Supporting Information for: # Experimental and Computational Studies of High-Valent Nickel and Palladium Complexes Nicole M. Camasso,[†] Allan J. Canty,*[‡] Alireza Ariafard,[‡] and Melanie S. Sanford*[†] [†]Department of Chemistry, University of Michigan, 930 N University Ave, Ann Arbor, MI 48109 [‡]School of Physical Sciences, University of Tasmania, Private Bag 75, Hobart, Tasmania 7001, Australia ## **Table of Contents** | I. | General Procedures and Materials and Methods | p. S2 | |-------|---|--------| | II. | Synthesis of M ^{II} Precursors | p. S3 | | III. | Synthesis of High-Valent Complexes | p. S5 | | IV. | Synthesis of M ^{II} Reductive Elimination Products | p. S9 | | V. | Oxidation Studies | p. S16 | | VI. | Reductive Elimination Studies | p. S19 | | VII. | Cyclic Voltammetry Studies | p. S31 | | VIII. | Computational Details | p. S33 | | IX. | References | p. S40 | | X. | Spectral Data | p. S41 | | XI. | X-Ray Crystallography Experimental Data | p. S76 | #### I. General Procedures and Materials and Methods #### **General Procedures** All experiments and manipulations were carried out under an inert nitrogen atmosphere using standard glovebox or Schlenk techniques unless otherwise indicated. NMR spectra were obtained on a Varian VNMR 700 (699.76 MHz for ¹H; 175.95 MHz for ¹³C). a Varian VNMR 500 (500.09 MHz for ¹H; 470.56 MHz for ¹⁹F) or a Varian VNMR 400 spectrometer (399.54 MHz for ¹H; 128.187 for ¹¹B). ¹H and ¹³C chemical shifts are reported in parts per million (ppm) relative to TMS, with the residual solvent peak as an internal reference. ¹⁹F chemical shifts and ¹¹B chemical shifts are reported in ppm and are referenced on a unified scale, where the single primary reference is the frequency of the residual solvent peak in the ¹H NMR spectrum. Abbreviations used in the NMR data: s, singlet; d, doublet; dd, doublet of doublets; t, triplet; td, triplet of doublets; m, multiplet; br, broad signal; bq, broad guartet. Cyclic voltammetry was performed using a CHI600C potentiostat from CH instruments. The electrodes were obtained from BASi. Mass spectral data were obtained on a Micromass magnetic sector mass spectrometer in electrospray ionization mode. X-ray crystallographic data were collected on a Rigaku AFC10K Saturn 944+ CCD-based X-ray diffractometer. Flash chromatography was conducted using a Biotage Isolera One system with cartridges containing high performance silica gel. #### **Materials and Methods** The following compounds were prepared via literature [(PMe₃)₂Ni^{II}(CH₂CMe₂-o-C₆H₄), 1 (COD)Pd^{II}(CH₂CMe₂-o-C₆H₄), 2 NMe₄SPh, 3 NMe₄OPh, 4 NMe₄Tp.⁵ and acetylferrocenium tetrafluoroborate (AcFcBF₄).⁶ The spectra of complex 3-Pd matched that reported in the literature. 7 AgBF₄ was purchased from Strem Chemicals. NBu₄N₃, NMe₄OAc, and S-(trifluoromethyl) dibenzothiophenium triflate were purchased from Aldrich. 4.4'-difluorobiphenyl was purchased from Oakwood Chemicals. Potassium trispyrazolyl borate (KTp) was purchased from Alfa Aesar. Electrochemical studies were performed with electrochemical grade NBu₄BF₄ or NBu₄PF₆, which were purchased from Aldrich and used without further purification. Pentane (Fisher), diethyl ether (EMD), and tetrahydrofuran (Fisher) were deaerated via a N₂ sparge and dried by Inert Technologies solvent purification system. Acetonitrile (Acros) was sparged and used without further purification. Pyridine-d₅ and CD₃CN were obtained from Cambridge Isotopes Laboratories and were stored over activated 4 Å molecular sieves (EMD Millipore). Basic alumina (Aldrich) was dried for 48 h under vacuum at 210 °C. Celite was dried for 12 h under vacuum at 100 °C. Unless otherwise noted, all glassware was dried overnight in an oven at 150 °C and cooled under an inert atmosphere before use. All commercial reagents were used without further purification/drying unless explicitly stated in the experimental section. ## II. Synthesis of M^{II} Precursors **Synthesis of [(K)(Tp)Ni^{II}(CH₂CMe₂-o-C₆H₄)] (1-Ni).** In the glovebox, a 20 mL vial was charged with [(PMe₃)₂Ni^{II}(CH₂CMe₂-o-C₆H₄)] (250 mg, 0.73 mmol, 1.0 equiv). The solid was dissolved in acetonitrile (8 mL). Potassium trispyrazolylborate (202 mg, 0.80 mmol, 1.1 equiv) was added at room temperature, and the dark orange solution was stirred at rt for 30 min. Solvent and free PMe₃ were removed *in vacuo*. Diethyl ether (10 mL) was added to the brown residue, the suspension triturated, and the insoluble material collected. Complex **1-Ni** was dried under vacuum and isolated as a yellow solid (301 mg, 93% yield). ¹H NMR (700 MHz, CD₃CN, 23 °C) δ 8.13 (br, 3H), 7.57 (br, 3H), 6.74 (d, J_{HH} = 7.3 Hz, 1H), 6.69 (t, J_{HH} = 7.3 Hz, 1H), 6.56 (d, J_{HH} = 7.3 Hz, 1H), 6.52 (t, J_{HH} = 7.3 Hz, 1H), 6.13 (br, 3H), 4.71 (bq, B-H), 1.31 (s, 6 H), 1.14 (s, 2H). ¹³C NMR (128 MHz, CD₃CN, 23 °C) δ 170.14, 164.49, 140.79, 138.19, 134.75, 121.85, 120.77, 119.73, 103.60, 47.16, 40.62, 33.61. ¹¹B NMR (128 MHz, CD₃CN, 23 °C) δ –2.40 (d, J_{BH} = 112.0 Hz, **B**-H). Synthesis of $NMe_4[(Tp)Pd^{II}(CH_2CMe_2-o-C_6H_4)]$ (1-Pd): A 250 mL round bottom flask was charged with $(COD)Pd(CH_2CMe_2-o-C_6H_4)^2$ (300 mg, 0.864 mmol, 1.0 equiv). The yellow solid was dissolved in dichloromethane (50 mL) and NMe_4Tp (260 mg, 0.907 mmol, 1.1 equiv) was added at room temperature. The light tan solution was allowed to stir for 2 h. The crude reaction mixture was then concentrated to a tan solid, washed several times with ether (3 x 10 mL), and dried under vacuum to afford **1-Pd** as a white solid (404 mg; 89 % yield). ¹H NMR (700 MHz, CD₃CN, 23 °C) δ 7.90 (br, 3H), 7.63 (br, 3H), 7.27 (d, J_{HH} = 7.2 Hz, 1H), 6.80 (t, J_{HH} = 7.2 Hz, 1H), 6.72 (t, J_{HH} = 7.2 Hz, 1H), 6.69 (d, J_{HH} = 7.2 Hz, 1H), 6.17 (br, 3H), 4.73 (bq, B-H), 3.04 (s, 12H), 1.96 (s, 2H), 1.33 (s, 6H). ¹³C NMR (176 MHz, CD₃CN, 23 °C) δ 168.40, 161.91, 140.44, 135.95, 134.72, 122.92, 121.46, 121.10, 103.62, 55.1, 47.31, 40.72, 33.59. ¹¹B NMR (225 MHz, CD₃CN, 23 °C) δ –1.83 (d, J_{BH} = 112 Hz, **B**-H). HRMS-electrospray (m/z): $[M-NMe_4]^-$ calcd. for $C_{19}H_{22}BN_6Pd$, 451.1034; found, 451.1067 ## **III. Synthesis of High-Valent Complexes** Synthesis of $[(Tp)Ni^{III}(CH_2CMe_2-o-C_6H_4)]$ (2-Ni).⁸ In the glovebox, a 20 mL vial was charged with $K[(Tp)Ni^{II}(CH_2CMe_2-o-C_6H_4)]$ (180 mg, 0.41 mmol, 1.0 equiv). The yellow solid was dissolved in acetonitrile (10 mL), and a solution of AgBF₄ (78 mg, 0.41 mmol, 1.0 equiv) in acetonitrile (5 mL) was added at -35 °C. The orange solution immediately turned dark red, with concomitant precipitation of a Ag⁰. The crude reaction mixture was then filtered through a celite plug. The plug was washed with acetonitrile (5 mL), and the filtrates were combined and concentrated to approximately 3 mL. Orange crystals precipitated from the solution over the course of 10 min. These crystals were collected, washed with acetonitrile (5 mL), and dried under vacuum to afford 2-Ni as an orange solid (98 mg, 60% yield). Samples for elemental analysis were obtained by cooling a saturated solution of 2-Ni in acetonitrile to -35 °C to obtain orange-red crystals of 2-Ni. Elemental Analysis calcd. for $C_{19}H_{22}BN_6Ni$, C: 56.50, H: 5.49, N: 20.81; found, C: 56.63, H: 5.52, N: 20.83. $$\mu_{eff}(CH_3CN, 23 \, ^{\circ}C)$$: = 1.88 HRMS-electrospray (m/z) $[M]^+$ calcd. for $C_{19}H_{22}BN_6Ni$, 403.1352; found, 403.1352. ¹¹B NMR (225 MHz, CD₃CN, 23 °C) δ –3.07 (br, **B**-H). Synthesis of [(Tp)Ni^{IV}(CH₂CMe₂-*o*-C₆H₄)(MeCN)]BF₄ (3-Ni): In the glovebox, a 20 mL vial was charged with K[(Tp)Ni^{II}(CH₂CMe₂-*o*-C₆H₄)] (150 mg, 0.34 mmol, 1.0 equiv). The yellow solid was dissolved in acetonitrile (10 