Structural Diversity, Magnetic Properties, Luminescence Sensing of Flexible Tripodal Ligand of 1,3,5-Tris(4-carbonylphenyloxy)benzene Based Mn(II)/Cd(II) Coordination Polymers

5

10

Jie Zhang,^a Liangqin Huo,^a Xiaoqing Wang,^a Kegong Fang,^b Liming Fan,^{*a} and Tuoping Hu^{*a,b}

^aDepartment of Chemistry, College of Science, North University of China, Taiyuan 030051, China. ^bState Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan 030051, China. *E-mail: hutuopingsx@126.com; limingfan@nuc.edu.cn.*

Figure S1. The different patterns of trinuclear $\{Mn_3(COO)_6(\mu_2-H_2O)_2\}$ SBUs in **1**.

Figure S2. Tiling featured net of 1.

Figure S3. The 3D network constructed from two kinds of TCPB³⁻ ligands coordinate with the 1D $\{Cd_6(COO)_8(\mu_3-OH)_2(\mu_2-OH_2)_2\}_n$ SBUs in **2** views along *b* axis.

Figure S4. The different patterns of $Cd_6(COO)_8(\mu_3-OH)_2(\mu_2-OH_2)_2$ unit in **2**.

Figure S5. The tiling featured net of 2.

Figure S6. The tiling featured net of 3.

Figure S7. The binuclear $\{Cd_2(COO)_3\}$ SBUs in 4.

Figure S9. The 1D $\{Cd(bib)\}_n$ chain in 4 views along *a* axis.

5 Figure S10. PXRD patterns of 1-4. Dark: calculated from the X-ray single-crystal data; Red: observed for the as-synthesized solids.

Figure S11. TGA curves for complexes 1-4.

Figure S12. The fluorescence spectrum of organic linkers, complexes 2 and 4.

Figure S13. The PL spectra of the DMF suspension of **2** upon incremental addition of NB. Inset: The luminescent 5 intensity (I_0/I) versus the nitroaromatics concentration.

Figure S14. The PL spectra of the DMF suspension of **2** upon incremental addition of PNT. Inset: The luminescent intensity (I_0/I) versus the nitroaromatics concentration.

Figure S15. The PL spectra of the DMF suspension of **2** upon incremental addition of PNA. Inset: The luminescent intensity (I_0/I) versus the nitroaromatics concentration.

Figure S16. The PL spectra of the DMF suspension of 2 upon incremental addition of PNP. Inset: The luminescent intensity (I_0/I) versus the nitroaromatics concentration.

10 Figure S17. The PL spectra of the DMF suspension of 4 upon incremental addition of NB. Inset: The luminescent intensity (I_0/I) versus the nitroaromatics concentration.

Figure S18. The PL spectra of the DMF suspension of 4 upon incremental addition of PNT. Inset: The luminescent intensity (I_0/I) versus the nitroaromatics concentration.

Figure S19. The PL spectra of the DMF suspension of **4** upon incremental addition of PNA. Inset: The luminescent intensity (I_0/I) versus the nitroaromatics concentration.

10 Figure S20. The PL spectra of the DMF suspension of 4 upon incremental addition of PNP. Inset: The luminescent intensity (I_0/I) versus the nitroaromatics concentration.

Figure S21. The linear plots at low concentration of PNT (a), NB (b), PNP (c) and PNA (d) for 2.

Figure S22. The linear plots at low concentration of PNT (a), NB (b), PNP (c) and PNA (d) for 4.

Figure S23. Fluorescence intensity ratio histograms of 2 for sensing NACs up to three cycles.

Figure S24. Quenching rate histograms of 4 for sensing NACs up to three cycles.

Figure S25. The PXRD pattern of 2 after immerging in several NAC-analytes and Cr³⁺.

Figure S26. The PXRD pattern of **4** after immerging in several NACs and Cr^{3+} .

Figure S27. Spectral overlap between the normalized emission spectra of **2**, **4** and normalized absorption spectra of NACs.

Figure S28. The PL spectra of the H₂O suspension of **2** upon incremental addition of Cr^{3+} . Inset: The luminescent 5 intensity (I₀/I) versus the Cr^{3+} concentration.

Figure S29. The PL spectra of the H₂O suspension of 4 upon incremental addition of Cr^{3+} . Inset: The luminescent intensity (I₀/I) versus the Cr^{3+} concentration.

Figure S30. The linear plots at low concentration for 2 (a) and 4 (b).

