1p</i>	pKU492Acos with <i>fur1</i> promoter regulating mevalonate gene cluster in EcoRI and NdeI site	This study
pKU492Acos:: <i>fur1p-fpps-</i> ssl1-ssl3	The <i>fpps-ssl1-ssl3</i> gene fragment was ligated in NdeI and HindIII site of pKU492Acos:: <i>fur1p</i>	This study
	Promoter construct initiated by RNA-seq analysis	
pTYM19::rvr3291p-fur22	*The promoter region (500 bp) obtained from <i>rvr3291</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
pTYM19::rvr3991p-fur22	*The promoter region (500 bp) obtained from <i>rvr3991</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
pTYM19::rvr5758p-fur22	*The promoter region (493 bp) obtained from <i>rvr5758</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
pTYM19::rvr6185p-fur22	*The promoter region (406 bp) obtained from <i>rvr6185</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
pTYM19::rvr6204p-fur22	*The promoter region (486 bp) obtained from <i>rvr6204</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
	Promoter construct initiated by 2-D gel electrophoresis analysis	
pTYM19::rvr1215p-fur22	*The promoter region (300 bp) obtained from <i>rvr1215</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
pTYM19::rvr1226p-fur22	*The promoter region (348 bp) obtained from <i>rvr1226</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
pTYM19::rvr2028p-fur22	*The promoter region (519 bp) obtained from <i>rvr2028</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
pTYM19::rvr2030p-fur22	*The promoter region (250 bp) obtained from <i>rvr2030</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
pTYM19::rvr2133p-fur22	*The promoter region (500 bp) obtained from <i>rvr2133</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
pTYM19::rvr2353p-fur22	*The promoter region (400 bp) obtained from <i>rvr2353</i> gene was inserted in the upstream of <i>fur22 gene</i> .	This study
pTYM19::rvr2436p-fur22	*The promoter region (500 bp) obtained from <i>rvr2436</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
pTYM19::rvr3032p-fur22	*The promoter region (405 bp) obtained from <i>rvr3032</i> gene was inserted in the upstream of <i>fur22 gene</i> .	This study
pTYM19::rvr3087p-fur22	*The promoter region (478 bp) obtained from <i>rvr3087</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
pTYM19::rvr3168p-fur22	*The promoter region (500 bp) obtained from <i>rvr3168</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
pTYM19::rvr3493p-fur22	*The promoter region (495 bp) obtained from <i>rvr3493</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
pTYM19::rvr3650p-fur22	*The promoter region (370 bp) obtained from <i>rvr3650</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study

pTYM19::rvr4050p-fur22	*The promoter region (399 bp) obtained from <i>rvr4050</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
pTYM19::rvr4941p-fur22	*The promoter region (349 bp) obtained from <i>rvr4941</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
pTYM19::rvr6279p-fur22	*The promoter region (250 bp) obtained from <i>rvr6279</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
pTYM19::rvr6682p-fur22	*The promoter region (398 bp) obtained from <i>rvr6682</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
pTYM19::rvr7845p-fur22	*The promoter region (343 bp) obtained from <i>rvr7845</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
pTYM19::rvr7933p-fur22	*The promoter region (500 bp) obtained from <i>rvr7933</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
pTYM19::rvr7936p-fur22	*The promoter region (500 bp) obtained from <i>rvr7936</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
pTYM19::rvr7941p-fur22	*The promoter region (398 bp) obtained from <i>rvr7941</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study
pTYM19::rvr9107p-fur22	*The promoter region (249 bp) obtained from <i>rvr9107</i> gene was inserted in the upstream of <i>fur22</i> gene.	This study

 $1 \\ 2 \\ 3 \\ 4$

The putative transcriptional regulator *rvr4129* gene exists in the upstream of *fur22* gene. The gene expression by *aphII* promoter does not enhance FQ production. *The gene was inserted into EcoRI and BamHI sites.

Primers used for g	genes amplification	
Target gene or vectors	Primer	Comment
fur1	Fur1 Hind-F: 5'-CCC <u>AAGCTT</u> CCCGATCACGTCCA-3' Fur1 Hind-R: 5'- CCC <u>AAGCTT</u> CGGTGCTGTGGAAG-3'	<i>fur1</i> gene was amplified from fosmid clone PCC1FOS-16C11
fur1p	Eco-Pfur1-F :5'- CCGGAATTCGAGGGTCTGGACGGATCGGTT-3' Nde-Pfur1-R :5'-GGAATTCCATATGCGGGGGTCCACTTCCTCAGAGT -3'	765 bp fragment of <i>fur1</i> promoter (<i>fur1p</i>) was amplified from fosmid clone PCC1FOS-16C11
Primers used for t	he target gene inactivation by λ -Red system	
aphII	Fur1-For-P4 : 5'- <u>AGGCTATGCAAGCCGGCGATGCGTGCGCCCGAACACGTCATCA</u> <u>CGCTGGAA</u> ATTCCGGGGGATCCGTCGACC-3' Fur1-Rev-P1: 5'- <u>AGCTGTGGCGGAACACGTTGCGGGTCCACTTCGAGGAACTTCGC</u> <u>CAGGTCGT</u> TGTAGGCTGGAGCTGCTTC-3'	<i>aphII</i> gene was amplified from pKD13 having flanking region of 51 bp homology with target gene on both sides.
Primers used for c	confirmation of gene deletion	
Wild-type $furl$ and $\Delta furl$	F1: 5'-CCCGTTGACGACGTGGTCGACCG-3' R1: 5'-GGGCGATGTGGGAGTACAGCGCG-3 F2: 5'-TCGACCGCCGTCCGCCGGTT-3' R2: 5'-TCCCCCAAGGGCGACCGGGT-3'	
Primers used for t	he evaluation of promoters	
Target gene	Primer sequence	
rvr1215	rvr1215-F: 5'-CCG <u>GAATTC</u> GACCTCGGGGTGCCCGACGA-3' rvr1215-R: 5'-CGC <u>GGATCC</u> GGTTGCTCTCCGTTCCAGTCT-3'	
rvr1226	rvr1226-R: 5'-CGC <u>GGATCC</u> GGCCGCCGCCGCCGCCGCCGCC-3'	
rvr2028	rvr2028-F: 5 - CCG <u>GAATTC</u> AGGTAGCCGCCGACCACGGTCGCCA-3 rvr2028-R: 5 - CGC <u>GGATCC</u> TGGGTCAGGGCCCCTCTCCCACAT-3'	
rvr2030	rvr2030-F: 5'-CCG <u>GAATTC</u> AGAGCGTGCTGCCGTCCACG-3' rvr2030-R: 5'-CGC <u>GGATCC</u> TGGGATCTGCATCTCCTGAAATG-3'	
rvr2133	rvr2133-F: 5'-CCG <u>GAATTC</u> TTGGAGCGGTCGGCGCCCC-3' rvr2133-R: 5'-CGC <u>GGATCC</u> AAGCGGTCCTTTCCCCTGGCT-3'	
rvr2353	rvr2353-F: 5'-CCG <u>GAATTC</u> ACCTGGACATCGCGGGCCCG-3' rvr2353-R: 5'-CGC <u>GGATCC</u> GTCACGTCCTCCATGCATGGG-3'	
rvr2436	rvr2436-F: 5 -CCG <u>GAATIC</u> GGAGATGATCCAGGAAGTGC-3 rvr2436-R: 5 -CGC <u>GGATCC</u> TACGCGGATTCCTTGTCTGATGT-3'	
rvr3032	rvr3032-F: 5'-CCG <u>GAATTC</u> AAGTGCCGTGCGAGGTGGGC-3' rvr3032-R: 5'-CGC <u>GGATCC</u> TGGCGGGGCCCCTTCAAGCTC-3'	
rvr3087	rvr3087-F: 5'-CCG <u>GAATTIC</u> GCCACCCGCACCCCCTG-3' rvr3087-R: 5'-CGC <u>GGATCC</u> GCCAGTGCCGCGCGCGCGTTCT-3'	
rvr3168	rvr3168-F: 5'-CCG <u>GAATTC</u> AGCGGGCGACGGGAATCGAA-3' rvr3168-R: 5'-CGC <u>GGATCC</u> GGTTGGGTCTCCTTGGGGG-3'	
rvr3291	rvr3291-F: 5'-CCGGAATTCGGGCGCCAACGGCGTCTTCA-3' rvr3291-R: 5'-CGCGGATCCGTCATTCCCTCACCGACGGC-3'	
rvr3493	rvr3493-F: 5'-CCG <u>GAATTC</u> ACGCAGCGGCTGACGGTGCT-3' rvr3493-R: 5'-CGC <u>GGATCC</u> TGACGACCTTCTTCCGGTTCC-3'	
rvr3991	rvr3991-F: 5 -CCG <u>GAATTC</u> GCTACGGCTTCATCGCGGT-3 rvr3991-R: 5 -CGC <u>GGATCC</u> GGTGAAGTGTCCTCCGCGGA-3	
rvr3650	rvr3650-F: 5'-CCG <u>GAATIC</u> ACCAGCATCCCCAAGGGGGA-3' rvr3650-R: 5'-CGC <u>GGATCC</u> GTTGTCTCCTTCTGAGATGTCT-3'	
rvr4050	rvr4050-F: 5'-CCG <u>GAATIC</u> ACCATCIGICCGCCCAATI-3' rvr4050-R: 5'-CGCGGATCCGCACGCCCCTTCCTCT-3'	
rvr4129	rvr4129-R: 5'-CCC <u>AAGCTT</u> TCACCCGGGGTCGCCGGGCT-3'	
rvr4941	rvr4941-F: 5 -CCG <u>GAATTC</u> GCGCGCTCCAGCCGGCGT-3 rvr4941-R: 5'-CGC <u>GGATCC</u> ACCCTACGAGGGTCGCCGCA-3'	
rvr5758	rvr5/58-F: 5'-CCG <u>GAATTC</u> GACAGCGCCGCGACGGAT-3' rvr5758-R: 5'-CGC <u>GGATCC</u> GTGACAGGTACCCCTTCCGT-3'	
rvr6185	rvr6185-F: 5'-CCG <u>GAATTC</u> GTGCGCGGGACCGGTACTCCGACCA-3' rvr6185-R: 5'-CGC <u>GGATCC</u> GAGTCTCGGCCTCCTTCCGGGTGA-3'	