mL), and a solution of AgBF₄ (134 mg, 0.69 mmol, 1.0 equiv) in acetonitrile (5 mL) was added at -35 °C. The orange solution immediately turned dark red, with concomitant precipitation of Ag⁰. The crude reaction mixture was then filtered through a celite plug. The plug was washed with acetonitrile (5 mL), and the filtrates were combined and concentrated to approximately 2 mL. Redorange crystals precipitated from the solution over the course of 15 min. These crystals were collected, washed with acetonitrile (5 mL), and dried under vacuum to afford 3-Ni as a red-orange solid (91 mg, 51% yield). ¹H NMR (700 MHz, CD₃CN, 23 °C) δ 8.18 (d, J_{HH} = 2.0 Hz, 1H), 8.13 (d, J_{HH} = 2.0 Hz, 1H), 7.99 (d, J_{HH} = 2.3 Hz, 1H), 7.97 (d, J_{HH} = 2.3 Hz, 1H), 7.86 (d, J_{HH} = 2.3 Hz, 1H), 7.26 (t, J_{HH} = 7.7 Hz, 1H), 7.19 (d, J_{HH} = 7.7 Hz, 1H), 6.94 (t, J_{HH} = 7.7 Hz, 1H), 6.77 (d, J_{HH} = 2.3 Hz, 1H), 6.74 (d, J_{HH} = 7.7 Hz, 1H), 6.55 (d, J_{HH} = 2.3 Hz, 1H), 6.49 (s, 1H), 6.22 (s, 1H), 6.09 (d, J_{HH} = 3.8 Hz, 1H), 6.00 (d, J_{HH} = 3.8 Hz, 1H), 4.61 (bq, B-H) 2.36 (s, 3H), 1.68 (s, 3H), 1.59 (s, 3H). ^{13}C NMR (176 MHz, CD₃CN, 0 °C) δ 154.20, 151.08, 143.77, 141.80, 141.62, 138.08, 136.50, 136.07, 132.52, 128.97, 127.94, 127.49, 107.86, 107.15, 106.96, 87.40, 48.24, 31.38, 28.50. ¹¹B NMR (225 MHz, CD₃CN, 23 °C) δ –1.18 (s, **B**F₄), –4.38 (d, J_{BH} = 98 Hz, **B**-H). 19 F NMR (471 MHz, CD₃CN, 23 $^{\circ}$ C) δ –151.95. HRMS-electrospray (m/z): [M]⁺ calcd. for C₂₁H₂₅BN₇Ni, 444.1612; found, 444.1613. **Synthesis of [(Tp)Ni**^{IV}(**CH**₂**Cme**₂-*o*-**C**₆**H**₄)(**CF**₃)] (4-Ni): Following a modified procedure from the literature,³ a 20 mL vial was charged with K[(Tp)Ni^{II}(CH₂CMe₂-*o*-C₆H₄)] (1-Ni) (210 mg, 0.47 mmol, 1.0 equiv) in the glovebox. The solid was dissolved in acetonitrile (15 mL). *S*-(Trifluoromethyl) dibenzothiophenium triflate (247 mg, 0.61 mmol, 1.3 equiv) was added at room temperature and the yellow-orange solution immediately turned yellow-brown. The reaction mixture was taken out of the glovebox and the solvent was removed by rotary evaporation. The crude yellow-brown solid was
purified by flash chromatography on silica gel (mobile phase: ethyl acetate/hexanes with a gradient from 90:10 to 80:20). Compound **4-Ni** was isolated as a yellow solid (204 mg, 92% yield). ¹H NMR (700 MHz, CD₃CN, 23 °C) δ 8.13 (d, J_{HH} = 1.9 Hz, 1H), 7.96 (d, J_{HH} = 1.9 Hz, 1H), 7.88 (d, J_{HH} = 2.3 Hz, 1H), 7.85 (d, J_{HH} = 2.3 Hz, 1H), 7.74 (d, J_{HH} = 2.2 Hz, 1H), 7.15 (multiple peaks, 2H), 7.04 (d, J_{HH} = 7.5 Hz, 1H), 6.88 (t, J_{HH} = 7.5 Hz, 1H), 6.68 (d, J_{HH} = 2.1 Hz, 1H), 6.40 (multiple peaks, 2H), 6.08 (t, J_{HH} = 2.1 Hz, 1H), 4.93 (d, J_{HH} = 5.5 Hz, 1H), 4.81 (dd, J_{HH} = 5.5 Hz, J_{HF} = 2.4 Hz, 1H), 4.52 (bq, B-H), 1.53 (s, 3H), 1.44 (s, 3H). 13 C NMR (128 MHz, CD₃CN, 23 $^{\circ}$ C) δ 160.51, 156.03, 142.68, 141.64, 141.51, 135.56, 135.48, 135.17, 132.68, 126.65, 125.96, 125.59, 120.55 (Ni- \boldsymbol{C} F₃, shift for CF₃ group extracted from 19 F $^{-13}$ C HMBC NMR spectrum), 105.94, 105.88, 105.64, 77.67, 46.98, 31.01, 30.25. ¹⁹F NMR (471 MHz, CD₃CN, 23 °C) δ –16.11 (s, Ni-C**F**₃). ¹¹B NMR (128 MHz, CD₃CN, 23 °C) δ –4.37 (d, J_{BH} = 115.9 Hz). Synthesis of $[(Tp)Pd^{IV}(CH_2CMe_2-o-C_6H_4)(CF_3)]$ (4-Pd): A 20 mL vial was charged with NMe₄ $[(Tp)Pd^{II}(CH_2CMe_2-o-C_6H_4)]$ (1-Pd) (290 mg, 0.55 mmol, 1.0 equiv). The solid was dissolved in acetonitrile (15 mL). S-(Trifluoromethyl) dibenzothiophenium triflate (288 mg, 0.72 mmol, 1.3 equiv) was added at room temperature and the light tan solution immediately turned orange-brown. The solvent was removed by rotary evaporation. The crude brown solid was purified by flash chromatography on silica gel (mobile phase: ethyl acetate/hexanes with a gradient from 90:10 to 70:30). Compound 4-Pd was isolated as a light tan solid (245 mg, 86% yield). ¹H NMR (700 MHz, CD₃CN, 23 °C): δ 8.04 (d, J_{HH} = 1.9 Hz, 1H), 7.89 (d, J_{HH} = 2.3 Hz, 1H), 7.87 (d, J_{HH} = 2.3 Hz, 1H), 7.83 (d, J_{HH} = 1.9 Hz, 1H), 7.79 (d, J_{HH} = 2.3 Hz, 1H), 7.26 (m, 1H), 7.18 (m, 1H), 7.10 (dd, J_{HH} = 7.7, 1.7 Hz, 1H), 6.93 (td, J_{HH} = 7.7, 1.7 Hz, 1H), 6.86 (d, J_{HH} = 2.2 Hz, 1H), 6.42 (t, J_{HH} = 2.2 Hz, 1H), 6.38 (t, J_{HH} = 2.2 Hz, 1H), 6.14 (d, J_{HH} = 2.2 Hz, 1H), 4.63 (bq, B-H), 4.19–4.13 (multiple peaks, 2H), 1.51 (s, 3H), 1.50 (s, 3H). ¹³C NMR (176 MHz, CD₃CN, 23 °C): δ 161.23, 154.38, 141.48, 140.93, 140.40, 136.09, 136.05, 135.62, 130.95, 126.71, 126.11, 126.08, 125.85 (Pd- \mathbf{C} F₃, shift for CF₃ group extracted from ¹⁹F–¹³C HMBC NMR spectrum), 105.96, 105.88, 105.72, 67.02, 45.94, 31.63, 31.53. 19 F NMR (377 MHz, CD₃CN, 23 °C): δ −18.39. ¹¹B NMR (225 MHz, CD₃CN, 23 °C): δ –3.54 (d, J_{BH} = 102 Hz, **B**-H). ## IV. Synthesis of M^{II} Reductive Elimination Products Synthesis of $[(NMe_4)(Tp)Ni^{II}(C_6H_4-o\text{-}CMe_2CH_2OPh)(CF_3)]$ (6a-Ni).³ A 20 mL vial was charged with $[(Tp)Ni^{IV}(CH_2CMe_2-o\text{-}C_6H_4)(CF_3)]$ (4-Ni) (30 mg, 0.063 mmol, 1.0 equiv). The solid was dissolved in acetonitrile (5 mL). NMe₄OPh (13 mg, 0.075 mmol, 1.2 equiv) was added and the resulting solution was stirred at room temperature for 8 h. The solvent was removed *in vacuo* and the resulting yellow residue was washed with diethyl ether (3 x 10 mL). The solids were dried under vacuum to afford complex **6a-Ni** as a yellow solid (31 mg, 78% yield). ¹H NMR (700 MHz, CD₃CN, 23 °C) δ 8.13 (d, J_{HH} = 7.9 Hz, 1H), 8.02 (d, J_{HH} = 2.3 Hz, 1H), 7.80 (d, J_{HH} = 1.8 Hz, 1H), 7.72 (d, J_{HH} = 1.8 Hz, 1H), 7.48 (d, J_{HH} = 2.3 Hz, 1H), 7.34 (d, J_{HH} = 2.3 Hz, 1H), 7.21 (t, J_{HH} = 7.9 Hz, 2H), 7.08 (d, J_{HH} = 7.9 Hz, 1H), 6.87 (multiple peaks, 3H), 6.71 (t, J_{HH} = 7.9, 1H), 6.63 (t, J_{HH} = 7.2 Hz, 1H), 6.40 (d, J_{HH} = 2.0 Hz, 1H), 6.31 (d, J_{HH} = 2.0 Hz, 1H), 6.18 (s, 1H), 5.80 (t, J_{HH} = 2.2 Hz, 1H), 4.81 (br, B-H), 4.39 (d, J_{HH} = 8.7 Hz, 1H), 4.36 (d, J_{HH} = 8.7 Hz, 1H), 3.07 (s, 12H), 2.30 (s, 3H), 1.85 (s, 3H). ¹³C NMR (176 MHz, CD₃CN, 23 °C) δ 159.84, 159.54, 151.22, 142.50, 142.18, 140.77, 138.57 (Ni- $\textbf{\textit{C}}$ F₃, shift for CF₃ group extracted from ¹⁹F–¹³C HMBC NMR spectrum), 136.13, 135.39, 134.67, 134.37, 129.22, 125.05, 121.22, 120.80, 119.89, 114.50, 104.03, 103.81, 103.44, 77.96, 55.72, 40.00, 27.19, 27.15. HRMS-electrospray (m/z): $[M-NMe_4]^-$ calcd. for $C_{26}H_{27}BF_3N_6NiO$, 565.1645; Found, 565.1640. ¹⁹F NMR (471 MHz, CD₃CN, 23 °C) δ –20.52 (s, Ni-C F_3). ¹¹B NMR (128 MHz, CD₃CN, 23 °C) δ –2.57 (d, J_{BH} = 115.7 Hz). [NMe₄(Tp)Ni^{II}(C₆H₄-o-CMe₂CH₂OAc)(CF₃)] (6b-Ni).³ A 20 mL vial was charged with [(Tp)Ni^{IV}(CH₂CMe₂-o-C₆H₄)(CF₃)] (4-Ni) (30 mg, 0.063 mmol, 1.0 equiv). The solid was dissolved in acetonitrile (5 mL). NMe₄OAc (10 mg, 0.075 mmol, 1.2 equiv) was added, and the resulting solution was stirred at 40 °C for 3 days. The reaction mixture was cooled to room temperature and solvent was removed *in vacuo*. The resulting yellow residue was washed with diethyl ether (3 x 10 mL). The solids were dried under vacuum to afford complex **6b-Ni** as a yellow solid (33 mg, 88% yield). ¹H NMR (700 MHz, CD₃CN, 23 °C) δ 8.12 (d, J_{HH} = 2.3 Hz, 1H), 8.07 (d, J_{HH} = 7.4 Hz, 1H), 7.81 (d, J_{HH} = 1.8 Hz, 1H), 7.72 (d, J_{HH} = 1.8 Hz, 1H), 7.49 (d, J_{HH} = 2.3 Hz, 1H), 7.38 (d, J_{HH} = 2.3 Hz, 1H), 7.00 (d, J_{HH} = 7.4 Hz, 1H), 6.73 (m, 1H), 6.61 (t, J_{HH} = 7.4 Hz, 1H), 6.28 (d, J_{HH} = 2.0 Hz, 1H), 6.25 (d, J_{HH} = 2.0 Hz, 1H), 6.20 (d, J_{HH} = 2.2 Hz, 1H), 5.80 (d, J_{HH} = 2.2 Hz, 1H), 4.83 (br, B-H), 4.48 (d, J_{HH} = 10.7 Hz, 1H), 4.35 (d, J_{HH} = 10.7 Hz, 1H), 3.12 (s, 12H), 2.15 (s, 3H), 1.94 (s, 3H), 1.86 (s, 3H). ¹³C NMR (176 MHz, CD₃CN, 23 °C) δ 170.79, 159.57, 150.58, 142.40, 142.18, 140.75, 138.14 (Ni-CF₃, shift for CF₃ group extracted from ¹⁹F–¹³C HMBC NMR spectrum), 136.35, 135.49, 134.76, 134.19, 124.95, 121.24, 120.81, 104.05, 103.84, 103.46, 73.96, 56.23, 39.38, 27.25, 27.02, 20.17. HRMS-electrospray (m/z): $[M-NMe_4]^-$ calcd. for $C_{22}H_{25}BF_3N_6NiO_2$, 531.1438; found, 531.1442. ¹⁹F NMR (471 MHz, CD₃CN, 23 °C) δ –20.62 (s, Ni-C F_3). ¹¹B NMR (128 MHz, CD₃CN, 23 °C) δ –2.54 (d, J_{BH} = 116.9 Hz). Synthesis of $[(NMe_4)(Tp)Ni^{II}(C_6H_4-o\text{-}CMe_2CH_2SPh)(CF_3)]$ (6c-Ni).