Figure S31. Comparison of the photoluminescence intensity of **2** (a) and **4** (b) in H₂O suspension with the 5 introduction of other metal ions (K⁺, Cd²⁺, Mg²⁺, Na⁺, Ba²⁺, Co²⁺, Zn²⁺, Al³⁺, Pb²⁺, Ni²⁺, Ca²⁺, Hg²⁺).

Figure S32. Quenching rate histograms of 2 (a) and 4 (b) for sensing Cr^{3+} up to three cycles.

Figure S33. Spectral overlap between the normalized emission spectra of 2, 4 and normalized absorption spectra of Cr^{3+} .

Figure 34. The temperature dependence of magnetic susceptibility of 1 under a static field of 1000 Oe.

Table S1 Crystal data for 1–4								
Compound	1	2	3	4				
Empirical formula	C ₅₄ H ₃₈ Mn ₃ O ₂₄	$C_{108}H_{80}Cd_7O_{47}$	$C_{72}H_{54}Mn_3N_6O_{20}$	$C_{42}H_{32}Cd_2N_4O_{13}$				
Formula weight	1235.66	2916.59	1488.03	1025.54				
Crystal system	Triclinic	Monoclinic	Triclinic	Monoclinic				
Space group	<i>P</i> -1	C2/c	<i>P</i> -1	C2/c				
a (Å)	7.8452(3)	28.6590(12)	10.9205(4)	26.1578(10)				
b (Å)	9.0898(4)	11.4263(5)	11.1493(4)	18.5201(8)				
c (Å)	18.4686(7)	34.8578(14)	14.4066(5)	17.6814(7)				
α (°)	94.9263(12)	90	85.9620(10)	90				
β (°)	100.8219(12)	100.3190(10)	75.3670(10)	109.4590(10)				
y (°)	108.0598(12)	90	87.4560(10)	90				
V(Å ³)	1215.14(8)	11230.1(8)	1692.34(11)	8076.4(6)				
Z	1	4	1	8				
$D_{\text{calcd}} (\text{Mg/m}^3)$	1.689	1.725	1.460	1.687				
$u(\text{mm}^{-1})$	0.863	1.392	0.632	1.126				
$T(\mathbf{K})$	293(2)	293(2)	296(2)	296(2)				
F(000)	629	5760	763	4096				
R _{int}	0.1312	0.0833	0.0867	0.1381				
Final R indices $[I > 2\sigma(I)]^a$	$R_1 = 0.0600$	$R_1 = 0.0365$	$R_1 = 0.0658$	$R_1 = 0.0471$				
	$wR_2 = 0.1476$	$wR_2 = 0.0809$	$wR_2 = 0.1831$	$wR_2 = 0.1230$				
<i>R</i> indices (all data) ^a	$R_1 = 0.0704$	$R_1 = 0.0700$,	$R_1 = 0.0989$	$R_1 = 0.0600$				
× /	$wR_2 = 0.1555$	$wR_2 = 0.0868$	$wR_2 = 0.2034$	$wR_2 = 0.1352$				
Gof	1.038	0.918	1.036	1.042				
${}^{i}R_{1} = \sum F_{0} - F_{0} / \sum F_{0} , wR_{2} =$	$= [\Sigma w (F_0^2 - F_c^2)^2] / \Sigma w (F_0^2)^2$	$(2)^{2}$						

Table S2 Selected bond lengths (Å) and angles (°) for 1-4.