1 Table S3. The primers used in this study

rvr6204	rvr6204-F: 5'-C	CG <u>GAATTC</u> TGTCCGTTCCCAGGCCGCGGGAT-3′
rvr6279	rvr6279-F: 5'-C	CCG <u>GAATTC</u> ACGTCGCCGTCGGCGACGTC-3′ CGCGGATCCGCCTGCGAACTACCTCGTCTACT-3′
rvr6682	rvr6682-F: 5'-C rvr6682-R: 5'-C	CCG <u>GAATTC</u> TGCCCAACATCTGGAGCACCAT-3′ CCC <u>GGATCC</u> TGAAATCCTGCCTGTCTGGACTG-3′
rvr7845	rvr7845-F: 5′-C rvr7845-R: 5′-C	CG <u>GAATTC</u> AGATCGGACTCCGTGCTGTG-3′ CGC <u>GGATCC</u> AGGCGCTGTTCCTTCCGTGA-3′
rvr7933	rvr7933-F: 5'-C rvr7933-R: 5'-C	CCG <u>GAATTC</u> AAGGCTGATGTTCTGGTTGC-3′ CGC <u>GGATCC</u> GACAGTCTCCTTCATGCATGTT-3′
rvr7936	rvr7936-F: 5'-C rvr7936-R: 5'-C	CG <u>GAATTC</u> TGCTGCGCAAGTGAGTCCGGT-3′ CGC <u>GGATCC</u> TGCTCAAGTCCTCAGCCTTCTTC-3′
rvr7941	rvr7941-F: 5'-C rvr7941-R: 5'-C	CG <u>GAATTC</u> TGCAACCTGCTCAACCCGA-3′ CGC <u>GGATCC</u> TCTGAGGTTGCCTCCCTGACA-3′
rvr9107	rvr9107-F: 5′-C rvr9107-R: 5′-C	CG <u>GAATTC</u> GTACCCATCTGCCGCTCCCGC-3′ CGC <u>GGATCC</u> TGGCGGGGTCCTCCGGAGGT-3′
	Primers used to	check RNA-seq guided transformants
Expected amplification size of DNA	Template genomic DNA	Primer sequence (amplification between putative promoter and <i>fur22</i> gene)
<i>rvr3291-fur22</i>	SR1-13	rvr3291-F: 5'-AATTCGGGCGCCAACGGCGTCTTCA -3'
(323 6p) rvr3991-fur22	SR1-16	rvr3991-F: 5'-GAATTCGCTACGGCTTCATCGCGGT -3'
(525 bp) rvr5758-fur22	CD1 10	fur22-F: 5'-GCAGCGCGCCAAGCAGCTGAAT -3' rvr5758-F: 5'-GAATTCGACAGCGCCGCGACGGAT -3'
(518 bp)	SR1-19	fur22-F: 5'-GCAGCGCGCCAAGCAGCTGAAT -3'
<i>rvr6185-fur22</i> (431 bp)	SR1-20	rvr6185-F: 5′-CGTGCGCGGACCGGTACTCCGACCA-3′ fur22-F: 5′-GCAGCGCGCCAAGCAGCTGAAT -3′
rvr6204-fur22	SR1_21	rvr6204-F: 5'-CTGTCCGTTCCCAGGCCGCGGGAT-3'
(511 bp)	511-21	fur22-F: 5'-GCAGCGCGCCAAGCAGCTGAAT -3'
The underlines	s show homolog	ous sequences to the target DNA region or restriction enzyme sites.

1 Table S4. Codon optimized *fpps-ssl1-ssl3* gene sequences for *Streptomyces reveromyceticus* SN-593.

fur1p-fpps-ssl1-ssl3
GATTCGAGGGTCTGGACGGATCGGTTCCGAAGTCCCGGGAGGAGCGCGGCGGCGGCGGGAGGAGCACGGGTC
CCCCCGGTCCGCCCCCGGGACGGTCCCCCCCCCCCCCGCCCG
GTGTGGCAGGTCGGGGGACGACGTTAGGAGGCGCGCGTTCCCTGAACGTTCCCTCGCCTGGGGCCCGTTGGGCCCCG
GTCGGTGCGGTGCTCGTCGAGCCGGGGTGTCCTCCGGCCTCCACGGGGAGTCGAGTGTGACCCAGGTCACTCCATG
TAATGCTTGGCGCCAAGCCTGCTGCCGTGTCACTATTTCCGCACACCTTCCCTGCCCGAAAGCAGTCACCAGGCA
GCGGATCGACCGCCGTCCCGCGGTTCCCCGCACAGGCGGGACCCGCACGCA
CGACTGCTCCCGCCGAGCAGCTCACGTCCCTTCCCGTTCAGGACAGGCGCCAATCGCCGTCGGCGGACTCCGTCC
GACCGGCCGCCCAGCGAACATCTCCCGTGCCCCGGCCCGCGGCCGCCGCCGCCGCCCTCCCCCC
GCAGGACGGCGGCGGGCCGCCCGTTTCCGCCCGGCCGCCGAGCCGGCCG
GCGTCAACGACCCCACCGAGGACGGCGGGTGAAGGATCCGCCGTCTGCGCGACGCCCCACTGCCCTTGCTGTCGA
GACTCTGAGGAAGTGGACCCCGCATATGATGCACAAGTTCACCGGCGTGAACGCCAAGTTCCAGCAGCCGGCCCT
GCGCAACCTGTCCCCGGTGGTGGTCGAGCGCGAGCGCGAGGAGTTCGTGGGCTTCTTCCCGCAGATCGTGCGCGA
CCTGACCGAGGACGGCATCGGCCACCCCGAGGTGGGCGACGCCGTGGCCCGCCTGAAGGAGGTGCTGCAGTACAA
CGCCCCGGGCGGCAAGTGCAACCGCGGCCTGACCGTGGTGGCCGCCTACCGCGAGCTGTCCGGCCCGGGCCAGAA
GGACGCCGAGTCCCTGCGCCGCGGCCGTGGGCTGGTGCATCGAGCTGTTCCAGGCCTTCTTCCTGGTGGC
CGACGACATCATGGACCAGTCCCTGACCCGCCGCCGCCAGCTGTGCTGGTACAAGAAGGAGGGCGTCGGCCTGGA
CGCGATCAACGACTCCTTCCTGCTGGAGTCCTCCGTGTACCGCGTGCTGAAGAAGTACTGCCGCCAGCGCCCGTA
CTACGTGCACCTCCTGGAGCTGTTCCTCCAGACCGCCTACCAGACCGAGCTGGGCCAGATGCTGGACCTGATCAC
CGCCCCGGTGTCCAAGGTGGACCTGTCCCACTTCTCCGAGGAGCGCTACAAGGCCATCGTGAAGTACAAGACCGC
CTTCTACTCCTTCTACCTGCCGGTGGCCGCCGCCATGTACATGGTGGGCATCGACTCCAAGGAGGAGCACGAGAA
CGCCAAGGCCATCCTGCTGGAGATGGGCGAGTACTTCCAGATCCAGGACGACTACCTGGACTGCTTCGGCGACCC
GGCCCTGACCGGCAAGGTGGGCACCGACATCCAGGACAACAAGTGCTCCTGGCTGG
CGTGACCCCCGAGCAGCGCCAGCTGCTGGAGGACAACTACGGCCGCAAGGACCCCGAGAAGGTCGCCAAGGTGAA
GGAGCTGTACGAGGCCGTCGGCATGCGCCGCCGTTCCAGCAGTACGAGGAGTCCTCCTACCGCCGCCTGCAGGA
GCTGATCGAGAAGCACTCCAACCGCCTGCCGAAGGAGATCTTCCTGGGCCTGGCGCAGAAGATCTACAAGCGCCA
GAAGTGAACCACACGCGCCAACAACGGAAGCGGAGTCCATGCACCACGGACCACGGCGTGATGAAGGACC
TGGTGAAGCACCCGAACGAGTTCCCGTACCTGCTGCAGCTGGCCGCCACCACCTACGGCTCCCCGGCCGCCCCGA
TCCCGAAGGAGCCGGACCGCGCCTTCTGCTACAACACCCTGCACACCGTGTCCAAGGGCTTCCCGCGCTTCGTGA
TGCGCCTGCCGCAGGAGCTGCAGGACCCGATCTGCATCTTCTACCTGCTGCGCGCCCTGGACACCGTCGAGG
ACGACATGAACCTGAAGTCCGAGACCAAGATCTCCCTGCTGCGCGTGTTCCACGAGCACTGCTCCGACCGCAACT
GGTCGATGAAGTCCGACTACGGCATCTACGCCGACCTGATGGAGCGCTTCCCGCTGGTCGTGTCCGTGCTGGAGA
AGCTGCCGCCGGCCACCCAGCAGACCTTCCGCGAGAACGTGAAGTACATGGGCAACGGCATGGCCGACTTCATCG
ACAAGCAGATCCTGACCGGGGTGGACGAGTACGACCTGTACTGCCACTACGTGGCCGGCTCGTGCGGGATCGCCGTGA
CCAAGGTGATCGTGCAGTTCAACCTGGCCACCCCCGAGGCCGACTCCTACGACTTCTCCCAACTCCCTGGGCCTGC
TGCTGCAGAAGGCCCAACATCATCACCGACTACAACGAGGACATCAACGAGGAGCCGCGCCGCGCATGTTCTGGC
CCCACGACGATCTGGGCCAAGTACGCCCGAGAAGCTGGCCGACTTCCAACGACGCCCGACAACATCGACACCCCCGCGTGA
AGTGCCTGAACCACATGGTGACCGACGCCATGCGCCACATCGAGCCGTCCCTGAAGGGCCATGGTGTACTTCACCG
ACAAGACCGTGTTCCGCGCCCTGGCGCTGCTGCTGGTGACCGCCTTCGGCCCCCTGTCCAACAACCACC
CGAACGTGTTCAAGGAGAAGGTCCGCCCAGCGCAAGGCCCGCCC
GCTCGGGCATGAAGCTGCGCGAGGCTCCTGCAGCACCCGGGCGAGATCATCCCGCTGCAGCATGATGGTGATGG
GEAGGACCIACCTACCCIACCCIACCCCACCICCACACCICCAGCCCIGCCAGCCCIGCCA
AUTOCAAUUUCAAUUTUUUUUUUUUUUUUUUUUUUUUUUU