³ A 20 mL vial was charged with $[(Tp)Ni^{IV}(CH_2CMe_2-o\text{-}C_6H_4)(CF_3)]$ (4-Ni) (50 mg, 0.11 mmol, 1.0 equiv). The solid was dissolved in acetonitrile (5 mL). NMe₄SPh (23 mg, 0.13 mmol, 1.2 equiv) was added and the resulting solution was stirred at room temperature for 10 min. The solvent was removed *in vacuo* and the resulting yellow residue was washed with diethyl ether (3 x 10 mL). The solids were dried under vacuum to afford complex **6c-Ni** as a yellow solid (68 mg, 94% yield). ¹H NMR (700 MHz, CD₃CN, 23 °C) δ 8.20 (d, J_{HH} = 7.4 Hz, 1H), 8.04 (d, J_{HH} = 2.2 Hz, 1H), 7.77 (d, J_{HH} = 1.9 Hz, 1H), 7.73 (d, J_{HH} = 1.9 Hz, 1H), 7.40 (d, J_{HH} = 2.2 Hz, 1H), 7.31–7.24 (multiple peaks, 3H), 7.18 (t, J_{HH} = 7.6 Hz, 2H), 7.09 (t, J_{HH} = 7.8 Hz, 1H), 7.04 (d, J_{HH} = 7.8 Hz, 1H), 6.72 (t, J_{HH} = 7.2 Hz, 1H), 6.66 (t, J_{HH} = 7.2 Hz, 1H), 6.32 (br, 1H), 6.28 (br, 1H), 6.17 (br, 1H), 5.77 (br, 1H), 4.83 (br, B-H), 3.68 (d, J_{HH} = 12.9 Hz, 1H), 3.67 (d, J_{HH} = 12.9 Hz, 1H), 3.08 (s, 12H), 2.19 (s, 3H), 1.95 (s, 3H). ¹³C NMR (176 MHz, CD₃CN, 23 °C) δ 159.24, 152.73, 142.37, 142.06, 140.90, 139.31, 138.99 (Ni- $\textbf{\textit{C}}$ F₃, shift for CF₃ group extracted from ¹⁹F–¹³C HMBC NMR spectrum), 136.03, 135.34, 134.70, 134.38, 128.60, 127.85, 124.95, 124.68, 121.26, 120.87, 103.99, 103.89, 103.43, 55.16, 47.94, 40.21, 29.29, 29.28. ¹⁹F NMR (471 MHz, CD₃CN, 23 °C) δ –20.50 (s, Ni-C**F**₃). ¹¹B NMR (128 MHz, CD₃CN, 23 °C) δ –2.57 (d, J_{BH} = 113.4 Hz). HRMS-electrospray (m/z): $[M-NMe_4]^-$ calcd. for $C_{26}H_{27}BF_3N_6NiS$, 581.1417; found, 581.1430. **Synthesis of NMe**₄[(**Tp**)**Pd**^{II}(**C**₆**H**₄-o-**CMe**₂**CH**₂**OPh**)(**CF**₃)] (**6a-Pd**): A 20 mL vial equipped with a magnetic stir bar was charged with [(**Tp**)**Pd**^{IV}(**CH**₂**CMe**₂-o-**C**₆**H**₄)(**CF**₃)] (**4-Pd**) (50 mg, 0.094 mmol, 1.0 equiv) and dissolved in acetonitrile (8 mL). NMe₄OPh (17 mg, 0.10 mmol, 1.1 equiv) was added and the resulting solution was stirred at 70 °C for 32 h. The reaction mixture was cooled to room temperature, and solvent was removed by rotary evaporation. The resulting yellow residue was washed with diethyl ether (3 x 10 mL). The solids were dried under vacuum to afford complex **6a-Pd** as a yellow solid (35 mg, 56% yield). ¹H NMR (700 MHz, CD₃CN, 23 °C): δ 7.89 (d, J_{HH} = 7.4 Hz, 1H), 7.77–7.66 (multiple peaks, 3H), 7.49 (d, J_{HH} = 2.3 Hz, 1H), 7.41 (s, 1H), 7.24 (d, J_{HH} = 7.9 Hz, 1H), 7.15 (t, J_{HH} = 7.9 Hz, 2H), 6.87 (t, J_{HH} = 7.5 Hz, 1H), 6.83 (t, J_{HH} = 7.5 Hz, 1H), 6.76 (d, J_{HH} = 7.8 Hz, 3H), 6.60 (s, 1H), 6.28 (s, 1H), 6.16 (s, 1H), 5.85 (s, 1H), 4.75 (bq, B-H) 4.35 (d, J_{HH} = 8.6 Hz, 1H), 4.26 (br, 1H), 3.07 (s, 12H), 1.78 (s, 3H), 1.47 (s, 3H). ¹³C NMR (176 MHz, CD₃CN, 23 °C): δ 159.80, 154.43, 150.59, 141.25, 136.98, 136.83 (Pd- \mathbf{C} F₃, shift for CF₃ group extracted from ¹⁹F–¹³C HMBC NMR spectrum), 135.52, 135.20, 134.06, 129.07, 126.12, 122.56, 121.79, 119.65, 114.48, 103.90, 103.88, 103.61, 77.53, 55.18, 39.64, 27.03, 27.02. ¹¹B NMR (225 MHz, CD₃CN, 23 °C): δ –2.04 (d, J_{BH} = 113 Hz, **B**-H). HRMS-electrospray (m/z): [M – NMe₄]⁻ calcd. for C₂₆H₂₇BF₃N₆PdO, 613.1326; found, 613.1344. ¹⁹F NMR (471 MHz, CD₃CN, 23 °C) δ −18.75. ¹¹B NMR (225 MHz, CD₃CN, 23 °C): δ –2.04 (d, J_{BH} = 113 Hz, **B**-H). HRMS-electrospray (m/z): $[M-NMe_4]^-$ calcd. for $C_{26}H_{27}BF_3N_6PdO$, 613.1326; found, 613.1344. Crude Synthesis of NMe₄[(Tp)Pd^{II}(C₆H₄-o-CMe₂CH₂OAc) (CF₃)] (6b-Pd): A 20 mL vial equipped with a magnetic stir bar was charged with [(Tp)Pd^{IV}(CH₂CMe₂-o-C₆H₄)(CF₃)] (4-Pd) (20 mg, 0.037 mmol, 1.0 equiv) and
dissolved in acetonitrile (4 mL). NMe₄OAc (24 mg, 0.19 mmol, 5 equiv) was added and the resulting solution was stirred at 70 °C for 3 weeks. The reaction mixture was cooled to room temperature and solvent was removed by rotary evaporation. The resulting yellow residue was washed with diethyl ether (3 x 10 mL). Due to the extremely slow reactivity of NMe₄OAc and the Pd complex, this reaction required prolonged heating and excess acetate to reach only 95% conversion after the three-week time period. Complex 6b-Pd was characterized without complete removal of excess tetramethylammonium acetate. ¹H NMR (700 MHz, CD₃CN, 23 °C): δ 7.86 (d, J_{HH} = 7.2 Hz, 1H), 7.83 (d, J_{HH} = 2.3 Hz, 1H), 7.73 (s, 1H), 7.69 (s, 1H), 7.47 (m, 1H), 7.44 (d, J_{HH} = 2.3 Hz, 1H), 7.14 (d, J_{HH} = 7.9 Hz, 1H), 6.86 (m, 1H), 6.74 (t, J_{HH} = 7.2 Hz, 1H), 6.56 (s, 1H), 6.30 (t, J_{HH} = 2.0 Hz, 1H), 6.20 (t, J_{HH} = 2.0 Hz, 1H), 5.93 (t, J_{HH} = 2.0 Hz, 1H), 4.69 (bq, B-H), 4.44 (d, J_{HH} = 10.7 Hz, 1H), 4.32 (d, J_{HH} = 10.7 Hz, 1H), 3.15 (s, 12H), 1.88 (s, 3H), 1.62 (s, 3H), 1.41 (s, 3H). 13 C NMR (176 MHz, CD₃CN, 23 °C): δ 170.61, 149.85, 141.28, 137.10, 136.81 (Pd-CF₃, shift for CF₃ group extracted from 19 F- 13 C HMBC NMR spectrum), 135.51, 135.09, 134.89, 134.26, 125.94, 122.53, 121.75, 103.88, 103.86, 103.58, 73.68, 55.01, 39.02, 27.11, 25.12, 20.12. 19 F NMR (377 MHz, CD₃CN, 23 °C): δ −18.78. ¹¹B NMR (225 MHz, CD₃CN, 23 °C): δ –2.04 (d, J_{BH} = 117 Hz, **B**-H). HRMS-electrospray (m/z): $[M-NMe_4]^-$ calcd. for $C_{22}H_{25}BF_3N_6O_2Pd$, 579.1112; found, 579.1136 **Synthesis of NMe**₄[(Tp)Pd^{II}(C₆H₄-o-CMe₂CH₂SPh)(CF₃)] (6c-Pd): A 20 mL vial equipped with a magnetic stir bar was charged with [(Tp)Pd^{IV}(CH₂CMe₂-o-C₆H₄)(CF₃)] (4-Pd) (50 mg, 0.094 mmol, 1.0 equiv) and dissolved in acetonitrile (8 mL). NMe₄SPh (19 mg, 0.10 mmol, 1.1 equiv) was added and the resulting solution was stirred at 70 °C for 12 h. Solvent was removed by rotary evaporation. The resulting yellow residue was washed with diethyl ether (3 x 10 mL). The solids were dried under vacuum to afford complex **6c-Pd** as a yellow solid (55 mg, 84% yield). ¹H NMR (700 MHz, CD₃CN, 23 °C): δ 7.93 (d, J_{HH} = 7.4 Hz, 1H), 7.77 (d, J_{HH} = 2.2 Hz, 1H), 7.75 (s, 1H), 7.70 (s, 1H), 7.42 (d, J_{HH} = 2.2 Hz, 1H), 7.38 (s, 1H), 7.18 (dd, J_{HH} = 7.9, 1.5 Hz, 1H), 7.16–7.09 (multiple peaks, 4H), 7.03 (m, 1H), 6.86 (t, J_{HH} = 7.2 Hz, 1H), 6.77 (t, J_{HH} = 7.2, 1H), 6.60 (s, 1H), 6.29 (d, J_{HH} = 2.2 Hz, 1H), 6.19 (d, J_{HH} = 2.2 Hz, 1H), 5.84 (t, J_{HH} = 2.2 Hz, 1H), 4.79 (bq, B-H), 3.59 (d, J_{HH} = 11.6 Hz, 1H), 3.44 (br, 1H), 3.09 (s, 12H) 1.85 (s, 3H), 1.56 (s, 3H). ¹³C NMR (176 MHz, CD₃CN, 23 °C): δ 154.49, 151.49, 141.31, 139.46, 137.03, 136.81 (Pd-**C**F₃, shift for CF₃ group extracted from ¹⁹F–¹³C HMBC NMR spectrum), 135.45, 133.84, 128.46, 127.42, 125.78, 124.31, 122.62, 121.68, 103.94, 103.88, 103.51, 55.17, 47.33, 39.77, 29.75, 29.12. HRMS-electrospray (m/z): $[M-NMe_4]^-$ calcd. for $C_{26}H_{27}BF_3N_6PdS$, 629.1098; Found, 629.1116. ¹⁹F NMR (471 MHz, CD₃CN, 23 °C): δ −18.78. ¹¹B NMR (225 MHz, CD₃CN, 23 °C): δ –2.04 (d, J_{BH} = 109 Hz, **B**-H). Crude Synthesis of NBu₄[(Tp)Pd^{II}(C₆H₄-o-CMe₂CH₂N₃)(CF₃)] (6d-Pd): A 20 mL vial equipped with a magnetic stir bar was charged with [(Tp)Pd^{IV}(CH₂CMe₂-o-C₆H₄)(CF₃)] (4-Pd) (20 mg, 0.037 mmol, 1.0 equiv) and dissolved in acetonitrile (4 mL). NBu₄N₃ (54 mg, 0.19 mmol, 5 equiv) was added and the