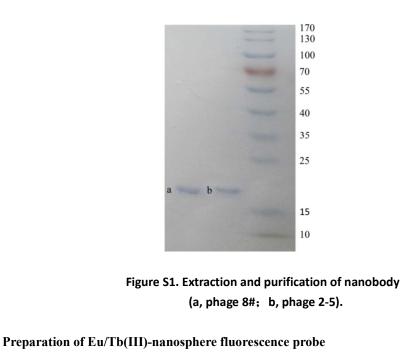
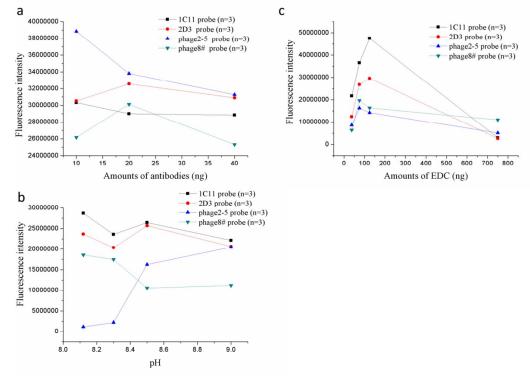
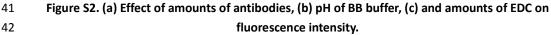
Supplementary Information
Time-resolved fluorescence immunochromatographic assay developed using two
idiotypic nanobodies for rapid, quantitative, and simultaneous detection of
aflatoxin and zearalenone in maize and its products
Xiaoqian Tang ^{a,b,c,d,e} , Peiwu Li ^{a,b,e*} , Qi Zhang ^{d*} , Zhaowei Zhang ^{c*} ,
Wen Zhang ^{a,b,c} , Jun Jiang ^a
^a Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062,
China
^b Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture,
Wuhan 430062, China
^c Laboratory of Quality & Safety Risk Assessment for Oilseed Products (Wuhan), Ministry of
Agriculture, Wuhan 430062, China
^d Key Laboratory of Detection for Mycotoxins, Ministry of Agriculture, Wuhan 430062,
China
^e Quality Inspection & Test Center for Oilseed Products, Ministry of Agriculture, Wuhan
430062, China
* Corresponding authors at: Oil Crops Research Institute, Chinese Academy of Agricultural
Sciences, Wuhan 430062, P.R.China
Tel.: +86 27 86812943


23 E-mail: peiwuli@oilcrops.cn, <u>zhangqi01@caas.cn</u>, zwzhang.zzw@gmail.com


າ	Λ	
L	4	

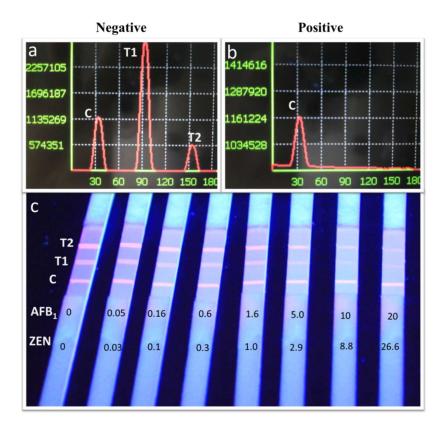

25 Contents:

- 26
- 27 1. Purification of the anti-idiotypic nanobodies for AFB₁ and ZEN
- 28 2. Preparation of Eu/Tb(III)-nanosphere fluorescence probe
- 29 3. Preparation of two patterns of competitive TRFICA
- 30 4. AIdnb-TRFICA for dual mycotoxins
- 31 5. Validation of the developed AIdnb-TRFICA for dual mycotoxin
- 32 6. LC-MS/ MS analysis used in validation experiments

33 Purification of the anti-idiotypic nanobodies for AFB₁ and ZEN

44 Preparation of two patterns of competitive TRFICA

45 The test strip for the AINnd-TRFICA pattern had a T line coated with the phage 2-5 or 46 phage 8# and a C line coated with the rabbit anti-mouse IgG. The test strip for the mAb-TRFICA 47 pattern had a T line coated with the 1C11 or 2D3 and a C line coated with the rabbit anti-apical IgG. All the immunoreagents were spurted onto the nitrocellulose membrane (HF07502S25, 48 49 Millipore, Bedford, MA, USA) at the rate of $0.4 - 0.8 \,\mu$ g/cm. The nitrocellulose membrane was dried for 2 h at 37°C. The sample pad was treated with blocking buffer (2.9% Na₂HPO₄ + 0.3% 50 51 $NaH_2PO_4 + 1\%$ Tween 20 + 1% PVPK 30 + 0.25% EDTA + 0.5% BSA + 0.02% NaN_3) and 52 allowed to stand at 37°C for 6 h. Then, sample pad, NC membrane, and absorbent pad were pasted 53 onto a plastic scale board, overlapping with each other by 1 mm. Then, the assembly was cut into 54 4×60 mm strips with CM 4000 Guillotine Cutter.