2

3 The underlines show restriction enzyme sites. The sequences indicate the promoter of *fur1* gene promoter

4 from S. reveromyceticus SN-593 (orange), codon optimized FPP synthase gene (fpps) from chicken (blue),

6 (purple). The shade sequence between *fur1* and *fur2* gene organization found in FQ gene cluster was

7 adopted to assure transcription of *ssl-1* and *ssl-3* gene. The peptide fusions of SSL-1 and SSL-3 was

8 connected by a triplet repeat linker of GGSG (bold letter) 9 .

9 Table S5. Gene expression profiles and gene organization for promoter screening.

⁵ and codon optimized SSL-1 and SSL-3 fusion synthase gene (*ssl1-ssl3*) from *Botryococcus* race B

DNA sequence of rvr4129 gene used as negative control

AATCTCCGCAGGGTGCTGGAGCCGGGCCGGGCGCCCAGGACGCCCTCGACGGTGCTGCGCACCACCGGGGCTACCAGTTGGACGCCCGGG CGGTCGAGGTGGACGTCAACCGCTTCGAGCAGCACGCCACTTCGGGATGGCAGGCGTGGAACCGGGGCGAACCGCACCAGGCGCGCGAGTT CGGCTGTCCGTGGTGGAGGGGCGCTGCGCGGCGCTGCCGGCGGGGGCCCACGAGATGGCGGCCGCCGAACTGGAGGGCTTCATGCAGGCCC ATCCGCTGCGCGAGTACGGCTGCGAGCTCCTCAGCCTGGCGCTGTACCGGTCCGGGCGGCGGCCGACGCGCGGCGGCGGTGCTCCGCAACCA GAGGCGCCTGGGAGAGGAACTGGGCATCGACCCCGTACCGGCGCTGCAACACCTCGAACGGGAGATCCTGAGCCACACCCCGGCGCTGGACTGG GCCCACGTCGCCACGCCGCCGTTGTGGCCCTGGCGGCAGGTGCTGGACATGGCGGGTGCCCACGGCCGCGCGCCCCGTCCCGAGCGCCGTCG CCGAAGTGCTCAACGGGGAGATCCCGCTCCCGCGGGACGGCGCGGCCGCCGCCGCCACCTCGCGGCGGTTGGAGGTGATCGCGGACTACCT GATCGGCGCGGGCCGAGGTCACGCCGCTGGTGATCGTCCTCGACGGGCTGCACCAGGCGGACCCGGGGTCGCTGCGGCTGCCGCGCCCGACC GGGTCGGTGCGGGCCAGCCGCCTCCTGGTGGCGGTGTCCTACCGCTCCAACGAGGGGGCGCACCTGGCCAGGACGGCGCGCGAGAGGAG CGGAGACGACGCGCGTAGAGCTGGGCGGCGTGAGCGACGCGGGAGACCCGGGCTCTGGCGAGCGCGCTGCTCCGCCGCGAGGTGAGCGCGGCCAC CGCCCGGCAGTTACGGGGCCGCACCGGCGGCAACCCGTTCTACCTGCGCGAACTCGTCAAGGTACTCGACGGCCAGGACGACCCGGGCCGGGCC CCGTCTCCGGTCCCGGCTTCACCGTCGACGTCGCGGAGGTCTCCTCGACCGAGTACGGGCGGCGCTCGGGATCGTCGGCACCCTGGTCGC CGCGGGCCTGGTACGCGAGGACCAGCAGCGGCCGGGCTGGTACTCCTTCGTCCACGGCCTGACCGCCGACGTGCTGCTCCACGAGATGGGGCGG

Promoter selected from RNA-seq analysis

The *rvr3291* gene has the gap of 150 bp after the upstream gene. Based on the RNA seq data at day3, the *rvr3291* mRNA level was dramatically increased. However, the mRNA for the upstream *rvr3295* gene was only modestly represented. This suggested that transcription of the *rvr3291* gene was not controlled by the promoter of the upstream *rvr3295* gene.

GGGCGCCAACGGCGTCTTCAACGGCACCGTGGGCGTGGTGACCGCCCTCGACGCGGCGAGAAGCTCACGGTGCGGACTGACGAGGACGAG GAAGTCGGATACGACTTCGACGAACTGGACGAGCTGACCCACGCCTACGCCGTCACGATCCCACAGATCGCAGGGCAGCGAGTACCCGGCGGGGGG TGATCCCCGTCACTACCGGGGGCTTGGATGCTCCAACGCAACCTGCTTTACACCGCGGTCACGAGGGGCGAAACGCCTGGTCGTGGTGGG GTCGCGTCGGGCGATCGGGCAGGCCGTGCGGACGGTCTCCGCGGGTCGTCGCTCACGGCTCTCGACCATCGGCTTGATCTGGGCGCAAAATAG GCACTCCGTGCCACTTTTCGGCCCGATGGCCGACCCCGAGTGCACACCCCAGTGCCAAATGGGGGACAGTGGACGTAGTCAGGGCACCTCGAAG AAGAGGCAAAACCGTCGGTGAGGGAATGACGTGAGCGACCAACTCTGTAGTACTGCGGTACGGGGACGGCGAGTACAGCTACCCCGTGGTGGACA GCACCGTCGGTGACAACGGTTTCGACATCGGCAAGCTGCGCCGATACCGGACTGGTCACCCTGGACAGCGGCTACGGCAACACCGCGGCGTA GAGACCGCGTACCTGCTGATCAACGGCGAGCTGCCGACCGTCGACCAGCTCTCCGCGTTCCAGGGGCAGATCACCCAGCACACGCTGCTGCACG AGGACGTCAAACGGTTCTACGACGGCTTCCCCCGGGGACGCCCACCCGATGGCGATGCTCTCCTCGGTGGTCAGCGCGCTGTCGACGTTCTACCA GGACAGCCACAACCCCTTCGACCCCGAGCAGCGCGCGCCTGTCCACGATCCGGCTGCTGCCGACGACGACGGCGTACGCGTACAAG AAGTCCGTCGGCCAGCCGGTGGTCTACCCGCGCAACGACCTCGGCTACGTCGAGAACTTCCTGCGGATGACCTTCTCGGTCCCGGCCGAGGAGT ACGAACTCGACCCGGTCGTGGTCAACGCGCTGGACAAGCTGCTCATCCTGCACGCCGACCACGAGCAGAACTGTTCGACGTCCACGGTCCGGCT GGTCGGCTCCTCGCAGGCCAACCTGTTCGCGTCGATCTCCCGCCGGCATCAGCGCGCTGTGGGGGGCCGCTGCACGGTGGCGCGAACCAGTCGGTG CTGGAGATGCTGGAGCGCATCAAGGCCGAGGGCGGCGACGTCGACTCCTTCATCCGCCGGGTGAAGAACAAGGAAGACGGCGTGAAGCTCATGG GCTTCGGGCACCGCGTCTACAAGAACTTCGACCCGCGGGCGAAGATCATCAAGGCGGCGGCGCACGACGTCCTCCGGCGCTCGGCAAGTCGGA CGAGCTGCTGGACATCGCGCTCAAGCTGGAGGAGCACGCGCTCAGCGACGACTACTTCGTCTCGCGCAAGCTCTACCCGAACGTGGACTTCTAC ACGAGATGATCAAGGAGCCCGGCTCCCGCATCGGTCGGCCGCGGCAGATCTACACCGGCGTCGTCACCCGCGACTACGTCCCGGTCGAAGCCCG

r3991				
Gen	e ID 3991	3995	3996	
Day	М	edian normalized RPK	М	
1	871	142	64	
2	846	536	43	
3	714	5139	39	
3988	3990	3991	320 bp 	3996

The *rvr3991* gene has a 320 bp gap after the upstream *rvr3995* gene. Based on RNA-seq data, these genes do not appear to be coordinately regulated, suggesting that the *rvr3991* gene is controlled independently.