resulting solution was stirred at 70 °C for one week. The reaction mixture was then cooled to room temperature, and solvent was removed by rotary evaporation. The resulting yellow residue was washed with diethyl ether (3 x 10 mL). Due to the extremely slow reactivity of NBu₄N₃ and the Pd^{IV} complex, this reaction required prolonged heating and excess azide to reach only 90% conversion after the one-week time period. Complex 6d-Pd was characterized without complete removal of excess tetrabutylammonium azide. ¹H NMR (700 MHz, CD₃CN, 23 °C): δ 7.97 (d, J_{HH} = 7.4 Hz, 1H), 7.84 (d, J_{HH} = 2.2 Hz, 1H), 7.81 (s, 1H), 7.66 (s, 1H), 7.49 (s, 1H), 7.35 (d, J_{HH} = 2.2 Hz, 1H), 7.11 (dd, J_{HH} = 7.9, 1.5 Hz, 1H), 6.85 (td, J_{HH} = 7.4, 1.5 Hz, 1H), 6.79 (td, J_{HH} = 7.9, 1.5 Hz, 1H), 6.52 (s, 1H), 6.33 (d, J_{HH} = 2.1 Hz, 1H), 6.19 (d, J_{HH} = 2.1 Hz, 1H), 5.94 (t, J_{HH} = 2.1 Hz, 1H), 4.77 (bq, B-H), 3.62 (d, J_{HH} = 11.7 Hz, 1H), 3.48 (d, J_{HH} = 11.7 Hz, 1H), 3.13–3.06 (m, 8H), 1.62 (multiple peaks, 14H), 1.37 (m, 8H), 0.99 (t, J_{HH} = 7.4 Hz, 12 H). ¹³C NMR (176 MHz, CD₃CN, 23 °C): δ 154.91, 149.98, 141.63, 141.08, 140.94, 136.90 (Pd- \mathbf{C} F₃, shift for CF₃ group extracted from ¹⁹F–¹³C HMBC NMR spectrum), 136.84, 135.89, 135.64, 133.41, 125.91, 122.79, 121.74, 104.15, 103.80, 103.67, 62.88, 58.32, 40.06, 27.77, 27.39, 23.31, 19.32, 12.79. HRMS-electrospray (m/z): $[M-NBu_4]^-$ calcd. for $C_{20}H_{22}BF_3N_9Pd$, 562.1078; found, 562.1093 $^{^{19}}$ F NMR (471 MHz, CD₃CN, 23 $^{\circ}$ C): δ −19.03. ¹¹B NMR (225 MHz, CD₃CN, 23 °C): δ –2.06 (d, J_{BH} = 113 Hz, **B**-H). #### V. Oxidation Studies Experimental Procedure for the oxidation of 1-Ni: A 4 mL vial was charged with 1-Ni (5.0 mg, 0.0096 mmol, 1.0 equiv) and CD₃CN (0.5 mL). This light tan solution was transferred to a screw cap NMR tube. A solution of the corresponding amount of acetylferrocenium tetrafluoroborate (AcFcBF₄; 3.0 mg, 0.0096 mmol, 1.0 equiv or 6.0 mg, 0.0192 mmol, 2 equiv) in CD₃CN was added. The tube was quickly capped, shaken vigorously, and was analyzed by ¹H NMR spectroscopy after <5 min at room temperature. In the presence of 2 equiv of AcFcBF₄, Ni^{IV} complex 3-Ni was formed in 95% NMR yield. In the presence of 1 equiv of AcFcBF₄, analysis by ¹H NMR and ¹¹B NMR spectroscopy revealed the formation of a paramagnetic species that we previously characterized as Ni^{III} complex 2-Ni.⁸ Figure S1. ¹H NMR spectra of 1-Ni and the treatment of 1-Ni with 1 or 2 equiv of AcFcBF₄ #### For Pd: $$\begin{array}{c} \oplus \text{NMe}_4 \\ \ominus \\ \text{NN} \\ \text{NN} \\ \text{NN} \\ \text{NN} \\ \text{OD}_3\text{CN, pyr-}d_5 \\ \end{array} \begin{array}{c} \text{HB} \\ \text{NN} \\ \text{NN} \\ \text{Pd} \\ \end{array} \begin{array}{c} \text{HB} \\ \text{NN} \\ \text{NN} \\ \text{Pd} \\ \end{array} \begin{array}{c} \text{HB} \\ \text{NN} \\ \text{NN} \\ \text{Pd} \\ \end{array} \begin{array}{c} \text{HB} \\ \text{NN} \\ \text{NN} \\ \text{Pd} \\ \end{array} \begin{array}{c} \text{HB} \\ \text{NN} \\ \text{NN} \\ \text{Pd} \\ \end{array} \begin{array}{c} \text{(eq. S2)} \\ \text{(2-Pd)} \\ \end{array} \\ \text{AcFcBF}_4 = 2 \text{ equiv, } quant. \\ \text{AcFcBF}_4 = 1 \text{ equiv, } 50\% \text{ conv.} \end{array}$$ **Experimental Procedure for the oxidation of 1-Pd:** A 4 mL vial was charged with **1-Pd** (5.0 mg, 0.0096 mmol, 1.0 equiv), pyridine-*d*₅ (4 μL; 0.05 mmol; 5.2 equiv), and CD₃CN (0.5 mL). This light tan solution was transferred to a screw cap NMR tube. A solution of the corresponding amount of acetylferrocenium tetrafluoroborate (AcFcBF₄; 3.0 mg, 0.0096 mmol, 1.0 equiv or 6.0 mg, 0.0192 mmol, 2 equiv) in CD₃CN was added. The tube was quickly capped, shaken vigorously, and was analyzed by ¹H NMR spectroscopy after <5 min at room temperature. In the presence of 2 equiv of AcFcBF₄, Pd complex **3-Pd** was formed in approximately quantitative yield against acetylferrocene as the internal ¹H NMR standard. In the presence of 1 equiv of AcFcBF₄, Pd complex **3-Pd** was formed in approximately 50% yield against acetylferrocene as the internal ¹H NMR standard with 50% of unreacted **1-Pd** remaining. Figure S2. Full ¹H NMR Spectra of 1-Pd and the treatment of 1-Pd with 1 or 2 equiv of AcFcBF₄ **Figure S3.** Zoomed in ¹H NMR spectra of **1-Pd** and the treatment of **1-Pd** with 1 or 2 equiv of AcFcBF₄, illustrating the corresponding resonances for the two complexes #### VI. Reductive Elimination Studies ## Determining Initial Rates for C-C Coupling: Cationic Ni^{IV} Experimental Procedure: In the glovebox, complex 3-Ni (3.1 mg, 0.0059 mmol, 1.0 equiv) was added to a J-Young valve NMR tube equipped with an O-ring seal and then dissolved in CD₃CN (0.5 mL) at room temperature. DMSO (1.0 μL, 0.014 mmol, 2.4 equiv) was added as an internal proton standard. The NMR sample was taken out of the glovebox and immediately placed in liquid nitrogen/ethyl acetate bath (approximately – 84 °C). The frozen sample was then placed in the NMR spectrometer that was preheated to 70 °C. Reductive elimination from 3-Ni was monitored by ¹H NMR spectroscopy at this temperature. Concentration versus time data were acquired from the integration of the methylene proton signals of 5 and 3-Ni with respect to the internal standard. Initial rate values were obtained from the slope of a linear-fit line corresponding to the growth of 5 (Figure S4). **Figure S4.** Concentration vs. Time Data for Reductive Elimination of **3-Ni** to Form **5**. Starting Conditions: [Ni] = 0.011 M, T = 70 °C Determining Initial Rates for C-C Coupling: Ni^{IV}-CF₃ vs. Pd^{IV}-CF₃ #### For Ni: HB $$N_{N}$$ N_{N} N **Experimental Procedure:** In the glovebox, complex **4-Ni** (2.8 mg, 0.0059 mmol, 1.0 equiv) was added to a J-Young valve NMR tube equipped with an O-ring seal and then dissolved in CD₃CN (0.5 mL) at room temperature. DMSO (1.0 μL, 0.014 mmol, 2.4 equiv) was added as an internal proton standard. The NMR sample was taken out of the glovebox and analyzed by 1 H NMR spectroscopy to obtain integrations for the internal standard and complex **4-Ni**. The sample was then placed in an oil bath at 70 °C to induce reductive elimination. At various time points, the NMR sample was taken out of the oil bath and immediately cooled in an ice bath. Concentration versus time data were acquired from the integration of the methylene proton signals of **5** and **4-Ni** with
respect to the internal standard. The initial rate of reductive elimination was determined by monitoring the first 10% of the reaction progress by 1 H NMR spectroscopy. Initial rate values were obtained from the slope of a linear-fit line corresponding to the growth of **5** (Figure S5). **Figure S5.** Concentration vs. Time Data for Reductive Elimination of **4-Ni** to Form **5**. Starting Conditions: [Ni] = 0.011 M, T = 70 °C #### For Pd: **Experimental Procedure:** In the glovebox, complex **4-Pd** (3.0 mg, 0.0059 mmol, 1.0 equiv) was added to a J-Young valve NMR tube equipped with an O-ring seal and then dissolved in CD₃CN (0.5 mL) at room temperature. DMSO (1.0 μ L, 0.014 mmol, 2.4 equiv) was added as an internal proton standard. The NMR sample was placed in an oil bath at 70 °C. However, no reactivity or decomposition of **4-Pd** was observed after monitoring the reaction by ¹H NMR spectroscopy for 3 weeks. ## Determining Order in Reagents for C-X Bond Formation at Pd^{IV} HB N N N Pd Pd Ph ($$X = quiv$$) MeCN, 60 °C MeCN, 60 °C $A = quiv$ **Experimental Procedure:** Pd^{IV} Complex **4-Pd** (3.0 mg, 0.0057 mmol, 1.0 equiv) was weighed into a J-Young valve NMR tube equipped with an O-ring seal. Various amounts of NMe₄OPh (0.0068 mmol to 0.057 mmol) and the ¹⁹F NMR standard 4,4'-difluorobiphenyl (~ 2 mg) were weighed into 4 mL vials, and the solids were dissolved in CD₃CN (0.5 mL). The resulting solution was added to the NMR tube at room temperature. The tube was then placed into an NMR spectrometer that had been preheated to 60 °C. The rate of reductive elimination from **4-Pd** to form **6a-Pd** was monitored by ¹⁹F NMR spectroscopy at 60 °C. Concentration versus time data were acquired by integration of the CF₃ signals of **4-Pd** and **6a-Pd** with respect to the internal standard (Figure S6). Initial rates were obtained from the slope of a linear-fit line monitoring the first 5-20% of the reaction progress. A plot of ln(r₀) vs. ln([OPh]) showed that the rate of coupling is first-order in OPh (Figure S7). **Figure S6.