Complex 1											
Mn(1)-O(15)	2.149(2)	Mn(1)-O(1)	2.2147(19)	Mn(2)-O(3)	2.071(2)	$Mn(2)-O(19)^{#4}$	2.193(2)				
Mn(1)-O(10)	2.155(2)	$Mn(1)-O(1)^{\#1}$	2.2200(18)	$Mn(2)-O(3)^{\#2}$	2.071(2)	$Mn(2)-O(7)^{\#5}$	2.318(2)				
Mn(1)-O(22)	2.159(3)	Mn(1)-O(7)	2.265(2)	$Mn(2)-O(19)^{\#3}$	2.193(2)	$Mn(2)-O(7)^{\#6}$	2.318(2)				
O(15)-Mn(1)-O(10)	113.76(9)	$O(22)-Mn(1)-O(1)^{\#1}$	94.45(10)	$O(3)-Mn(2)-O(19)^{\#3}$	89.37(11)	O(15)-Mn(1)-O(7)	86.77(8)				
O(15)-Mn(1)-O(22)	93.84(10)	$O(1)-Mn(1)-O(1)^{\#1}$	75.49(7)	$O(3)^{#2}-Mn(2)-O(19)^{#3}$	90.63(11)	O(10)-Mn(1)-O(7)	85.54(8)				
O(10)-Mn(1)-O(22)	89.81(11)	$O(19)^{\#3}$ -Mn(2)-O(7) ^{\#5}	86.00(8)	O(3)-Mn(2)-O(19)#4	90.63(11)	$O(3)-Mn(2)-O(7)^{\#6}$	83.45(9)				
O(15)-Mn(1)-O(1)	87.46(8)	$O(19)^{#4}-Mn(2)-O(7)^{#5}$	94.00(8)	$O(3)^{#2}$ -Mn(2)- $O(19)^{#4}$	89.37(11)	$O(3)^{\#2}$ -Mn(2)-O(7) ^{\#6}	96.55(9)				
O(10)-Mn(1)-O(1)	158.43(8)	$O(19)^{\#3}$ -Mn(2)-O(7) ^{\#6}	94.00(8)	O(1)-Mn(1)-O(7)	100.15(7)	$O(1)^{\#1}$ -Mn(1)-O(7)	86.49(7)				
O(22)-Mn(1)-O(1)	84.70(10)	$O(19)^{#4}$ -Mn(2)-O(7) ^{#6}	86.00(8)	$O(3)-Mn(2)-O(7)^{\#5}$	96.55(9)	O(22)-Mn(1)-O(7)	175.14(10)				
$O(15)-Mn(1)-O(1)^{\#1}$	160.23(9)	$O(19)^{\#3}$ -Mn(2)-O(19)^{\#4}	180.00	$O(3)^{\#2}$ -Mn(2)-O(7) ^{\#5}	83.45(9)	$O(7)^{\#5}$ -Mn(2)-O(7)^{\#6}	180.0				
$O(10)-Mn(1)-O(1)^{\#1}$	84.19(8)	$O(3)-Mn(2)-O(3)^{\#2}$	180.00								
Symmetry codes: #1 -x+1, -y+1, -z; #2 -x+2, -y, -z+2; #3 -x+2, -y, -z+1: #4 x, y, z+1: #5 x+1, y, z+1: #6 -x+1, -y, -z+1.											
Complex 2											
Cd(1)-O(3)	2.203(3)	Cd(2)-O(10)	2.392(4)	$Cd(3)-O(5)^{\#8}$	2.259(3)	$Cd(4)-O(5)^{\#2}$	2.267(2)				
Cd(1)-O(4)	2.482(3)	Cd(2)-O(11)	2.313(4)	$Cd(3)-O(7)^{\#8}$	2.401(4)	$Cd(4)-O(7)^{\#10}$	2.488(4)				
Cd(1)-O(5)	2 269(3)	$Cd(2) - O(11)^{#4}$	2313(4)	Cd(3)-O(15)	2 229(3)	$Cd(4) - O(14)^{\#11}$	2 287(3)				
Cd(1) - O(6)	2.209(3) 2 189(4)	$Cd(2) = O(12)^{\#4}$	2.313(1) 2.203(5)	Cd(3)-O(16)	2.227(3) 2 347(4)	Cd(4) - O(19)	2.237(3)				
$Cd(1) - O(14)^{\#3}$	2.100(1) 2.342(3)	Cd(2) = O(12)	2.203(5)	$Cd(3) - O(22)^{\#9}$	2.317(1) 2.735(3)	Cd(4) - O(20)	2.203(3)				
$Cd(1) - O(21)^{\#2}$	2.312(3)	$Cd(3)-O(4)^{\#7}$	2.203(3) 2.621(3)	$Cd(3) - O(23)^{\#9}$	2.755(3)	$Cd(4) - O(22)^{\#12}$	2.303(1) 2.273(3)				