GCTACGGCTTCATCGCGGTCGACGGTGCGGATGCCGCATGTCTTCGTCCACTACAGCGCGGATCCAGATGGACGGGTACCGCACCCTCGAAGAAGGCCA TCGCCGACGCCGTCAAGGTCACCCTGGGCCCCCAAGGGCCGGAACGTGGTCCTCGAGAAGAAGTGGGGCGCTCCCACGATCACCAACGATGGTGT GTCCATCGCCAAGGAGATCGAACTCGAGGACCCGTACGAGAAGATCGGCGCCGAGCTGGTCAAGGAAGTCGCCGAAGAAGACCGACGACGACGTCGCC GGTGACGGCACGACGACCGCCGCCGCCCTGGCCCAGGCCCTGGTCAAGGAGGGCCTGCGCAACGTCGCCGGCGGCCAACCCCGATGGCCCTCA CAGACCTTCGGGCTCGAACTCGAGCTCACCGAGGGCATGCGCTTCGACAAGGGCTTCATCTCCGCCTACTTCGCCACCGACCTGGAGCGGATGG AGGCGTCGCTGGACGACCCCTACATCCTGATCGTCAACTCCAAGGTCTCCGCGGTGAAGGACCTGCTTCCGCTGGAGAAGGTCATGCAGTC GGGCAAGCCGCTGCTGATCATCGCCGAGGACGTCGAGGGCGAGGCCCTGTCGACCCTGGTGGTCAACAAGATCCGCGGCACCTTCAAGTCCGTC GCCGTCAAGGCCCCGGGCTTCGGTGACCGCCGCAAGGCCATGCTCGGCGACATCGCCATCCTCACCGGTGGCACCGTCATCTCCGAGGAGGTCG GCCTCAAGCTGGAGAACGCCGGTCTCGACCTGCTCGGCCGCCGCAAGGTCGTCATCACCAAGGACGAGACCACCATCGTCGACGGTGCCGG CGACACCGAGCAGGTCGGCGGCCGGGTCAACCAGATCCGTGCCGAGATCGAGAACAGCGACTCGGACTACGACCGCGAGAAGCTCCAGGAGCGC CTGGCGAAGCTGGCCGGCGTGGCCGTCATCAAGGCCGGTGCCGCCACCGAGGTCGAGGTCAAGGAGGCGCAAGCACCGCATCGAGGACGCGC TGCGCAACGCCAAGGCCGCCGTCGAGGAGGGCATCGTCGCCGGTGGCGCGTGGCCCTGCTCCAGGCGACCGCCGTCTTCGAGAAGCTGGAGCT GGAGGGCGACGAGGGCGACCGGTGCGGCCGCCGTCAAGATCGCCCTGGAGGCCCGCTGAAGCAGATCGCGGTCAACGCCGGCCTTGAGGGCGGT GTCGTGGTGGAGAAGGTGCGCAGCCTCACCCCCGGCCACGGCCTCAACGCGGCGAGCGCGAGTACGTCGACCTGGTCGCCGAGGGCATCATCG ACCCGGCCAAGGTGACGCGCTCCGCGCTGCAGAACGCGGCCTCCATCGCCGCGCTCTTCCTCACCGAGGCGGTCATCGCCGACAAGCCCGA GAAGGCGGCCCCCGCCGCTCCGGGTGGCATGCCCGGCGGTGACATGGACTTCTGA

rvr5758

Davi	Gene ID	5756	5758
Day		Median norr	nalized RPKM
1		220	1162
2		134	391
3		199	4149

Because the gene upstream of the rvr5758 gene is oriented in the opposite direction, the rvr5758 gene must harbor its own promoter element.

Similar to the rationale give for the *rvr3291* promoter, the *rvr6185* and *rvr6204* genes have relatively large gaps (500 bp and 550 bp) between themselves and their respective upstream genes, *rvr6184* and *rvr6203*. Based on RNA-seq data, the *rvr6184* and *rvr6203* genes appear to be weakly expressed. Therefore, we designed the gap sequences upstream of the *rvr6185* and *rvr6204* genes as putative promoters.

....

rvr6204 Gene II

Dav	Gene ID	6203	6204
Day		Median norn	nalized RPKM
1		43	2102
2		17	472
3		16	3909

Promoter screening based on 2-D gel electrophoresis analysis

rvr1215

rvr1226

rvr2030 Case I For *rvr2030* gene expression, a putative promoter region in the cording region of *RVR2028* gene was tested.

	Day	Gene ID	2027	2028	2030
				Median normalized RPKM	
	1		148	144	146

rvr2030 Case II

For rvr2030 gene expression, a putative promoter region in the upstream of RVR2028 gene was tested.

Davi	Gene ID	2027	2028	2030
Day		Me	edian normalized RPKM	1
1		148	144	146
2		109	103	131
3		269	124	197

300 bp

AGGTAGCCGCCGACCACGGTCGCCACCGCCACCAGGCTGGGCACGCCGCCGCCGCGGGAACATCACCGGAACGGTCGTGATGAGCAGCA GATGACCCCGGCGGGTCGGGATTCGACGGCTGTCACGAACACCCCACGAGAGATGAGACCAGCAGGGCCCGGCTGCCTCCCGCGATGCGG ${\tt CGGCGGACCACGGTCCCTGCGCGTACCACGCCACTCTAGACGTAGGGAACACCCGGCTTTCCGCCGGGGTGCCCGCGGGGCGTGTCCTCG$ CGCGTCCGGGGGGTACGCGGTTGTCCACAGAAGCAGCAGCGTCGTCGAAGGCTCGTGCGGCGGCGGCGGCAGGCTCGGCAACGTCGGATAGGCA GACGAGCGGGCCGTGGACACCGCCCGAGTTCTCGCCATGGATGCCGTGCAGAAGGTCGGCAACGGCCATCCGGGCACGGCCATGAGCCTGGCTC CTCCAGCATGACCCTCTACACGCAGCTCTACCTCGCCGGTTACGGCCTGGAGCTGGCCGACCTGGGGCTCTGCGCACCTGGGGCTCCAAGACC CCGCGCGGTACGAACGCGGCCTCTTCGACCCGGACGCGCGCCCGGCACCTCCCCCTTCGACCACACCGTCTGGGCGATCGCCGGCGACGGCTG GCGGCTGCCGCAGTTCGAGGTCGGCGCCTCGCTGGCCACCCGCGCGCCTCCGGCAAGGTCCTGGAGGCGCGAGGTCATCCCCGAGCTG ACCCGTACGGCCGGACCGTGCACTTCGGCATCCGCGAGCACTCCATGGCCGCGGAGATGAACGGCATCACCCTGCACGGCAACACCCGGGTCTA GACTCGATCGGCGTCGGCGAGGACGGCCCGACCCACCAGCCGATCGAGCACCTGGCCTCGCGCGCCATCCCGGGGGCTGAACGTGGTGCGCC CCGCCGATGCCAACGAGACGGCGATCGCCTGGCGCGAGATCCAGAAGCGCTGGACGAAGGAGATCGGCAAGGGCGCCCCGCACGGCCTGGCGCT GACCCGGCAGGGCGTGCCGACCTACCCGGTCCACGAGGAGGCCGCCCCGCGGCGGTTACGTGCTGTTCGAGGCCGAGGCGGCCCGGCGCAGGTC CGTGCGTGGAGTGGTTCGAGGAGCAGGACGAGGCCTACCGCGAGAGCGTGCTGCCGCCGCGGGGGCGGGGCGGGGCCGGGCCGGCAT GAGTTCGGTTTCACCGCCGAGGCCGTGGCCGCCGCGGCCCGGGAATCTCTGGCCGCCGCAGACCGCTGA

rvr2133 Gene ID 2133 2134 2136 Day Median normalized *RPKM 1278 129 142 1 2 287 92 118 3 924 173 244 500 bp 2132 2133 2134 2136

GAACCCTCGCTATTAACACTCTGTTACCTGCCTGCAATACCCAATCGGTGGCCCCGCCGCCGCCGCCGCCGCCGCGCGGCGGACGCCCCCGTATT GACCGGTCGAGCCAGGGGAAAGGACCGCTTGTGCGACACACCGCTCTTTGCTGCTGCTCACGTCGCGTAATGACCACAGGAGCCCCTCACACGCCGC GACCGGCCAGAACTCCGCCACCGGCCTCGGCCTGCAGTACGGCACGCAGCTCGCGGTGGACGACGACGCCAACGCCAACGCCGTGGCCCGGCGTG ACCTTCAAGGTCAAGGCGCTCGACGACGAAGGCGCTGCCGGCCACCGGCCAGCAGAACGCCACGCGCTGGTGCAGGACAGCAACGTCATCGGCG CCGTCGGCCCGCTCAACTCCGGTGTGGCCGAATCGATGCAGCAGGTCTTCGCCACCGCCAACATGGTGGAGATCTCGCCGGCCAACACCAACCC CGACCTCACCCAGGGCAAGGACTGGGCGACCGGCAAGAAGGTCCGCCCCTTCAAGACCTACTTCCGCACCGCCACCACCGACGCCAACCAGGGC GGCTTCGCGGCGGACTACGCCTACAACACCCTGAAGAAGAAGGACGTCTTCGTCGTCGACGACGACGAGGCGTACGGCGCGGCCTGGCCTCGA TCTTCAAGAGCAAGTTCGCCTCCCTGGGCGGCAAGATCGCCGGCACCGACCACGTCAACACCGGCGACACCGACTACTCGGCCCTCGTCACCAA GATCAAGCAGTCGCACGCCGACATGCTCTACTACGGCGGCCAGTACGACGAGTCCGAGCTGATCACCAAGCAGCTCAAGGCCGGCGGCGGCGTGAAC ATCCCGCTCATGGGCGGCGACGGCATGTACTCCGACACGTACATCAAGACCGCGGCGCCGCCGCCACCGGCGACCTCGCCACCTCCGTCGGCG TGCCCGTCGACACCCTCCCGGCCGCCCAGAACTTCATCAAGGCGTACAAGGCCAAGAAGTACCCCGGTGACTACGGCACCTACGGCGGCGCTACTC CTACGACGCCGCCACCGCCATCATCAAGGCCGTCGGGGCCGTCATGGACGCCAACGGCGGCAAGCTGCCGTCCATGAACGACGCCCGCTCCAAG GTCGTGGACGCCGTCCAGAAGACCGACTTCGACGGCATCGCCGGCCACGTCGCCTTCGACCAGTACGGCGACACCAACAAGCAGCTGACCG