** Concentration vs. Time Data for the Reductive Elimination of **4-Pd** to Form **6a-Pd** in the Presence of 1.2, 2.5, 5, and 10 equiv of NMe₄OPh. **Figure S7.** (ln[OPh]) vs $(ln[r_0])$ Plot. The slope of the line is approximately 1. ### Determining Initial Rates for C-X Bond-Formation at 60 °C HB N N N N Pd $$(5 \text{ equiv})$$ MeCN, 60 °C We have the second of **Experimental Procedure:** In the glovebox Pd^{IV} complex **4-Pd** (3.0 mg, 0.0057 mmol, 1.0 equiv) was added to a J-Young valve NMR tube equipped with an O-ring seal. The respective nucleophile, NR_4X , where X = OPh, OAc, SPh, N_3 (0.0288 mmol, 5 equiv), along with the internal standard 4,4'-difluorobiphenyl (~ 2 mg) was weighed into a 4 mL vial and then dissolved in CD_3CN (0.5 mL). The resulting solutions were added to the NMR tube at room temperature and taken out of the glovebox. The tube was then placed into an NMR spectrometer that had been pre-heated to 60 °C. The rates of reductive elimination were determined by monitoring the first 10-40% of the reaction progress by ^{19}F NMR spectroscopy at this temperature. Concentration versus time data were acquired from the integration of the CF_3 signals of **4-Pd** and **6-Pd** with respect to the internal standard. Initial rate values were obtained from the slope of a linear-fit line corresponding to the decay of **4-Pd** (Figures S8-S11). **Figure S8.** Concentration vs. Time Data for Reductive Elimination from **4-Pd** to Form **6a-Pd**. Starting Conditions: [Pd] = 0.011 M, [OPh] = 0.057 M, T = 60 °C **Figure S9.** Concentration vs. Time Data for Reductive Elimination from **4-Pd** to Form **6b-Pd**. Starting Conditions: [Pd] = 0.011 M, [OAc] = 0.057 M, T = 60 °C **Figure S10.** Concentration vs. Time Data for Reductive Elimination from **4-Pd** to Form **6c-Pd**. Starting Conditions: [Pd] = 0.011 M, [SPh] = 0.057 M, T = 60 °C Figure S11. Concentration vs. Time Data for Reductive Elimination from 4-Pd to Form 6d-Pd. Starting Conditions: [Pd] = 0.011 M, $[N_3]$ = 0.057 M, T = 60 °C ## **Nucleophilicity Values** The Swain-Scott nucleophilicity parameters for the various nucleophiles (phenoxide [OPh], acetate [OAc], thiophenoxide [SPh], and azide [N₃]) were obtained from a report published by Pearson and co-workers. The reported nucleophilicity parameters were plotted vs. experimental initial rates. The nucleophilicity table for complex **4-Ni** was previously reported by our group. The results for **4-Pd** are displayed in Table S1 and Figure S12. **Table S1.** Nucleophilicity parameters and initial rate values for C–X bond-formation reactions from complex **4-Pd** to form **6a-d-Pd** with 5 equiv of nucleophile | Nucleophile
(X ⁻) | Nucleophilicity (n _x) | Initial Rate (r ₀)
(M/s) | log(r ₀) | |----------------------------------|-----------------------------------|---|----------------------| | ⁻OPh | 5.75 | 1.53e-7 | -6.85 | | ⁻OAc | 4.30 | 1.60e-8 | -7.79 | | ⁻SPh | 9.92 | 4.85e-6 | -5.31 | | ⁻ N ₃ | 5.78 | 3.32-8 | -7.45 | Figure S12. Plot of nucleophilicity parameters vs. initial rate of C–X coupling from 4-Pd to form 6a-d-Pd Determining Activation Parameters for C–O Coupling at Ni^{IV} and Pd^{IV} For Ni: **Experimental Procedure:** The activation parameters for C–O coupling at Ni^{IV} were determined through an Eyring Plot in the temperature range of -10 to 40 °C. In the glovebox, complex **4-Ni** (2.6 mg, 0.0055 mmol, 1.0 equiv), NMe₄OPh (4.4 mg, 0.027 mmol, 5.0 equiv), and the ¹⁹F NMR standard 4,4-difluorobiphenyl (~2 mg) were weighed into a 4 mL vial. CD₃CN (0.5 mL) was added at -35 °C and the resulting solution was transferred to a J-Young valve NMR tube equipped with an O-ring seal at this temperature. The NMR tube was taken out of the glovebox and immediately flash frozen in an ethyl acetate/liquid nitrogen bath (-84 °C). The sample was placed into an NMR spectrometer where the probe had been pre-set to the respective temperature (-10 to 40 °C). The rate of reductive elimination was determined by monitoring approximately the first 10% of the reaction by ¹⁹F NMR spectroscopy at -10 °C, 5 °C, 25 °C, 30 °C, and 40 °C. Concentration versus time data were acquired from the integration of the CF₃ signals of **4-Ni** and **6a-Ni** with respect to the internal standard. Initial rate values were obtained from the slope of a linear-fit line corresponding to the decay of **4-Ni**. The activation parameters for C–O coupling were extracted from the resulting Eyring Plot. | Temp (K) | Initial Rate (M s ⁻¹) | Rate Constant (k) | 1/T (K ⁻¹) | In(<i>k</i> /t) | |----------|-----------------------------------|-------------------------|------------------------|------------------| | 263.2 | 1.91 x 10 ⁻⁸ | 2.88 x 10 ⁻⁵ | 0.0038 | -16.02 | | 278.2 | 1.22 x 10 ⁻⁷ | 1.84 x 10 ⁻⁴ | 0.0036 | -14.23 | | 298.2 | 1.21 x 10 ⁻⁶ | 1.83 x 10 ⁻³ | 0.0034 | -12.00 | | 303.2 | 2.01 x 10 ⁻⁶ | 3.03 x 10 ⁻³ | 0.0033 | -11.55 | | 313.2 | 4.73 x 10 ⁻⁶ | 7.14 x 10 ⁻³ | 0.0032 | -10.69 | Table S2. Eyring Plot Data for the Reductive Elimination of 4-Ni to Form 6a-Ni ## For Pd: **Experimental Procedure:** The activation parameters for C–O coupling at Pd^{IV} were determined through an Eyring Plot in the temperature range of 30 to 70 °C. In the glovebox, complex **4-Pd** (3 mg, 0.0055 mmol, 1.0 equiv), NMe₄OPh (4.4 mg, 0.027 mmol, 5.0 equiv), and the ¹⁹F NMR standard 4,4-difluorobiphenyl (~2 mg) were weighed into a 4 mL vial. CD₃CN (0.5 mL) was added at –35 °C and the resulting solution was transferred to a J-Young valve NMR tube equipped with an O-ring seal at this temperature. The NMR tube was taken out of the glovebox and immediately flash frozen in an ethyl acetate/liquid nitrogen bath (–84 °C). The sample was placed into an NMR spectrometer where the probe had been pre-set to the respective temperature 30 to 70 °C). The rate of reductive elimination was determined by monitoring approximately the first 10% of the reaction by ¹⁹F NMR spectroscopy at the indicated temperature. Concentration versus time data were acquired from the integration of the CF₃ signals of **4-Pd** and **6a-Pd** with respect to the internal standard. Initial rate values were obtained from the slope of a linear-fit line corresponding to the decay of **4-Pd**. The activation parameters for C–O coupling were extracted from the resulting Eyring Plot. | Temp (K) | Initial Rate (M s ⁻¹) | Rate Constant (k) | 1/T (K ⁻¹) | In(<i>k</i> /t) | |----------|-----------------------------------|-------------------------|------------------------|------------------| | 303.2 | 1.31 x 10 ⁻⁸ | 1.98 x 10 ⁻⁵ | 0.0033 | -16.54 | | 313.2 | 2.39 x 10 ⁻⁸ | 3.61 x 10 ⁻⁵ | 0.0032 | -15.97 | | 323.2 | 3.34 x 10 ⁻⁸ | 1.11 x 10 ⁻⁴ | 0.0031 | -14.88 | | 333.2 | 2.86 x 10 ⁻⁷ | 4.32 x 10 ⁻⁴ | 0.0030 | -13.56 | Table S3. Eyring Plot Data for the Reductive Elimination of 4-Pd to Form 6a-Pd Azide Reactivity: Ni vs. Pd #### For Ni: $$\begin{array}{c} \text{HB} \\ \text{NN} \\ \text{NN} \\ \text{NN} \\ \text{NN} \\ \text{CF}_3 \\ \text{CH}_3\text{CN, rt} \end{array} \begin{array}{c} \text{HB} \\ \text{NN} \text{NN}$$ *in situ* Observation and Decomposition of $[(NBu_4)(Tp)Ni^{II}(C_6H_4-o\text{-}CMe_2CH_2N_3)(CF_3)]$ (6d-Ni).³ A J. Young valve NMR tube equipped with an O-ring seal was charged with $[(Tp)Ni^{IV}(CH_2CMe_2-o\text{-}C_6H_4)(CF_3)]$ (4-Ni) (10 mg, 0.021 mmol, 1.0 equiv). This solid was dissolved in acetonitrile (0.5 mL). NBu_4N_3 (6.0 mg, 0.021 mmol, 1.0 equiv) was added, and the resulting solution was monitored at room temperature by ¹H and ¹⁹F NMR spectroscopy. Over the course of 1 h, the reaction mixture changed color from yellow to purple. Over an additional 15 h, the color changed again to orange. Intermediate **6d-Ni** was observed *in situ* and characterized at approximately 20% conversion. ¹H NMR (700 MHz, CD₃CN, 23 °C) δ 8.28 (d, J_{HH} = 7.2 Hz, 1H), 8.03 (d,