$Cd(2)-O(10)^{#4}$	2.313(3) 2 392(4)	$O(10)^{44}$ -Cd(2)-O(10)	1147(2)	$O(12)^{\#4}$ - $Cd(2)$ - $O(10)$	83.39(17)	$O(5)^{\#8}$ -Cd(3)-O(4) ^{#7}	11542(9)				
O(3)- $Cd(1)$ - $O(4)$	76.09(11)	O(11)-Cd(2)-O(10) ^{#4}	93.04(14)	$O(12)^{\#}Cd(2)O(10)^{\#}$	148.9(2)	$O(5)^{\#8}$ -Cd(3)-O(7) ^{#8}	87.00(12)				
O(3) Cd(1) O(4)	10937(1)	O(11) - Cd(2) - O(10)	54 19(13)	O(12) - Cd(2) - O(11)	102 15(19)	$O(5)^{\#8}$ -Cd(3)-O(16)	161 21(11)				
$O(3) Cd(1) O(14)^{\#3}$	80.44(11)	$O(11)^{44} Cd(2) O(10)$	93.05(14)	$O(12) \cdot Cd(2) \cdot O(11)$	102.13(19) 117.8(2)	$O(5)^{\#8} Cd(3) O(22)^{\#9}$	03.28(10)				
$O(3) Cd(1) O(21)^{\#2}$	04.30(13)	$O(11)^{44} Cd(2) O(10)^{44}$	53.03(14) 54.10(13)	$O(12)^{\#4} Cd(2) O(11)^{\#4}$	102.15(10)	$O(5)^{\#8} Cd(3) O(23)^{\#9}$	90.06(11)				
O(5) - Cd(1) - O(21)	174.30(13)	$O(11)^{44} Cd(2) O(11)$	1210(2)	$O(12)^{\#4} Cd(2) O(11)$	102.13(19) 117.8(2)	$O(7)^{\#8} Cd(3) O(4)^{\#7}$	155.61(13)				
O(5) - Cd(1) - O(4)	1/4.4/(1)	$O(14)^{\#11} Cd(4) O(7)^{\#10}$	121.0(2) 06.12(11)	O(12) = Cd(2) = O(11) $O(12) = Cd(2) = O(12)^{\#4}$	117.0(2)	$O(7)^{\#8} Cd(3) O(22)^{\#9}$	73.01(13)				
O(5) - Cd(1) - O(14) $O(5) Cd(1) O(21)^{\#2}$	99.30(9)	O(14) -Cd(4) -O(7) $O(12) Cd(2) O(10)^{#4}$	90.12(11) 82.20(17)	O(12)-Cd(2)-O(12) $O(4)^{\#7}$ Cd(2) $O(22)^{\#9}$	93.3(2)	O(7) -Cu(3)-O(22) $O(15) Cd(3) O(4)^{\#7}$	79.85(11)				
O(5)-Cd(1)-O(21)	95.22(11)	O(12)-Cd(2)-O(10) $O(14)^{\#11}$ Cd(4) $O(20)$	33.39(17)	O(4) = Cd(3) = O(22)	(112.03(9))	O(15)-Cu(3)-O(4)	70.03(11)				
O(6)-Cd(1)-O(3)	132.40(1) 76.27(12)	O(14) -Cd(4) -O(20) $O(15) Cd(3) O(7)^{\#8}$	100.90(11) 87.42(12)	$O(23)^{\#9} Cd(3) O(7)^{\#8}$	122.64(12)	O(16)-Cd(3)-O(4) $O(16)$ Cd(3) $O(22)^{\#9}$	62.12(15) 72.67(11)				
O(6)-Cd(1)-O(4)	70.37(13)	O(13)-Cd(3)-O(7) $O(10) Cd(4) O(22)^{\#12}$	$\frac{67.42(12)}{00.06(11)}$	$O(23)^{\#9} Cd(3) O(16)$	125.04(12)	O(10)-Cd(3)-O(22) $O(10)$ Cd(4) $O(5)^{\#2}$	72.07(11) 88.65(10)				
O(6) - Cd(1) - O(3) $O(6) Cd(1) O(14)^{\#3}$	96.17(13)	O(19)-Cd(4)-O(22) $O(15) Cd(3) O(22)^{\#9}$	90.90(11) 154.62(11)	$O(23)^{\#9} Cd(3) O(10)$	90.41(13) 50.78(10)	O(19)-Cd(4)-O(3) $O(10)$ Cd(4) $O(7)^{\#10}$	170 12(12)				