TCTACCAGGTCAAGAACGGCAAGTGGACCGCTGTGAAGAGCGGCGTCTACACGGGCTGA

rvr2353

Day	Gene ID	2352	2353
		Median	normalized RPKM
1		134	904
2		115	168
3		65	1495

CCTCACACGCGGCCCCGGGTGGAGCACCCGGGGCCGCACGTCGTCGTACCTGCTACGTCACACCGCCCGGCCCGATGCCTCACCGGCCGCCGAC AAGTGCGAAGATGTGGGTCGGCACGACAGGGCCCCCTTTGAGACAAAGCGGCCGAACCAAAGCCGCCGTCCGGTCTAGGTGGACCGGCCCCGGC GAACCCATGCATGGAGGACGTGACGTGGCGAACGACGACGACGACGTGTTTTCGACCTAGTGATCCTCGGCGGTGGCAGTGGCGGTTACGCGGCTG CCCTGCGTGCCGCACAGCTTGGACTCGACGTCGCCCTGATCGAGAAGAACAAGCTCGGGGGGCACCTGTCTGCACCAGGGTTGCATCCCCACCAA GTCCACAAGTACAAGGACGACGTGATCTCCGGCCTCTACAAGGGCCTGCAGGGCCTCGTGGCCTCGCGCAAGGTGACGTACATCGAGGGTGAGG GCCGGGCCTGACCATCGACGGCAACCGGATCATCTCCTCCGACCACGCCCTGGTCCTGGACCGGGTGCCGCAGTCGGCGATCATCCTGGGCGGC GGCGTGATCGGCGTCGAGTTCGCCTCGGCGTGGAAGTCCTTCGGCACCGACGATCGTCGAGGGCCTGCCCCACCTCGTGCCGGTCGAGG ACGAGAACAGCTCGAAGCTGCTGGAGCGGGCCTTCCGCAAGCGCGGCATCAAGTTCAACCTGGGCACCTTCTTCCAGGGCGCCGAGTACACCGA GGCTACGAGGAGCAGGGCGTCGCGATGGACCGCGGCTTCGTGCTGGTCGACGAGTACATGCGCACCAACGTGCCGACCGTCTCCGCGGTCGGCG CTACGACGGCGTGCCGCGCGTGACCTACTGCCACCCCGAGGTCGCCTCCATGGGCCTCAGCGAGGCCGAAGGCCAAGGAGGTGTACGGCGCGGAG AAGGTCGTCACGCTCAAGTACAACCTGGCCGGCAACGGCAAGAGCAAAATCCTCAAGACCTCGGGCGAGGTCAAGCTCGTCCAGGTGCGCGACG GCGCCGTCGTGGGTGTCCACATGGTCGGCGACCGGATGGGCGAGCAGGTCGGCGAGGCGCAGCTCATCTACAACTGGGAGGCGCTGCCCGCCGA TGA

rvr2436

Day	Gene ID	2436	2437
		Median norn	nalized RPKM
1		210	106
2		131	89

GCCGGCGACTTCCTGGCCAAGGTGCTCCAGCACTGAGGCGCCGGAATGCCCGGTCAGTCGCGCCGCGTTGACCCGCACTTCGGCTCCCACCACT ${\tt TCGAGCCGGACCCCGAGCCCTCACTGGACCCCGCACACGGAGAAAACGCAGGCGCCAACGCCCTTCGCCCCCGGAACGGGGCCGACAGGACCCG$ GACGCAGCACATCAGACAAGGAATCCGCGTATGCACGCCCTCTCGTCCCCTTCCGTCCCCCGCGGAGAGCGCTGGCCGCGGTGCCCTCG CGACTCCGACACGGTCGCGAACCTCATCGCCGACGAGCAGCCGGCCACCGGCATCAAGCCCGGTTCCACCGCTGCGAAGATCAAGGCGAGCGGC ACACTGCGGGTGGGCGGTACCCAGACCGCTGCCCTGTTTTCCCTGCTCGACCCCACGACGGGTAAGACGGAGGGCTTCGACGCGGCGATGTCGC AGCTGCTGGCCAAGTACATCATCGGCAAGCCGTCGACCCATCTGACGAACGTCACCTCGCAGACCCCGTGAGGCGCTGTTGAAGGCGCATCAGGT CGACGCTGTGTTCGCCACGTACACGATCACGCCCGAGCGGGCAAAGCAGGTCGCTTTCGCCGGTCCGTACTACGAGGACGGCCTGGCCATCGAG GTCCGCAAGGGCACCACCGGCATCTCCTCGTTCGCCGATCTGAACGGCAAGACCGTGGTGACGGAATCCGGGTCCACGGTGCCCACGGCGGTCA GGATCAGGGCATCCTCGCCGGAAACGCGGTCACCAACAAGGACGTCCAGGTCCTGCCGGGCACGTTCACCAAGGAGCCGTACGGCATCGGCGTC CCGCTGGACCAGCCGGACTTCAAGGCGTTCGTGGACGCCTGGCTGACTAAGGTTGAGGCGGACGGCACCTGGGCGAAGGTGTGGAAGGCCACCG

rvr3	0	3	2
------	---	---	---

Day	Gene ID	3031	3032
		Median norm	alized RPKM
1		96	198
2		132	214
3		85	435

rvr3168

Day	Gene ID	3168	3172	3173
		Me	edian normalized	RPKM
1		375	191	140
2		146	124	128
3		287	748	72

AGCACCCTGGCACCCAGGATTCTGGCACACCGCACGCCACCCGGTCGAACCGGCTCGGCGGTGGGCGTGAATCCTGGCTGCCCGGGCGTACGGA GGCATGTACTCTACGTGTCGCACCAGCGGGGGTGTGGCGCAGCTTGGTAGCGCGTCCGCTTTGGGAGCGGAAGGCCGTCGGTTCGAATCCGGCCA $\tt CCCCGACCAGCAGCTACCGCGCCACCGCAGCGAAGTGCGCAACGACGACGCCGCCGCCGCCGGCGGCGGCGAGAGTGCGACGGATCGG$ TCAACGTAAAGCCCCCAAGGAGACCCCAACCGTGAAGAGCGCCGTCGAGACTCTGAACCCGGGCTCCGACTCACTGTCGAGGTGCCCTTCG AGGAGCTCAAGCCCAGCCTCGACGCGGCGTACAAGAAGATCAACCAGCAGGTCACGGTGCCGGGCTTCCGCAAGGGCAAGATCCCTGCGCGCGT CATCGACCAGCGGTTCGGCCGTGGCGCGGTCCTCGAAGAGGCCATCAATGAGGCGCTGCCGAAGTTCTACACGGAGGCGGTCACCGAGGGTGAA CTCGCCGAGAACGTGCTCGGGCAGCCCGACGTGGACATCACCGAGTTCAACGACGGCAGCGAGGTTCAACGCCGAGGTCGAGATCCGCC CGACCATCGAGATCCCGGACTACTCCGGCATCGAGGTCACCGTGGACGTCGAGGAGGAGGAGGACGTCGACACCTCGCTGGAGCAGCT GTGCTGGAGGACGGCGTCGCCAGCGGCGTCAGCTACACCATCGGCTCCGGCCAGCTCCTCGACGGCATCGACGAGGCCGTCACCGGGCTGGAGA GAGCGGATCAAGACCTACGACCAGGCCCACGGCCCAGGAGAAGGTGCTGGACGCGCTCATCGAGCTGACCGAGGTGCCCGATCCCCGGAGAAGC TGCTCGCGAGCGAGATCGAGACGCGCCACCACAACCTGGAGCACCACCAGTTCCCGGCCTCGGCCTGGCCTGGGACACGTACCTGGAGCGCGA GGGCAAGACCCGCGAGGAGTACGACGCGGAGGTGTCCGAGCAGGCGGTCAAGGGCATCAAGACGCAGTTCATCCTCGACGAGGTGGTCAAGACC TCGTCGAGGGCAACCAGGTCCAGCTCCTGGTCGGCGAGGTGGCCCGCGGCAAGGCACTGGCCGTCGTCGACGCCGTCAAGGTCACCGACAG CAACGGCGAGGTCGTCGACCTGTCCGACGAGGAGGAGGACGACGACGCCTCCACCGAGGACGCCGCGAGGCCGCCTCCGCCGAGGCCGCTTCC ACCGAGGACGCGGACGAGTCCGCCGAGGCCGCCGAGGACGCCCCCGAGGCCGACAAGAGCTGA

rvr3493

Day Median normalized RPKM 1 258 104 47 2 157 143 167
1 258 104 47 2 157 143 167
2 157 143 167
3 140 95 72