J_{HH} = 2.0 Hz, 1H), 7.79 (m, 1H), 7.63 (br, 1H), 7.37 (br, 1H), 7.32 (br, 1H), 7.10 (m, 1H), 6.72 (t, J_{HH} = 7.4 Hz, 1H), 6.64 (t, J_{HH} = 7.4 Hz, 1H), 6.43 (d, J_{HH} = 6.9 Hz, 1H), 6.33 (br, 1H), 6.19 (overlapping peaks, 1H), 5.79 (br, 1H), 3.72 (d, J_{HH} = 11.9 Hz, 1H), 3.71 (d, J_{HH} = 11.9 Hz, 1H), 2.02 (s, 3H), 1.76 (s, 3H). ¹⁹F NMR (471 MHz, CD₃CN, 23 °C) δ –20.59 (s, Ni-C**F**₃). After 15 h at room temperature, complex **4-Ni** and intermediate **6d-Ni** were fully consumed to generate 3,3'-dimethylindoline in quantitative conversion. Reaction conversion was determined by integration of the methylene protons of the indoline vs. an internal standard, 3-(trifluoromethyl)anisole via ¹H NMR spectroscopy. 3,3'-dimethylindoline was characterized by comparison of its ¹H NMR spectrum with that reported in the literature ¹⁰ and by mass spectrometry. # Monitoring Indoline Formation by ¹H and ¹⁹F NMR Spectroscopy **Figure S13.** ¹H NMR spectra showing the reaction progress for the formation of 3,3,-dimethylindoline from complex **4-Ni** and azide intermediate **6d-Ni**. (a) 2 h, 23 °C (b) 15 h, 23 °C. **Figure S14.** ¹⁹F NMR spectra showing the reaction progress for the formation of $Ni^{II}(MeCN)_2(CF_3)_2$ from complex **4-Ni** and azide intermediate **6d-Ni**. (a) 2 h, 23 °C (b) 15 h, 23 °C. ## For Pd: **Thermolysis of 6d-Pd.** A J. Young valve NMR tube equipped with an O-ring seal was charged with $[(NBu_4)(Tp)Pd^{II}(C_6H_4-o\text{-}CMe_2CH_2N_3)(CF_3)]$ (**6d-Pd**) (10 mg, 0.012 mmol, 1.0 equiv). This solid was dissolved in acetonitrile (0.5 mL). NBu_4N_3 (17 mg, 0.060 mmol, 5.0 equiv) was added, and the resulting solution was monitored at 70 °C by 1H and ^{19}F NMR spectroscopy. Over the course of 1 week at this temperature complex **6d-Pd** was stable to any further reactivity. ## VII. Cyclic Voltammetry Studies **Experimental Procedure:** Cyclic voltammetry on complexes **1-Ni** and **1-Pd** were performed in a 3-electrode cell consisting of a 3 mm glassy carbon disc working electrode, a Ag/Ag⁺ reference electrode with a Ag wire in a fritted chamber containing a solution of AgBF₄ (0.01 M) and NBu₄PF₆ (0.1 M) in acetonitrile, and a Pt wire counter electrode. A 2 mL solution of the complex (0.01 M) and NBu₄PF₆ (0.1 M) in acetonitrile was added to the electrochemical cell. Cyclic voltammetry scans were taken at 100 mV/s. After obtaining the CV for each complex, ferrocene was added as an internal reference. Figure S15. CV of 1-Ni in MeCN. [Ni] = 0.01 M, $[NBu_4PF_6] = 0.1$ M, scan rate = 100 mV/s. **Figure S16.** CV of **1-Pd** in the Absence of Added Pyridine. Conditions: [Pd] = 0.01 M in MeCN, [NBu₄PF₆] = 0.1 M in MeCN, Scan rate = 100 mV/s We hypothesized that the irreversibility in the CV of complex **1-Pd** could be improved with the addition of a strong L-type ligand such as pyridine to stabilize the high-valent center. Cyclic voltammetry of complex **1-Pd** was therefore performed under the previous conditions with the addition of 2 mL of pyridine. [Pd] = 0.005 M in a 50/50 mixture of acetonitrile/pyridine. As shown in Figure S17, the reversibility of the complex is improved with added pyridine. Figure S17. CV of 1-Pd with Added Pyridine. Conditions: [Pd] = 0.005 M in MeCN/pyr, [NBu₄PF₆] = 0.1 M, Scan Rate = 100 mV/s ## VIII. Computational Details Gaussian 09¹¹ was used for DFT calculations at the B3LYP level for optimization, using the Stuttgart/Dresden ECP (SDD) basis set for Pd¹² and the 6-31G(d) basis set for other atoms (referred to as basis set BS1). Single point calculations were performed at the B3LYP-D3 level, 13 utilizing the quadruple-ξ valence polarised def2-QZVP14 basis set on Ni and Pd along with the corresponding ECP and the 6-311+G(2d,p) basis set on other atoms (basis set BS2). All calculations were carried out for acetonitrile as solvent with the IEFPCM (SCRF) model. All thermodynamic data were calculated at the standard state (298.15 K and 1 atm) and entropy calculations were adjusted by the method proposed by Okuno. 15 This computational procedure has been benchmarked for palladium when applied to C···C coupling from a closely related 2,2'-bipyridine (bpy) cation $[Pd^{(V)}(CH_2CMe_2-o-C_6H_4-C,C')(F)(bpy-N,N')]^{+}$ in acetonitrile. ¹⁶ The triflate (OTf) salt of this cation computes as ΔG^{\dagger} 24.7 kcal/mol, compared with experimental (ΔG^{\dagger} 23.8 kcal/mol) and different computation procedures (ΔG[‡] 23.3 kcal/mol) for a sulfonamide (Tf₂N) salt. 16 All transition structures contained one imaginary frequency, exhibiting atom displacements consistent with the anticipated reaction pathway. The nature of transition structures was confirmed by Intrinsic Reaction Coordinate (IRC) searches, vibrational frequency calculations, and potential energy surface scans. Natural bond order analyses 17 were performed in conjunction with BS1. For studies of formation of the indolinide complex, computation for geometry optimization and single-point employed the UCAM-B3LYP and UCAM-B3LYP-D3 functionals, respectively, within the brokensymmetry unrestricted methodology to facilitate calculations for triplet and open-shell singlet configurations. 18,19 ## Wiberg Bond Indices (WBI) Calculations of 4-Ni and 4-Pd Wiberg Bond Indices (WBI) were computed to compare the two M–N¹ and M–N² bonds (*trans* to CF₃ and Ph, respectively) with the M···N³ interaction (Table S4). The data show shorter Pd–N¹ distances *trans* to CF₃ compared with trans to Ph (Pd–N²). Consequently, larger Wiberg Bond Indices for the Pd–N¹ bonds *trans* to CF₃ were found, as anticipated for the stronger *trans* effect of the aryl group. In addition, the uniformly longer Pd–N^{1/2} and Pd···N³ distances compared to Ni are reflected in uniformly lower WBI's for Pd. Overall, pathway B can be considered a "five-coordinate-like" transition state in the Pd system. | Nuc | c (X) | M-N ¹ | WBI | M-N ² | WBI | MN ³ | WBI | |-----|-------|------------------|-------|------------------|-------|-----------------|-------| | Ni: | OPh | 2.022 | 0.396 | 2.050 | 0.372 | 2.528 | 0.184 | | | SPh | 2.019 | 0.392 | 2.047 | 0.368 | 2.603 | 0.165 | | Pd: | OPh | 2.167 | 0.345 | 2.209 | 0.324 | 2.818 | 0.153 | | | SPh | 2.165 | 0.345 | 2.047 | 0.368 | 2.937 | 0.132 | **Table S4.** M-N and M···N distances together with Wiberg Bond Indices for these interactions in κ^3 -Tp transition structures (**B-M-X-TS**) for the reactions of complexes **4-Ni/Pd** with anionic nucleophiles X = OPh and SPh. **Figure S18.** Complete energy profiles for the reaction of phenoxide with **4-Ni** (abbreviated in Figure 9(a)) illustrating alternative pathways involving preliminary dissociation of a pyrazole donor (in blue), or direct interaction of $[OPh]^{-}$ with octahedral **4-Ni** (in black). Energies ΔG (ΔH) in kcal/mol. **Figure S19.