O(0)-Cd(1)-O(14)	80.20(14)	O(15) - Cd(3) - O(22)	134.03(11) 147.47(12)	O(23) - Cd(3) - O(22) $O(5)^{\#2} Cd(4) O(7)^{\#10}$	30.76(10)	O(19)-Cu(4)-O(7) O(15) Cd(2) O(16)	170.13(13)				
O(0)-Cd(1)-O(21) $O(14)^{\#3}$ Cd(1) O(4)	82.0/(10)	O(15)-Cd(3)-O(23) $O(10) Cd(4) O(14)^{\#11}$	14/.4/(12)	O(5) = Cd(4) = O(7)	99.97(11)	O(15)-Cd(3)-O(16) O(10) Cd(4) O(20)	$\frac{8}{.3}$				
$O(14)^{+}-Cd(1)-O(4)$ $O(21)^{\#2}CJ(1)O(4)$	81.30(10)	O(19)-Cd(4)-O(14) O(14)-O(14)	88.24(10)	O(5) -Cd(4) -O(14) $O(5)^{\#2} Cd(4) O(20)$	92.41(9)	O(19)-Cd(4)-O(20)	101.78(13)				
O(21) - Cd(1) - O(4)	83.30(11)	O(16)-Cd(3)-O(7)	//.15(15)	O(5) -Cd(4) -O(20)	96.21(11)	O(15)-Cd(3)-O(5)	102.10(11)				
O(12)-Ca(2)-O(10)	148.9(2)	O(21) - Cd(1) - O(14)	102.78(11)	O(5) - Cd(4) - O(22)	1/8.89(12)	0(20)-Cd(4)-O(7)	72.71(13)				
Symmetry codes: $\#2$ -	x+1, y, -z+1/2	2; #3 - x + 1/2, y - 1/2, -z + 1/2;	#4 - x + 1, y, -z	+3/2; #/ - x +1/2, y+1/2, - z -	+1/2; #8 x, y+	1, z, #9 - x + 1/2, -y + 3/2, -2	$x^{+10} x^{+1/2}$				
y-1/2, z; #11 - x+1, y-1	, -2+1/2, #12	-x+1, -y, -z.									
Complex 3	2 227(2)		2 2 (0/2)	$M_{(2)} \cap (7)^{\#]}$	2 200(2)	\mathbf{M} (2) \mathbf{O} (2)	2 224(5)				
$Mn(1) - O(6)^{#3}$	2.227(2)	$Mn(2) - O(6)^{+1}$	2.269(3)	$Mn(2) - O(7)^{-1}$	2.280(3)	Mn(2) - O(3)	2.234(5)				
$Mn(1)-O(9)^{-1}$	2.145(3)	$Mn(2)-O(10)^{-10}$	2.121(3)	Mn(2)-O(2)	2.083(3)	Mn(2)-N(1)	2.194(3)				
Mn(1)-O(1)	2.125(3)	$O(1)$ -Mn(1)- $O(9)^{**}$	88.06(12)	$O(10)^{3}$ -Mn(2)-N(1)	87.69(12)	O(2)-Mn(2)-N(1)	107.30(13)				
$O(6)^{*-}-Min(1)-O(6)^{*+}$	180.00	$O(1)^{\#5} M(1) O(9)^{\#5}$	91.94(12)	$O(2) - Mn(2) - O(6)^{m}$	100.45(11)	$O(3)-Mn(2)-O(6)^{**}$	86.84(15)				
$O(9)^{**}$ -Mn(1)-O(6) ^{**}	88.33(10)	$O(1)^{**}$ -Min(1)-O(1)	180.0	$O(2) - Min(2) - O(10)^{**}$	95.19(14)	$O(3)-Mn(2)-O(7)^{**}$	84.90(15)				
$O(9)^{**}$ -Mn(1)-O(6) ^{**}	91.6/(10)	$O(6)^{-1}$ -Mn(2)-O(7) ⁻¹	57.53(9)	$O(2)-Mn(2)-O(7)^{22}$	156.46(12)	$N(1)-Mn(2)-O(6)^{**}$	151.86(11)				
$O(9)^{**}$ -Min(1)- $O(9)^{**}$	180.00	$O(10)^{\#3}$ · Mn(2) · O(6) ^{#1}	94.45(11)	O(2)-Min(2)-O(3)	85.69(17)	$N(1)-Mn(2)-O(7)^{2}$	94.33(11)				
$O(1)-Mn(1)-O(6)^{m}$	88.69(11)	$O(10)^{#3}$ -Mn(2)-O(7)	94.82(12)	$O(10)^{-1}$ -Mn(2)-N(1)	87.69(12)	N(1)-Mn(2)-O(3)	90.63(16)				