CGGCGCGGCCGGCCCGGACCCGGACACGGCCCGGACACGGCTCGGGCGCCCCTTCGACGAAGGGGGGCGCCCGAGTGACGTCTGCGACA AACAAACCCTGCGGCGAACCTCTTCCCGCAGGCCGGAATTGGTGGTCCGTCACCCGCCTGCCACGCGTTCTTCCGCCGCTGTGCACCCCGCGCC CGCAGTGCTCCCGCATGCCGGAAGTACGATTCCACTGCTGCCGGCGGGTTCACGGATACCCGCCGGTAGGTGCAACGATCACGAGCATACCCTC AGGCAGGAACCGGAAGAAGGTCGTCATGGCAACGGCGCCGAGCGTCTCGTACTCGATCACGGTGCGGCTGGAGGTCCCCCGCCAGCGGGGGCGCG TACGTTCCTGATGCACCTCGGCGGCAAGATCGAGATGCAGTCCAAGCACCCGATCCGCAACCGCGACGACCTGTCGATGGTCTACACGCCCGGT CGGCGGTGCTGGGGCTGGGCAACATCGGGCCGAAGGCCGCGTTGCCGGTGATGGAGGGCAAGGCGGCGCTGTTCAAGCGGTTCGCCGGGATCGA CGCGTGGCCGCTGTGCCTGGACACCCAGGACACCGACGACGTGGCGATCGTCAAGGCCATCGCCGCGCCTCGCCGGCATCAACCTGGAG GACATCTCGGCGCCGCGCTGCTTCGAGATCGAGGCGCGGCGGCGGGGGGGCGCGGACATCCCGGTCTTCCACGACGACCAGCACGGCACCGCGA TCGTGGTGCTGGCCGCGCTGACCAACGCGCTGCGCTGTGTCGGCAAGGAGATCGGCGACCTGCGGGTGGTCATGTCGGGCGCGGGCGCGGGCCGG CACCGCGATCCTGAAGCTGTTGCTGGCCGCCGGGGTCAAGCACGCGGTGGTCGCCGACATCCACGGCGTGGTGCACGCCCAGCGCGACGACCTG AAGGACGTCGGGCCGCAGACCCCGCTGCGCTGGATCGCGGAGAAACACCAACCCGGCGGCGCCACCGGCACCCTCAAGGACGCCGTGGTGGGCG CCGACGTGTTCATCGGCGTCTCCGCGCCGAACGTGCTGGAGGGCGCCGACATCGCCCGGATGGCCGAGGGCGCCATTGTCTTCGCGCTGGCCAA TCCCGACCCCGAGGTGGACCCCGCGAGGCGCGCGGAGACCGCCGCGGTGGTCGCCACCGGCCGCGCGACTTCCCCCAACCAGATCAACAACGTG

rvr3650

Deri	Gene ID	3650	3651	3653
Day		Me	edian normalized *RPK1	М
1		396	141	100
2		159	91	149
3		250	88	108

ACCAGCATCCCCAAGGGCGACGGCGAGTACACCGTGGTCAAGGGCGACAGCCTCGCCAAGATCGCGACCGCGCCACGTGGCCGGCGGCGGCTGGC GCAAGCTGTTCTCGCTCAACGACATCGTCAAGGACGCGAACCTGATCTACCCGGGCCAGCACCTGCACCTGAACACCGGGCGACAC CAGGGGCCCGGGCCCAGGGCCGATCCGGGCCGCCGAAGCCGGTTAGGCTCGTCCTGATAAAGACGAGAAGACATCTCAGAAGGAGACAACGTGCCG TCGATCGACGTCGTCGTAGCCCGGGAAATCCTCGACTCGCGAGGCAACCCCACCGTCGAGGTCGAGGTCGGCCTCGACGACGGCAGCACCGGCC GCGCCGCGGTCCCGCCGCCCTCCACCGGCGCCTTCGAGGCCCTCGAACTGCGCGACGGCGAGGCGACCGCTACCAGGGCAAGGGCGTGCG CAAGGCGGTCCTGTCCGTCAGCGACCAGATCGGCCCCGAGCTGGTCGGGTACGACGGGCAGCGCGCCTCATCGACCAGGCGATGCTCGAC TGCCGCTCTTCCGCTACCTCGGCGGCCCGAACGCGCACGTGCTGCCGGTCCCGATGATGAACATCCTCAACGGCGGCTCGCACGCGGACTCCAA CGTCGACATCCAGGAGTTCATGATCGCCCCGATCGGCGCCGAGTCCTTCTCGGAGGCCGTCCGCTGGGGTGCCGAGGTCTACCACACCCTCAAG GGCGTGCTGAAGTCCCGCGGCCTGTCCACCGGACTCGGCGACGAGGGCGGCTTCGCGCCGAACCTCGGCTCCAACCGCGAGGCGCTGGACCTCA TCGTCGAGGCCATCAAGCAGGCCGGCTACGCGCCCGGCCAGGACGTCGCGCTCGACGTCGCGGCGTCCGAGGTTCTACAAGGACGGCAA GTACCAGTTCGAGGGCGGCGAGAAGTCGGCCGCCGAGATGACCGAGTACTACGAGGACCTGGTCGCCTCCTACCCGCTGGTCTCCATCGAGGAC ACCCCGAGCGCCTGCAGAAGGGCATCGACCACGACACGGCCAACGCGCTGCTGGTGAAGGTGAACCAGATCGGCTCGCTGACCGAGACGCTGGA CGCGGTCGAGCTGGCCCAGCGCAACGGCTACAAGTGCATGATGTCGCACCGCTCCGGCGAGACCGAGGACGTCACCATCGCCGACCTCGCCGTC ACGACGCCGCGGTCTACGCCGGCCGCAGCGCCTTCCCGCGCTTCAAGGGCTGA

rvr4050

CGGCTGCCAGCGATGCGCCCCTACTGAAGAACGGTTTCTGCAAGATCGAAAGCCCTATGCAAGGTGGAATATGCAGGCGGCAGGCCGAGCAGTC GCGCGCGCTACCAGCGCACTCGGTGGCGCCGCACACCTCCCCGGCCGTGCGGCGACCCTCGTAGGGTGTGCCCATGACCACCCCCAAGCTGCGC ACGAGAACCCGTATCCCCCGCTGCCCGGCGTCCTGGAGGCGGCGGCCACCGCCGCCGCCTCCTTCAACCGCTATCCCGACCTGTCCTGCGCCGC AGGTGCCGCTGGACGCGGCCGAGACGCACGACCTGGACGCGATGGCGGCGGCGGTCACCGAGCGGACCCGGCTGATCTTCGTCTGCAACCCGAA CAACCCGACCGGCACCGTGGTGCGGCGGGCGGGAACTGGAACGGTTCCTGGACCGGGTGCCGTCCGACGTGGTCGTCCTGGACGAGGCGTAC CGGGAGTTCAACACCGACCCCGAGGTGCCCGACGGCGTCGACCTGTACCGCGACCGCCCCAACGTCGCGGTGCTGCGCACCTTCTCCAAGGCGT ACGGCCTGGCCGGCCTGCGGATCGCCTTCGCGATCGCGCACGAGCCGGTGGCCGAGGCGCTGCGGAAGACGGCGGTGCCGTTCGGTGTGAGCCA CATGCGAGCGGGCGGGCGCGCGACGGTGCCCTTCGCGGGTGAGGGCGTGCGGATCACCATCGGCCGAGGCCGAGGCGAACGACATCGTGCTGCG GACCGCCGAGGCGTTCCGCAAGGAGCTGTAG

GTTTCGTTGACCGTCCTCACTGACGACGACGACGACGACGAGGTAGACGAGGTAGTTCGCAGGCCAAGATCCTGAAGTTCGACGAGGACGC CCGTCGCGCCCTTGAGCGCGCGTCAACAAGCTCGCCGACACCGTGAAGGTGACCATCGGCCCCCAAGGGCCGCCACGTCGTCATCGACAAGAAG TTCGGCGCCCCGACCATCACCAACGACGGCGTGACCATCGCCCGCGAGGTGGAGATCGAGGACCCCTACGAGAACCTGGGCGCCCAGCTCGTCA AGGAGGTGGCGACCAAGACCAACGACATCGCGGGTGACGGCACCACCACCGCGACCGTGCTCGCGCAGGCGCTGGTCCGCGAGGGTCTGCGCAA ATCGAGGGCAAGGAGGACATCGCCGCCGTCGCCGCGCGCCCAGGACAAGCAGGTCGGCGACCTGATCGCCGAGGCGATGGACAAGGTCG GCAAGGACGGCGTCATCACCGTCGAGGAGTCCAACACCTTCGGCCTGGAGCTGGACTTCACCGAGGGCATGGCCTTCGACAAGGGCTACCTGTC gccctacttcgtcaccagaccagagcggatggaggccgtcctcgacgaccgtacatcctcatccaccagggcaagatcgcctcgatccaggac CTGCTGCCGCTGCTGGAGAAGGTCATCCAGGCCAACTCCTCCAAGCCGCTGCTGATCATCGCCGAGGACGTCGAGGGCGAGGCCCTGTCCACCC TCGTGGTCAACAAGATCCGCGGCACCTTCAACGCGGTCGCGGTCAAGGCCCCGGGCTTCGGTGACCGCCGCAAGGCCATGCTGGGCGACATCGC CACGCTGACCGGCGCCACCGTCATCGCCGAGGAGGTCGGCCTCAAGCTCGACCAGGCCGGTCTGGACCTGGTCGGCCAGCGCCCGGGTCACC GTCACCAAGGACGAGACCACCATCGTCGACGGCGCCGGCGACAAGGCCGAGATCGAGGGCCGGGTCGGCCAGATCAAGGCCGAGATCTCCTCGA CGAGCTGAAGGAGAAGAAGCACCGCCTGGAGGACGCGATCTCCGCGACCCGCGCGGCGGCGGCGAGGGGCATCGTCTCCGGCGGTGGCTCCGCG CTCGTGCACGGGTCAAGGTGCTCGGCGACAACCTCGGCAAGTCCGGCGACGAGGCGACCGGTGTCGCCGTCGTGGGCCGCCGCGCGGCGGTCGAGC CGCTGCGCTGGATCGCCGAGAACGCCGGCCTGGAGGGCTACGTCATCACCTCCAAGGTCGCCGAGCTCGACAAGGGCCACGGCTTCAACGCCGC CACCGGCGAGTACGGCGACCTGGTCAAGGCCGGCGTCATCGACCCGGTGAAGGTCACCCGCTCCGCCCTGGAGAACGCGGCGTCGATCGCGTCC CTGCTGCTCACGACCGAGACCCTGGTCGTCGAGAAGAAGAAGAAGAGGAGCCGGAGGCCGCTGCCGCCGGTCACGGCCACAGCCACTGA