** Complete energy profiles for the reaction of phenoxide with **4-Pd** (abbreviated in Figure 9b) illustrating alternative pathways involving preliminary dissociation of a pyrazole donor (in blue), or direct interaction of $[OPh]^-$ with octahedral **4-Ni** (in black). Energies ΔG (ΔH) in kcal/mol. **Figure S20.** Energy profiles for the reaction of thiophenoxide with **4-Ni** (see Figure 10) illustrating alternative pathways involving preliminary dissociation of a pyrazole donor (in blue), or direct interaction of [SPh] with octahedral **4-Ni** (in black). Energies ΔG (ΔH) in kcal/mol. **Figure S21.** Energy profiles for the reaction of thiophenoxide with **4-Pd** (see Figure 10) illustrating alternative pathways involving preliminary dissociation of a pyrazole donor (in blue), or direct interaction of [SPh] with octahedral **4-Pd** (in black). Energies ΔG (ΔH) in kcal/mol. **Figure S22.** Energy profiles for the reaction of acetate with **4-Ni** illustrating alternative pathways involving preliminary dissociation of a pyrazole donor (in blue), or direct interaction of $[OAc]^T$ with octahedral **4-Ni** (in black). Energies ΔG (ΔH) in kcal/mol. **Figure S23.** Energy profiles for the reaction of acetate with **4-Pd** illustrating alternative pathways involving preliminary dissociation of a pyrazole donor (in blue), or direct interaction of [OAc] with octahedral 4-Pd (in black). Energies ΔG (ΔH) in kcal/mol. **Figure S24.** Energy profiles for the reaction of azide with **4-Ni** illustrating alternative pathways involving preliminary dissociation of a pyrazole donor (in blue), or direct interaction of $[N_3]^T$ with octahedral **4-Ni** (in black). Energies ΔG (ΔH) in kcal/mol. **Figure S25.** Energy profiles for the reaction of azide with **4-Pd** illustrating alternative pathways involving preliminary dissociation of a pyrazole donor (in blue), or direct interaction of $[N_3]^-$ with octahedral **4-Pd** (in black). Energies ΔG (ΔH) in kcal/mol. #### IX. References 1 Compare L. Cutiorroz F ¹ Campora, J.; Gutierrez, E.; Monge, Á.; Palma, P.; Poveda, M. L.; Ruiz, C.; Carmona, E. *Organometallics* **1994**, *13*, 1728–1745. ² Campora, J.; Lopez, J. A.; Palma, P.; Rio, D.; Carmona, E.; Valerga, P.; Graiff, C.; Tiripicchio, A. *Inorg. Chem.* **2001**, *40*, 4116–4126. ³ Camasso, N. M.; Sanford, M. S. Science **2015**, 347, 1218–1220. ⁴ Camasso, N. M.; Pérez-Temprano, M. H.; Sanford, M. S. *J. Am. Chem. Soc.* **2014**, *136*, 12771–12775. ⁵ Bour, J. R.; Camasso, N. M; Sanford, M. S. *J. Am. Chem. Soc.* **2015**, *137*, 8034–8037. ⁶ Connelly, N. G.; Geiger, W. E. Chem. Rev. **1996**, 96, 877–910. ⁷ Campora, J.; Palma, P.; del Rio, D.; Lopez, J. A.; Alvarez, E.; Connelly, N. G. *Organometallics* **2005**, *24*, 3624–3628. ⁸ Bour, J. R.; Camasso, N. M.; Meucci, E. A.; Kampf, J. W.; Canty, A. J.; Sanford, M. S. *J. Am. Chem. Soc.* **2016**, *138*, 16105–16111. ⁹ (a) Swain, C. G.; Scott, C. B. *J. Am. Chem. Soc.* **1953**, 75, 141–147. (b) Pearson, R. G.;
Sobel, H. R.; Songstad, J. *J. Am. Chem. Soc.* **1968**, *90*, 319–326. ¹⁰ Erdelmeier, I.; Tailhan-Lomont, C.; Yadan, J.-C. *J. Org. Chem.* **2000**, *65*, 8152–8157. ¹¹ Frisch, M. J.; et al. *Gaussian 09*, revision A.02; Gaussian, Inc.: Wallingford, CT, 2009. ¹² Andrae, H.; Haussermann, U.; Dolg, M.; Stoll, H.; Preuss, H. *Theor. Chim. Acta* **1990**, 77, 123–141. ¹³ (a) Ehrlich, S.; Moellmann, J.; Grimme, S. *Acc. Chem. Res.* **2013**, *46*, 916–926. (b) Antony, J.; Sure, R.; Grimme, S. *Chem. Commun.* **2015**, *51*, 1764–1774. ¹⁴ Weigend, F.; Furche, F.; Aldrichs, R. *J. Chem. Phys.* **2003**, *119*, 12753–12762. ¹⁵ Okuno, Y. *Chem. Eur. J.* **1997**, 3, 212–218. ¹⁶ Pendleton, I. M.; Pérez-Temprano, M. H.; Sanford, M. S.; Zimmerman, P. M. *J. Am. Chem. Soc.* **2016**, *138*, 6049–6060. ¹⁷ Glendening, E. D.; Read, A. E.; Carpenter, J. E.; Weinhold, F. *NBO*, version 3.1; Gaussian Inc.; Pittsburgh, PA, **2003**. ¹⁸ Yanai. T.; Tew, D. P.; Handy, N. C. *Chem. Phys. Lett.* **2004**, *393*, 51–57. (b) Cramer, C. J.; Truhlar, D. G. *Phys. Chem. Chem. Phys.* **2009**, *11*, 10757–10816. ¹⁹ Poater, A.; Cavallo, L. *Theor. Chem. Acc.* **2013**, *132*, 1353. #### X. Spectral Data # ¹H NMR Spectrum of 1-Ni at 23 °C (CD₃CN) Figure S26. ¹H NMR spectra of complex 1-Ni at 23 °C in CD₃CN. ### ¹³C NMR Spectrum of 1-Ni at 23 °C (CD₃CN) Figure S27. 13 C NMR spectra of complex 1-Ni at 23 $^{\circ}$ C in CD $_{3}$ CN. ## ¹¹B NMR Spectrum of 1-Ni at 23 °C (CD₃CN) Figure S28. ¹¹B NMR spectrum of complex 1-Ni at 23 °C in CD₃CN. ### ¹H NMR Spectrum of 1-Pd at 23 °C (CD₃CN) Figure S29. ¹H NMR spectra of complex 1-Pd at 23 °C in CD₃CN. # $^{13}\text{C NMR}$ Spectrum of 1-Pd at 23 °C (CD $_3\text{CN})$ Figure S30. 13 C NMR spectrum of complex 1-Pd at 23 $^{\circ}$ C in CD $_{3}$ CN. ## ¹¹B NMR Spectrum of 1-Pd at 23 °C (CD₃CN) Figure S31. ¹¹B NMR spectrum of complex 1-Pd at 23 °C in CD₃CN. #### ¹H NMR Spectrum of 3-Ni at 23 °C (CD₃CN) Figure S32. ¹H NMR spectra of complex 3-Ni at 23 °C in CD₃CN. ### $^{13}\text{C NMR}$ Spectrum of 3-Ni at 0 °C (CD₃CN) Figure S33. ¹³C NMR spectrum of complex 3-Ni at 0 °C in CD₃CN. #### ¹¹B NMR Spectrum of 3-Ni at 23 °C (CD₃CN) Figure S34. ¹¹B NMR spectrum of complex 3-Ni at 23 °C in CD₃CN. Figure S35. ¹⁹F NMR spectrum of complex 3-Ni at 23 °C in CD₃CN. ### ¹H NMR Spectrum of 4-Ni at 23 °C (CD₃CN) Figure S36. ¹H NMR spectra of complex 4-Ni at 23 °C in CD₃CN. ### $^{13}\text{C NMR}$ Spectrum of 4-Ni at 23 °C (CD $_3\text{CN})$ Figure S37. 13 C NMR spectrum of complex 4-Ni at 23 $^{\circ}$ C in CD $_{3}$ CN. # $^{19}\text{F NMR}$ Spectrum of 4-Ni at 23 °C (CD $_3\text{CN})$ Figure S38. ¹⁹F NMR spectrum of complex 4-Ni at 23 °C in CD₃CN. Figure S39. ¹¹B NMR spectrum of complex 4-Ni at 23 °C in CD₃CN. $^{^{11}\}text{B}$ NMR Spectrum of 4-Ni at 23 °C (CD $_3\text{CN})$ ## ¹⁹F–¹³C HMBC Spectrum of 4-Ni at 23 °C (CD₃CN) **Figure S40.** $^{19}\text{F}-^{13}\text{C}$ HMBC spectrum of complex **4-Ni** at 23 $^{\circ}\text{C}$ in CD₃CN. # $^1\text{H NMR}$ Spectrum of 4-Pd at 23 °C (CD $_3\text{CN})$ Figure S41. ¹H NMR spectra of complex 4-Pd at 23 °C in CD₃CN. ### ¹³C NMR Spectrum of 4-Pd at 23 °C (CD₃CN) Figure S42. ¹³C NMR spectrum of complex 4-Pd at 23 °C in CD₃CN. #### ¹¹B NMR Spectrum of 4-Pd at 23 °C (CD₃CN) Figure S43. ¹¹B NMR spectrum of complex 4-Pd at 23 °C in CD₃CN. #### ¹⁹F NMR Spectrum of 4-Pd at 23 °C (CD₃CN) Figure S44. ¹⁹F NMR spectrum of complex 4-Pd at 23 °C in CD₃CN. ## ¹⁹F-¹³C HMBC Spectrum of 4-Pd at 23 °C (CD₃CN) Figure S45. $^{19}\text{F}-^{13}\text{C}$ HMBC spectrum of complex 4-Pd at 23 $^{\circ}\text{C}$ in CD $_{3}\text{CN}$. ### ¹H NMR Spectrum of 6a-Pd at 23 °C (CD₃CN) Figure S46. ^1H NMR spectra of complex 6a-Pd at 23 $^{\circ}\text{C}$ in CD $_3\text{CN}$. ## ¹³C NMR Spectrum of 6a-Pd at 23 °C (CD₃CN) Figure S47. ^{13}C NMR spectrum of complex 6a-Pd at 23 $^{\circ}\text{C}$ in CD $_{3}\text{CN}$. ### ¹¹B NMR Spectrum of 6a-Pd at 23 °C (CD₃CN) Figure S48. ¹¹B NMR spectrum of complex 6a-Pd at 23 °C in CD₃CN. ¹⁹F NMR Spectrum of 6a-Pd at 23 °C (CD₃CN) Figure S49. ¹⁹F NMR spectrum of complex 6a-Pd at 23 °C in CD₃CN. ## $^{19}\text{F}-^{13}\text{C}$ HMBC Spectrum of 6a-Pd at 23 °C (CD $_3\text{CN})$ Figure S50. ¹⁹F–¹³C HMBC NMR spectrum of complex **6a-Pd** at 23 °C in CD₃CN. F2 (ppm) -10 ### ¹H NMR Spectrum of 6b-Pd at 23 °C (CD₃CN) Figure S51. ¹H NMR spectra of complex 6b-Pd at 23 °C in CD₃CN. ## $^{13}\text{C NMR}$ Spectrum of 6b-Pd at 23 °C (CD $_3\text{CN})$ Figure S52. 