$O(1)-Mn(1)-O(6)^{2}$	91.31(11)	$O(10)^{13}$ -Mn(2)-O(3)	1/8.2/(15)	1 1/5 10							
Symmetry codes: $\#1 - x + 2, -y + 1, -z; \#2 - x, y - 1, z; \#3 - x + 1, -y, -z + 1; \#4 - x + 1, y, z - 1; \#3 - x + 2, -y, -z.$											
Complex 4	a a a a a a		a a a a a a a a a a		a aaa (a)	G 1(1) G (1 9)#6					
$Cd(2)-O(2)^{m}$	2.304(3)	Cd(2)-N(1)	2.298(4)	Cd(1)-O(3)	2.239(3)	$Cd(1)-O(12)^{**}$	2.363(3)				
$Cd(2)-O(8)^{m^2}$	2.345(3)	Cd(2)-N(3)	2.277(3)	Cd(1)-O(4)	2.270(3)	$Cd(1)-O(11)^{m}$	2.471(3)				
$Cd(2)-O(11)^{m}$	2.355(3)	Cd(2)-O(5A)	2.31(2)	$Cd(1)-O(8)^{*3}$	2.446(3)	Cd(1)-O(9)"	2.401(3)				
Cd(2)-O(5)	2.211(19)	Cd(1)-O(6)	2.318(4)	O(3)-Cd(1)-O(4)	81.78(12)	O(4)-Cd(1)-O(6)	93.17(13)				
$O(2)^{m} - Cd(2) - O(8)^{m}$	90.49(13)	$N(1)-Cd(2)-O(8)^{m^2}$	90.60(12)	$O(3)-Cd(1)-O(8)^{n_3}$	100.84(12)	$O(8)^{m}$ -Cd(1)-O(11) ^{#0}	/1.63(11)				
O(3)-Cd(1)-O(6)	1/4.93(1)	N(1)-Cd(2)-O(11) ⁿ³	163.01(12)	$O(3)-Cd(1)-O(12)^{n_0}$	89.50(13)	$O(12)^{m}$ -Cd(1)-O(8) ^{#3}	124.97(11)				
$O(2)^{-1}$ -Cd(2)-O(5A)	168.0(6)	N(1)-Cd(2)-O(5A)	107.7(7)	$O(3)-Cd(1)-O(11)^{m}$	92.73(12)	$O(6)-Cd(1)-O(9)^{m_3}$	85.95(14)				
$N(3)-Cd(2)-O(2)^{*1}$	85.38(13)	$O(12)^{m}-Cd(1)-O(11)^{m}$	53.84(11)	$O(3)-Cd(1)-O(9)^{\#3}$	94.66(13)	$O(12)^{m} - Cd(1) - O(9)^{m}$	175.77(13)				
$O(5)-Cd(2)-O(2)^{\#1}$	166.6(6)	$N(3)-Cd(2)-O(8)^{\#2}$	172.73(12)	$O(2)^{m} - Cd(2) - O(11)^{m}$	86.42(12)	$O(9)^{\#5}$ -Cd(1)-O(8) ^{#5}	53.44(11)				
$O(5)-Cd(2)-O(8)^{\#2}$	76.3(5)	$N(3)-Cd(2)-O(11)^{\#3}$	98.24(13)	$O(4)-Cd(1)-O(8)^{\#5}$	145.92(11)	$O(9)^{*3}$ -Cd(1)-O(11) ^{#6}	125.01(11)				
$O(5)-Cd(2)-O(11)^{#3}$	92.2(8)	N(3)-Cd(2)-N(1)	94.90(14)	$O(4)-Cd(1)-O(12)^{\#6}$	88.83(12)	$O(6)-Cd(1)-O(8)^{\#5}$	83.58(13)				
O(5)-Cd(2)-N(1)	94.0(9)	N(3)-Cd(2)-O(5A)	96.3(9)	$O(4)-Cd(1)-O(11)^{\#_0}$	142.44(12)	$O(6)-Cd(1)-O(12)^{\#6}$	89.97(14)				
O(5)-Cd(2)-N(3)	108.0(6)	$O(5A)-Cd(2)-O(8)^{#2}$	86.5(8)	$O(4)-Cd(1)-O(9)^{\#5}$	92.53(12)	$O(6)-Cd(1)-O(11)^{\#0}$	91.03(13)				
$N(1)-Cd(2)-O(2)^{\#1}$	83.94(12)	$O(5A)-Cd(2)-O(11)^{\#3}$	81.6(6)	$O(8)^{#2}-Cd(2)-O(11)^{#3}$	75.50(12)						
Symmetry codes: #1 x	Symmetry codes: #1 x, -y+1, z+1/2; #2 x+1/2, -y+1/2, z+1/2; #3 x+1/2, -y+3/2, z+1/2; #4 x, -y+1, z-1/2; #5 x+1/2, y+1/2, z; #6 x+1/2, y-1/2, z.										