TGCCCAACATCTGGAGCACCATTCTGGTGCAGTCCACCCTGATGCTCCCGGTCTTCGTGACGGCGGGGCCGGGCCTGTCCTACCTCGGCGTCGG GCGATGGTGATCTTCGTGGTCGCCTTCAACCTGCTCGGGGACTCGGGCCGCTCTCGACCCCAAGACCCTTCGCTAGCGGTCCCCGTACC CAGTCCAGACAGGCAGGATTTCATGAGACACAGCAAAGCTCGCTTGGTGGCCGCGGTCGCGGCCGTCGGAGCTCTGTCGCTGACCGCCTCCGCG TGCAGCAGCGGTGGTGGCGACACCAGCCCGAGCGGCGCCAGGGGGCGCCAGCAAGGCACCGGTCCCGAACTACGGCCTCGGCACCGCTGCCGACT GCAGTACGTGAGCGACCAGTTGTCGGTCTCGCCGCTGTACGCCCGTACGCCGGCTACAAGATCGACCCGAAGACCGGTAAGACGATCCTC GTCGGCGACATGGCCACCGACACCGGCAAGATGTCGGACGGCGGCAAGACCTGGACCTTCACGCTCAAGAGCGGCCTGAAGTTCCAGGACGGCA CGGCACGAACTTCAAGGACGCCTACGCGGGGCCGTACGACGGCAAGGAGATCCCGGACAGCATCCTCGCCACGCCGGACGACAAGACGGTCGTC TTCCACTTCCAGACCCCGCACGCCGACGCCCTACGCGATGGCGATGCCGGTGACGGCTCCGGTCGAGAAGTCCAAGGACGACAAGGCCGCGT ACAACAACCACCGGTCTCCTCCGGCCCGTACGAGATCGCCTCGTACAAGCCCGGCAAGTCCCTGGTCTTCAAGCGCAACCCGTACTGGGACCC GAAGACCGACCCGATCCGCAACGCCTACCCGGACTCCTGGAACTTCCAGCTCGGCATCCAGCCGGGTCTGACCCAGCGGATCATGGCCGGC TCGGGCACCGACAAGGACGCGATCGACCTGTCCGGTGTCGCGGACACCTCGCAGATGGCCAAGCTGACGACGGAGGAGTACAAGGCGCGGGA CGATCAACCAGTACCAGCCGTACGTCGAGACCCCTCGACATCAACCACCGATCACCGACCCCGAGGCCCAGGCCGATCGCCTACGCCTT CCCGATGTCGCAGGTCCAGCAGGCCATGGGCGGCTCGCCGCAGGGCGACCTGGGCACCACGCTGGTCAGCCCGACCATCGCCGGGTGGAAGAAG TACGACCCGTTCGGCAAGCTCACCCAGCCGACCGGTAACGTGGAGAAGGCCAAGGAGCTGCTGAAGGAGCCGGTCAGCCGCACCCGAAGCTGG TCTTCCCGTACGCGAACACCCCGAAGTGGTCCACGGTCTCGCTGACCACGCCCTGGAGAAGGCCGGCTTCCAGGTCGTCCGCAAGGC GATCGACGCGACGTCCTTCTACACGATCGTCGGCAAGGTGAACAACCAGTTCGACATCTACCGCACCGGCTGGGGCGCGGACTGGCCGAACGCC TCCAGCGGATCAAGAACATCGCTGACGTCAAGACCCAGACCGCCGAGTGGGAGAAGCTGTCGGAGTACTCCCTGTCGAAGGACACCGCCCAGGT GCCGTTCCTCTTCGACAAGTACTTCAACATCTACGGCTCCGGCCTGGGTGGTGTGACCTACAACTCGGTCGTCGGCACCATCAACGCCAACACC GTGTTCGTCAAGCAGTAG

rvr7933

CACCCACCCGGACGGCCGATCCCGGCCCGGTTCCCGTCAGTCGGGGTGCGGAGCGCCCCGGTGGGCCGCCCCCGCGCATCACCCGGCGGC CGGGGGGTACCCGAATCGGGGTGGTGTACTAGAGTTATCTCGACATCGAGATATCTGCCGAGGCGTGCCGTCAGGACGCCAGCTATGCGGTGGTA CGCGCGAGAACATGCATGAAGGAGACTGTCGTGTCGGCGAACAGCTTCGACGCCGCAGCAGCTTGCAGGTGGGCGACGAATCGTATGAGATCT TCCGGCTGGACAAGGTCGAGGGTTCGGCCCGGCTGCCGTACAGCCTGAAGGTCCTGCTGGAGAACCTGCTCCGCACCGAGGACGGCGCGAACAT CACCGCCGACCACATCCGGGCGATCGGCGGATGGGACTCGCAGGCCCAGCCGGGCCAGGAGATCCAGTTCACGCCGGCCCGCGTGATCATGCAG GACTTCACCGGCGTGCCGTGCGTGGTGGACCTCGCCACCATGCGCGAGGCGGTCAAGGAGCTGGGCGGCGACGCGGCGAAGATCAACCCGCTCG CCCCGGCCGAGCTGGTCATCGACCACTCGGTGATCGCGGACCGCTTCGGCACCCCGGAGTCCTTCACGCAGAACGTCGAGCTGGAGTACGGCCG ACGGCCTGGGCGTGCTCGGCGGCGTCGGCGGCGCGCGAGGCCGCGATGCTCGGCCAGCCGGTGTCCATGCTGATCCCGCGGGTGGT CGGCTTCAAGCTCACCGGCGAGCTGCCGGCCGCCGCCACCGCCACCGACCTGGTGCTGACCATCACCGAGATGCTGCGCCAGCACGGCGTGGTC GGCAAGTTCGTCGAGTTCTACGGCGAGGGCGTCGCCGCCACGTCGCCAACCGCGCCACGATCGGCAACATGTCGCCGGAGTTCGGCTCCA CCGCGGCGATCTTCCCGATCGACGCCGAGACGCTCAGCTACCTGCGGCTCACCGGCCGCTCGGCCCAGCAGGTCGCGCGGGCGTACGC CAAGGAGCAGGGCCTGTGGCTGGACCCGGCCGCGGAGCCGGACTACTCCGAGAAGCTGGAGCTGGACCTGTCCACGGTGGTCCCGTCCATCGCC GGGCCCAAGCGCCGGCAGGACCGTATCGTGCTGGCGGAGGCCGCGGAGCAGTTCGCCCACGACGCAACTACGTGCCCGACGACGACGAGGAGG CGGGCAAGGAGTCCTTCCCGGCCTCCGACTCCCGGCCACCTCCAACGGGGTGCCCACCAAGCCCACCTGGTGACCGCCCCGACGGCAGCAC GCCAAGAAGGCGGTCGAGAAGGGGCTGACCCGCAAGCCGTGGGTGAAGACCACCCTCGCCCCGGGTTCGAAGGTCGTCACCGACTACTTCGACA AGGCGCACCTCACCCCGTACCTGGACAAGCTCGGCTTCAACCTGGTCGGGTACGGCTGCACCACCTGCATCGGCAACTCGGGCCCGCTGCCCCGA GGAGGTCTCCAAGGCGGTCAACGAGGCCGACCTCGCGGTGGCCGCGGTGCTCTCCCGGCAACCTCCGAGGGCCGGATCAACCCCGACGTC AAGATGAACTACCTGGCCTCGCCGCCGCCGGTCGTCGCCGCACCCATCGCCGGCTCGATGAAGGTGGACATCACCCGGGACGCGCTGGGCACCG ACACCGAGGGCAAGCCGGTCTACCTGGCGGACATCTGGCCGTCCGAGGCCGAGGTGAACGACGTGGTCGCCTCCGCGATCGGCCAGGACATGTT CACCGAGTCCTACCAGGACGTCTTCGCCGGCGACGCGCAGTGGCAGCGCTGCCGATCCCCACCGGCAACACCTTCGAGTGGGACCCGCAGTCC ACCTACGTGCGCAAGCCCCCGTACTTCGAGGGCATGGGCACCGAGCCGGAGCCGGTCACCGACATCTCCGGCGCGCGGGTGCTGGCCAAGCTCG CCGCGACTTCAACAGCTACGGCTCGCGCCGAGGCAACCACGAGGTCATGATTCGCGGCACCTTCGCCAACATCCGCCTGCGCAACCAGATCGCG CCGGGCACGGAAGGCGGCTTCACCCGCGACTTCACCCAGGACGGCGGCCGGTCGCGTTCATCTACGACGCCTCGCGCAACTACATCGAGCAGG GCGTCCCGCTGGTGGTGCCGGCCAAGGAGTACGGCTCCGGCTCCGCCGCCGACTGGGCCGCCAAGGGCACCGCCGCTGCTGGGCGTGAAGGC CGTCGTCGCCGAGTCCTACGAGCGCATCCACCGCTCCAACCTGATCGGCATGGGCGTGCTGCCGCTGCAGTACCCCGAGGGCGAGTCGGCGCTG AGCCTGGGCCTCACCGGCGAGGAGACCTTCGCCATCGCCGGGGTCACCGCGCTCAACGACGGCACCCGCGCACCGTGAAGGTGACCACCG ACACCGGCGTCGAGTTCGACGCCGTGGTCCGGATCGACACCCCCGGAGAGGCCGACTACTACCGCAACGGCGGCATCATGCAGTACGTCCTGCG CTCGCTGCTGCGCAAGTGA