13 C NMR spectra of complex 6b-Pd at 23 $^{\circ}$ C in CD $_{3}$ CN. #### ¹¹B NMR Spectrum of 6b-Pd at 23 °C (CD₃CN) Figure S53. ¹¹B NMR spectrum of complex 6b-Pd at 23 °C in CD₃CN. #### ¹⁹F NMR Spectrum of 6b-Pd at 23 °C (CD₃CN) Figure S54. ¹⁹F NMR spectrum of complex 6b-Pd at 23 °C in CD₃CN. # $^{19}\text{F}-^{13}\text{C}$ HMBC Spectrum of 6b-Pd at 23 °C (CD $_3\text{CN})$ Figure S55. ¹⁹F-¹³C HMBC NMR spectrum of complex **6b-Pd** at 23 °C in CD₃CN. #### ¹H NMR Spectrum of 6c-Pd at 23 °C (CD₃CN) Figure S56. ¹H NMR spectra of complex 6c-Pd at 23 °C in CD₃CN. ## ¹³C NMR Spectrum of 6c-Pd at 23 °C (CD₃CN) Figure S57. ¹³C NMR spectra of complex 6c-Pd at 23 °C in CD₃CN. #### ¹¹B NMR Spectrum of 6c-Pd at 23 °C (CD₃CN) Figure S58. ¹¹B NMR spectrum of complex 6c-Pd at 23 °C in CD₃CN. #### ¹⁹F NMR Spectrum of 6c-Pd at 23 °C (CD₃CN) Figure S59. ¹⁹F NMR spectrum of complex 6c-Pd at 23 °C in CD₃CN. # $^{19}\text{F}-^{13}\text{C}$ HMBC Spectrum of 6c-Pd at 23 °C (CD $_3\text{CN})$ Figure S60. ¹⁹F-¹³C HMBC NMR spectrum of complex 6c-Pd at 23 °C in CD₃CN. ### ¹H NMR Spectrum of 6d-Pd at 23 °C (CD₃CN) [⊕] NBu₄ /=¬ Figure S61. ¹H NMR spectra of complex 6d-Pd at 23 °C in CD₃CN. # $^{13}\text{C NMR}$ Spectrum of 6d-Pd at 23 °C (CD $_3\text{CN})$ Figure S62. ¹³C NMR spectrum of complex 6d-Pd at 23 °C in CD₃CN. #### ¹¹B NMR Spectrum of 6d-Pd at 23 °C (CD₃CN) Figure S63. ¹¹B NMR spectrum of complex 6d-Pd at 23 °C in CD₃CN. #### ¹⁹F NMR Spectrum of 6d-Pd at 23 °C (CD₃CN) Figure S64. ¹⁹F NMR spectrum of complex 6d-Pd at 23 °C in CD₃CN. ## ¹⁹F−¹³C HMBC Spectrum of 6d-Pd at 23 °C (CD₃CN) Figure S65. ¹⁹F-¹³C HMBC NMR spectrum of complex 6d-Pd at 23 °C in CD₃CN. #### XI. X-Ray Crystallography Experimental Data #### X-ray Crystallography Experimental Data of 4-Ni Figure S66. Solid-state structure of 4-Ni Yellow block-like crystals of 4-Ni were grown from a methanol solution of the compound at 22 ° C. A crystal of dimensions 0.19 x 0.06 x 0.02 mm was mounted on a Rigaku AFC10K Saturn 944+ CCD-based X-ray diffractometer equipped with a low temperature device and Micromax-007HF Cu-target micro-focus rotating anode (λ = 1.54187 A) operated at 1.2 kW power (40 kV, 30 mA). The X-ray intensities were measured at 85(1) K with the detector placed at a distance 42.00 mm from the crystal. A total of 2028 images were collected with an oscillation width of 1.0° in ω . The exposure times were 1 sec. for the low angle images, 6 sec. for high angle. Rigaku d*trek images were exported to CrysAlisPro for processing and corrected for absorption. The integration of the data yielded a total of 15630 reflections to a maximum 20 value of 138.58° of which 3185 were independent and 3178 were greater than 2σ(I). The final cell constants were based on the xyz centroids 13366 reflections above 10σ(I). Analysis of the data showed negligible decay during data collection. The structure was solved and refined with the Bruker SHELXTL (version 2014/6) software package, using the space group Cc with Z = 4 for the formula $C_{20}H_{22}BF_3N_6Ni$. All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in both idealized and refined positions. Full matrix least-squares refinement based on F^2 converged at R1 = 0.0357 and wR2 = 0.0947 [based on I > 2 sigma(I)], R1 = 0.0375 and wR2 = 0.0948 for all data. Table S5. Crystal Data and Structural Refinement for 4-Ni. | Empirical formula | C ₂₀ H ₂₂ BF ₃ N ₆ Ni | |-----------------------------------|--| | Formula weight | 472.95 | | Temperature | 85(2) K | | Wavelength | 1.54184 A | | Crystal System | Monoclinic | | Space group | Cc | | Unit Cell Dimensions | $a = 10.62710(10) \text{ Å}, \alpha = 90^{\circ}$ | | | b = 14.82650(10) Å, β = 109.5820(10)° | | | $c = 14.08920(10) \text{ Å}, \gamma = 90^{\circ}$ | | Volume | 2091.54(3) Å ³ | | Z | 4 | | Calculated density | 1.502 Mg/m ³ | | Absorption coefficient | 1.749 mm ⁻¹ | | F(000) | 976 | | Crystal Size | 0.190 x 0.060 x 0.020 mm | | Theta range for data collection | 5.331 to 69.292° | | Limiting indices | -12 <u><</u> h <u><</u> 12, -17 <u><</u> k <u><</u> 17, -14 <u><</u> l <u><</u> 16 | | Reflections collected | 15630 | | Independent collections | 3185 [R(int) = 0.0501] | | Completeness to theta | 67.684 (98.8 %) | | Absorption correction | Semi-empirical from equivalents | | Max. and min. transmission | 1.00000 and 0.84728 | | Refinement method | Full-matrix least-squares on F ² | | Data/ restraints/ parameters | 3185 / 2 / 287 | | Goodness-of-fit on F ² | 1.071 | | Final R indices [l>2sigma(l)] | R1 = 0.0376, wR2 = 0.0947 | | R indices (all data) | R1 = 0.0376, wR2 = 0.0948 | | Extinction coefficient | 0.00079 (19) | | Largest diff. peak and hole | 0.434 and -0.414 e Å ⁻³ | #### X-ray Crystallography Experimental Data of 4-Pd Figure S67. Solid-state structure of 4-Pd Colorless needles of 4-Pd were grown from an acetone solution of the compound at 25 °C. A crystal of dimensions 0.14 x 0.12 x 0.08 mm was mounted on a Rigaku AFC10K Saturn 944+ CCD-based X-ray diffractometer equipped with a low temperature device and Micromax-007HF Cu-target micro-focus rotating anode (λ = 1.54187 A) operated at 1.2 kW power (40 kV, 30 mA). The X-ray intensities were measured at 85(1) K with the detector placed at a distance 42.00 mm from the crystal. A total of 2028 images were collected with an
oscillation width of 1.0° in ω . The exposure times were 1 sec. for the low angle images, 10 sec. for high angle. The integration of the data yielded a total of 32046 reflections to a maximum 2θ value of 136.30° of which 3856 were independent and 3643 were greater than $2\sigma(I)$. The final cell constants were based on the xyz centroids 22474 reflections above $10\sigma(I)$. Analysis of the data showed negligible decay during data collection; the data were processed with CrystalClear 2.0 and corrected for absorption. The structure was solved and refined with the Bruker SHELXTL (version 2014/6) software package, using the space group P2(1)/c with Z = 4 for the formula C₂₀H₂₂BN₆F₃Pd. All non-hydrogen atoms were refined anisotropically with the hydrogen atoms placed in idealized positions. The -CF₃ group is rotationally disordered in two orientations. Full matrix least-squares refinement based on F2 converged at R1 = 0.0573 and wR2 = 0.1516 [based on I > 2sigma(I)], R1 = 0.0588 and wR2 = 0.1525 for all data. Acknowledgement is made for funding from NSF grant CHE-0840456 for X-ray instrumentation. Table S6. Crystal Data and Structural Refinement for 4-Pd. | Empirical formula | $C_{20}H_{22}BF_3N_6Pd$ | |-----------------------------------|--| | Formula weight | 520.64 | | Temperature | 85(2) K | | Wavelength | 1.54178 A | | Crystal System | Monoclinic | | Space group | P2(1)/c | | Unit Cell Dimensions | $a = 8.0694(2) \text{ Å}, \alpha = 90^{\circ}$ | | | b = 18.1379(3) Å, β = 101.106(7)° | | | $c = 14.7260(10) \text{ Å}, \gamma = 90^{\circ}$ | | Volume | 2114.96(16) Å ³ | | Z | 4 | | Calculated density | 1.635 Mg/m ³ | | Absorption coefficient | 7.487 mm ⁻¹ | | F(000) | 1048 | | Crystal Size | 0.140 x 0.120 x 0.080 mm | | Theta range for data collection | 3.911 to 68.149° | | Limiting indices | -9 <u><</u> h <u><</u> 9, -21 <u><</u> k <u><</u> 21, -17 <u><</u> l <u><</u> 17 | | Reflections collected | 32046 | | Independent collections | 3856 [R(int) = 0.0667] | | Completeness to theta | 67.679 (99.8 %) | | Absorption correction | Semi-empirical from equivalents | | Max. and min. transmission | 0.550 and 0.375 | | Refinement method | Full-matrix least-squares on F ² | | Data/ restraints/ parameters | 3856 / 51 / 311 | | Goodness-of-fit on F ² | 1.142 | | Final R indices [l>2sigma(l)] | R1 = 0.0573, wR2 = 0.1516 | | R indices (all data) | R1 = 0.0588, wR2 = 0.1525 | | Extinction coefficient | 0.00075(12) | | Largest diff. peak and hole | 1.691 and -0.995 e Å ⁻³ |