56 Scheme S1. Schematic diagram of (a) AINnd-TRFICA for mycotoxin, (b) mAb-TRFICA for

57

58 AIdnb-TRFICA for dual mycotoxins

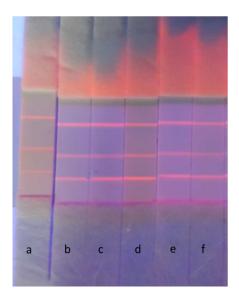

59

Figure S3. (a) negative. (b) positive. (c) Responses of the strips to AFB_1 and ZEN with different concentrations. The concentrations of AFB_1 and ZEN (ng mL⁻¹) were increased from left to right.

62 The appropriate amounts of antigen and antibody were optimized in an immunoassay to 63 obtain a higher sensitivity. Therefore, the amounts of antigen on T and C lines and dilution of 64 antibody probes were optimized (Table S1).

	Antigen on T line (ng mL ⁻¹)	C line (ng mL ⁻¹)	Probe Dilute factor	T/C
	0.25	0.05-0.25	100-300	-
Phage2-5	0.50	0.05-0.25	100-300	0.124-0.548
	1.00	0.05-0.25	100-300	0.152-1.412
	0.25	0.05-0.25	200-400	-
Phage8#	0.50	0.05-0.25	200-400	0.392-1.284
	1.00	0.05-0.25	200-400	0.285-2.065

66

67

Figure S4. Effects of different analysis buffer on the release of nanosphere-probe (a, 1% PVPK
30 + 1% Sucrose + ddH₂O; b, 1% PVPK 30 + 1% BSA + ddH₂O; c, 1% PVPK 30 + 2% Sucrose + 1%
Tween 20 + ddH₂O; d, 2% Sucrose + 1%Tween 20 + ddH₂O; e, 2% Sucrose + 1% PVPK 30 + ddH₂O).

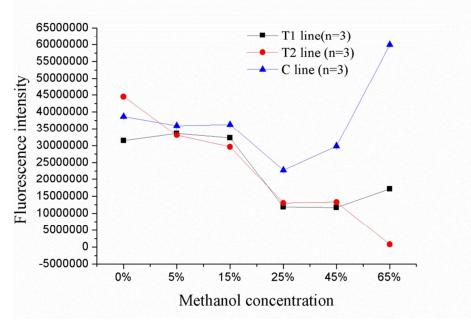


Figure S5. Effect of concentration of methanol on T/C value.

Mycotoxins	samples	Spiked concentration	Mean recovery	CV (%) ^a
		(ng)	(%)	
AFB ₁	Yellow maize	10	106.6	7.6
		20	90.3	5.4
		50	83.3	6.8
	White maize	10	94.2	8.1
		20	80.5	7.4
		50	73.9	7.7
	Maize flour	10	81.4	9.1
		20	72.6	8.2
		50	83.8	9.6
ZEN	Yellow maize	20	91.0	7.7
		100	85.3	6.6
		500	81.9	7.1
	White maize	20	80.2	10.3
		100	78.5	9.8
		500	77.7	8.3
	Maize flour	20	87.2	10.6
		100	82.1	9.6
		500	75.6	5.8

75 Validation of the developed AIdnb-TRFICA for dual mycotoxin

Table S2. Recoveries of AFB_1 and ZEN in spiked samples by Aldnb-TRFICA

77 ^a Coefficient of variation

⁷⁶

78 LC-MS/ MS analysis used in validation experiments

The ground sample (5 g) was mixed with 10 mL of acetonitrile/water (80:20 v/v) and
shaken for 2 h. The clear extract was filtered using a 0.22-µm membrane filter before analysis by
LC-MS/MS.

The LC-MS system was an Accela HPLC connected to a triple quadrupole MS analyzer with an electrospray ionization (ESI) interface (Thermo Fisher Scientific, USA). A 10- μ L aliquot was injected into a C18 column (Hypersil Gold, 100 mm \times 2.1 mm i.d., 3 μ m, Thermo Fisher Scientific) at 30°C column temperature. The gradient was composed of solvents (A, v/v) 50% methanol-acetonitrile and (B, v/v) 0.1% formic acid in water at a flow rate of 200 μ L/min. The gradient elution was performed as follows: 0 min, 15% A; 8.5 min, 50% A; 10 min, 50% A; 11.5 min, 70% A; 13.5 min, 70% A; 15 min, 100% A; 15.01 min, 15% A; 20 min,15% A.

The MS detection was equipped with an ESI source in negative and positive selected reaction monitoring (SRM) modes¹. MS was measured with the following conditions: for the positive scan mode, spray voltage, 4000 V; sheath gas pressure, 20 psi; capillary temperature, 330°C; however, for the negative scan mode, aux gas pressure, 8 psi;. spray voltage, 3000 V and capillary temperature, 270°C. The parent and two daughter ions were 313/241.1, 285 for AFB₁ and 317.1/130.8, 174.9 for ZEN.

95 **Reference**

96 1. Wu, R.; Zhang, W.; Wang, X.. Food Chem 2016, 204, 334-342.

97