TGCTGCGCAAGTGAGTCCGGTGACGTCGGCGTAACCCCGCCGTAGCACCGCTGTCGGCCGTACGGGCCGCACCCCTGTCACCCGGGGGTGCGGC ${\tt CCGTCGGCGTTTTCCGGCAGGTCGCCCGGCCCTGGGCGGGTTCGGCCGGTTCACTACTTGAACACACCGGACCAGGAGCGTGGTGGGAACTGAA}$ TACAAGGCCGACCCGAGCTTTCGACCGGGCAAACATCCCCACGTTTCGGACAGGTCTCAACTCGGGAAAGCTTGGCGGCCAAACTTTCATTCGAT GAGTCCTGGAAGAAGGCTGAGGACTTGAGCATGGGCTCCGAGATCAACCGCCGTGATGCCATCAAGCGCGCCGTGGCCATCGGTGGGCGCCG CCCGCTCGGTGTGAAGAAGGGCGCCCCGCTGGAGGCGTTCATCTTCAAGGGCGGCTTCGGCGACTCGTACGTGAAGGCCGCCGAGACGGTCTAC AACTCCGAGTACGGCATCAAGGTCAAGCACACCGGCACGCAGGGCCTGGGCCCGAAGCTCCAGCCGCGCTTCGCCAGCAACACGCCGCCGGACA TCATGGACAACTCCGGCGCCGACAACCTCGACACCGCGGCCCTGGCCAAGGAGAACAAGCTCCAGGACCTCACCGCGCTGCTCGACGCGCCGAC CGTCGACGACCCGAGCAAGAAGGTCCGCGACGTCCTCATCGCCGGCACCGTCGAGCAGGGCCAGTTCGGCACCCAGGCGATGTACGCGTTCAAC TACGCGTTCACCGTCTACGGCGGCTGGTACTCGAACAAGCTCTTCCAGGACAAGGGCTGGGAGTACCCGCAGACCTTCGACCAGGCGCTGGCCC TGGGCGCCAAGGCGAAGAAGAAGAACATCTCCCTCTTCACCTACCCGGGCAAGTACCCGTACTACGTCCACTTCGACCTGCTCGCCCAGATCGG CAAGGTCGGCGGCAAGGACGTCCTCAACGCCATCGACGACCTCGAGGACGCGCCTGGCAGGTCGACGCGGTCAAGCAGGTCATCGGGTACTAC GAGGAGGTGGCCGCGAAGAAGTACTTCATGCCCGGCTCCGAGGGCATGACCCACATCCAGATGCAGACCGCCTGGACCAAGGGCAAGGCCGCCA CTGCTGCGCATCATGATCTCCAAGAAGGAGACCGACAACTTCACCAACACCACGAAGTCGCTGACCTGCATCAGCGGCGCCGCGGAGGGGGCTGA GCGACCAAGGCCGACTCGTCCGTGCCCAAGTTCAAGCACGTGTGA

The shaded sequence indicates coding region of gene. The thick bar and non-shaded sequence indicate

putative promoter region examined in this study. Target genes selected by RNA-seq and 2-D gel

electrophoresis analysis are shown in orange. The thin bar indicates gap sequence size (bp) between

coding regions.

Figure S1. In-frame deletion of *fur1* gene. (A) Scheme describing gene deletion. The thick black bar shows upstream and downstream DNA regions targeted for homologous recombination. Numbers above the horizontal bars indicate the expected amplification size of the DNA, and the arrows indicate primer sites. Three sets of primers (F1-R1, F1-R2, and F2-R1) were used for gene amplification. The primers sequences are listed in Table S3. (B) Agarose gel electrophoresis (1%) analysis. DNA was amplified using genomic DNA from wild-type (lanes 2, 3, and 4), SR1 (revC and revD gene disruption in wild-type; lanes 5, 6, and 7), and SR2 (fur1 gene deletion in SR1; lanes 8-16). Lanes 1 and 17 show the DNA ladder. Arrows indicate the expected size of DNA fragments amplified from the wild-type (open) and $\Delta furl$ mutant (solid).

Figure S2. Confirmation of the promoter-fur22 gene fragment in the transformed strain. DNA fragments were amplified using genomic DNA from SR1-12 (lane 2), SR1-15 (lane 3), SR1-18 (lane 4), SR1-19 (lane 5), and SR1-20 (lane 6). Lane 1 shows 1 kb DNA ladder. Forward primer was designed in the putative promoter sequence. The reverse primer was designed in the fur22 gene. Primer sets used for PCR reaction and expected DNA size are listed in Table S3. PCR was performed using KOD-FX DNA polymerase (TOYOBO, Japan) and the following reaction conditions: 98°C for 1 min, followed by 30 cycles at 98°C for 10 s, 64°C for 30 s, and 72°C for 30 s with a final extension of 1 min. 1% agarose gel electrophoresis was performed to confirm the correct band size.

Figure S3. LC-MS analysis of FQs. The transformants harboring promoter-*fur22* cassettes (Table S2) were evaluated. The promoters were selected based on RNA-seq analysis and the following transformants were evaluated: SR1-12 (i), SR1-15 (ii), SR1-18 (iii), SR1-19 (iv), and SR1-20 (v). The chromatogram was produced at 267 nm [the absorption maximum of (2)]. All of the samples were extracted and analyzed in the same way as described in Methods. Based on UV and m/z, two peaks does not correspond to FQ derivatives.

2 Figure S4. 2-D gel electrophoresis analysis. Proteins were extracted from SR1 strain at day 2, 3, 4,

3 and 5 culture in RM-PM. Gel shown here is from day 2 analysis.

- 3 Figure S5. Reporter assay using the colour of FQ. (A) SR1-VC as vector control, (B) SR1-1 as
- 4 positive control. (C) SR1-7 (clone #1-8) indicates the production of FQs.

Figure S6. GC-MS analysis of BC and SQ. Total ion chromatogram of the standards for BC (A) and
SQ (B), as well as *n*-hexane extracts from the SR2-4 strain (C). (D) Mass spectrum of the peak at the
retention time of 18.3 min from *n*-hexane extracts from the SR2-4 strain. (E) Mass spectrum of the
standard for BC. (F) Mass spectrum of the peak at the retention time of 21.4 min for *n*-hexane extracts
from the SR2-4 strain. (G) Reference mass spectrum peak for SQ from the W9N11 library.

1 **References** 2

- [1] Osada, H., Koshino, H., Isono, K., Takahashi, H., and Kawanishi, G. (1991) Reveromycin
 A, a new antibiotic which inhibits the mitogenic activity of epidermal growth factor,
 J. Antibiot. (Tokyo) 44, 259-261.
- [2] Takahashi, S., Toyoda, A., Sekiyama, Y., Takagi, H., Nogawa, T., Uramoto, M., Suzuki,
 R., Koshino, H., Kumano, T., Panthee, S., Dairi, T., Ishikawa, J., Ikeda, H., Sakaki,
 Y., and Osada, H. (2011) Reveromycin A biosynthesis uses RevG and RevJ for
 stereospecific spiroacetal formation, *Nat. Chem. Biol.* 7, 461-468.
- [3] Panthee, S., Takahashi, S., Takagi, H., Nogawa, T., Oowada, E., Uramoto, M., and Osada,
 H. (2011) Furaquinocins I and J: novel polyketide isoprenoid hybrid compounds from
 Streptomyces reveromyceticus SN-593, J. Antibiot. (Tokyo) 64, 509-513.
- [4] Jiang, J., Tetzlaff, C. N., Takamatsu, S., Iwatsuki, M., Komatsu, M., Ikeda, H., and Cane,
 D. E. (2009) Genome mining in *Streptomyces avermitilis*: A biochemical Baeyer Villiger reaction and discovery of a new branch of the pentalenolactone family tree,
 Biochemistry 48, 6431-6440.
- [5] Datsenko, K. A., and Wanner, B. L. (2000) One-step inactivation of chromosomal genes
 in *Escherichia coli* K-12 using PCR products, *Proc. Natl. Acad. Sci. U S A* 97, 6640 6645.
- [6] Cherepanov, P. P., and Wackernagel, W. (1995) Gene disruption in *Escherichia coli*: TcR
 and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic resistance determinant, *Gene 158*, 9-14.
- [7] Onaka, H., Taniguchi, S., Ikeda, H., Igarashi, Y., and Furumai, T. (2003) pTOYAMAcos,
 pTYM18, and pTYM19, actinomycete-*Escherichia coli* integrating vectors for
 heterologous gene expression, *J. Antibiot. (Tokyo) 56*, 950-956.
- [8] Komatsu, M., Komatsu, K., Koiwai, H., Yamada, Y., Kozone, I., Izumikawa, M.,
 Hashimoto, J., Takagi, M., Omura, S., Shin-ya, K., Cane, D. E., and Ikeda, H. (2013)
 Engineered *Streptomyces avermitilis* host for heterologous expression of biosynthetic
 gene cluster for secondary metabolites, *ACS Synth. Biol. 2*, 384-396.
- [9] Niehaus, T. D., Okada, S., Devarenne, T. P., Watt, D. S., Sviripa, V., and Chappell, J.
 (2011) Identification of unique mechanisms for triterpene biosynthesis in Botryococcus braunii, Proc. Natl. Acad. Sci. USA 108, 12260-12265.
- 33