Supporting Information 6

Comprehensive Experimental and Kinetic Modeling Study of n-Tetradecane Combustion

Meirong Zeng[†], Wenhao Yuan,^{*,‡,§}, Wei Li[†], Yan Zhang[†], Chuangchuang Cao[†], Tianyu Li[†],

Jiabiao Zou[§]

[†]National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029, People's Republic of China

[‡]Collaborative Innovation Center for Advanced Ship and Deep-Sea Exploration and [§]Key Laboratory for Power Machinery and Engineering of MOE, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China

1

^{*} Corresponding author. Email: yuanwh@sjtu.edu.cn. Tel: +86-21-34204115.

Table S1. A list of C_3 and larger species discussed in this work.

Name	Formula	Structure	Name	Formula	Structure
<i>n</i> -tetradecane	<i>n</i> -C ₁₄ H ₃₀	CH ₃ (CH ₂) ₁₂ CH ₃	1-tetradecyl	C14H29X1	•CH ₂ (CH ₂) ₁₂ CH ₃
2-tetradecyl	$C_{14}H_{29}X2$	CH ₃ (•CH)(CH ₂) ₁₁ CH ₃	3-tetradecyl	$C_{14}H_{29}X3$	$CH_3CH_2(\bullet CH)(CH_2)_{10}CH_3$
4-tetradecyl	$C_{14}H_{29}X4$	$CH_3(CH_2)_2(\bullet CH)(CH_2)_9CH_3$	5-tetradecyl	C ₁₄ H ₂₉ X5	$CH_3(CH_2)_3(\bullet CH)(CH_2)_8CH_3$
6-tetradecyl	$C_{14}H_{29}X6$	$CH_3(CH_2)_4(\bullet CH)(CH_2)_7CH_3$	7-tetradecyl	$C_{14}H_{29}X7$	$CH_3(CH_2)_5(\bullet CH)(CH_2)_6CH_3$
1-tridecyl	$C_{13}H_{27}X1$	•CH ₂ (CH ₂) ₁₁ CH ₃	3-tridecyl	$C_{13}H_{27}X3$	$CH_3CH_2(\bullet CH)(CH_2)_9CH_3$
7-tridecyl	$C_{13}H_{27}X7$	$CH_3(CH_2)_5(\bullet CH)(CH_2)_5CH_3$	1-dodecyl	$C_{12}H_{25}X1$	•CH ₂ (CH ₂) ₁₀ CH ₃
6-dodecyl	$C_{12}H_{25}X6$	CH ₃ (CH ₂) ₄ (•CH)(CH ₂) ₅ CH ₃	1-dodecene	$1-C_{12}H_{24}$	CH ₂ =CH(CH ₂) ₉ CH ₃
1-undecyl	$C_{11}H_{23}X1$	•CH ₂ (CH ₂) ₉ CH ₃	5-undecyl	$C_{11}H_{23}X5$	CH ₃ (CH ₂) ₃ (•CH)(CH ₂) ₅ CH ₃
1-decyl	$C_{10}H_{21}X1$	•CH ₂ (CH ₂) ₈ CH ₃	4-decyl	$C_{10}H_{21}X4$	CH ₃ (CH ₂) ₂ (•CH)(CH ₂) ₅ CH ₃
1-nonyl	C9H19X1	•CH ₂ (CH ₂) ₇ CH ₃	3-nonyl	C9H19X3	CH ₃ CH ₂ (•CH)(CH ₂) ₅ CH ₃
1-nonene	1-C ₉ H ₁₈	CH ₂ =CH(CH ₂) ₆ CH ₃	1-octyl	$C_8H_{17}X1$	•CH ₂ (CH ₂) ₆ CH ₃
1-octene	$1-C_8H_{16}$	CH ₂ =CH(CH ₂) ₅ CH ₃	1-heptyl	C7H15X1	•CH ₂ (CH ₂) ₅ CH ₃
3-heptyl	C7H15X3	CH ₃ CH ₂ (•CH)(CH ₂) ₃ CH ₃	1-hexyl	$C_6H_{13}X1$	•CH ₂ (CH ₂) ₄ CH ₃
1,3-hexadiene	1,3-C ₆ H ₁₀	CH ₂ =CHCH=CHCH ₂ CH ₃	1-pentyl	$C_5H_{11}X1$	•CH ₂ (CH ₂) ₃ CH ₃
1-pentene	1-C ₅ H ₁₀	CH ₂ =CH(CH ₂) ₂ CH ₃	1,3-pentadiene	1,3-C ₅ H ₈	CH ₂ =CHCH=CHCH ₃
1-butyl	PXC ₄ H ₉	•CH ₂ (CH ₂) ₂ CH ₃	1-butene	1-C ₄ H ₈	CH ₂ =CHCH ₂ CH ₃
1,3-butadiene	1,3-C ₄ H ₆	CH ₂ =CHCH=CH ₂	2-butene	2-C ₄ H ₈	CH ₃ CH=CHCH ₃
1-propene	C ₃ H ₆	CH ₂ =CHCH ₃	1-propyl	NXC ₃ H ₇	•CH ₂ CH ₂ CH ₃
allene	aC_3H_4	CH ₂ =C=CH ₂	allyl	C_3H_5XA	◆CH ₂ CH=CH ₂
propargyl	C ₃ H ₃	•CH ₂ C≡CH	propyne	pC₃H₄	CH≡CCH ₃

1. Flow reactor pyrolysis of *n*-decane and *n*-tetradecane

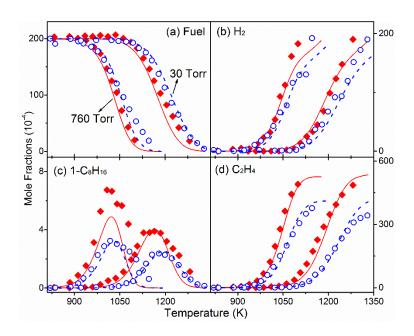


Figure S1 Experimental (symbols) and simulated (lines) mole fractions of (a) fuel, (b) H₂, (c) 1-C₈H₁₆, and (d) C₂H₄ in the flow reactor pyrolysis of *n*-C₁₄H₃₀ and *n*-C₁₀H₂₀ at 30 Torr and 760 Torr, respectively. Experimental data (hollow circles) represent experiments of *n*-C₁₀H₂₀ from Zeng and coworkers¹, and experimental data (solid diamonds) represent experiments of *n*-C₁₄H₃₀ from present work. Solid lines, and dashed lines represent simulations by present model for the pyrolysis of *n*-C₁₄H₃₀, and *n*-C₁₀H₂₀, respectively. In Fig. (a), fuel in the *n*-C₁₀H₂₀ pyrolysis represents mole fraction of *n*-C₁₄H₃₀, respectively.

2. Validation of present model

Mzé-Ahmed and coworkers² investigated *n*-tetradecane oxidation in a jet stirred reactor at 10 bar, 560 to 1030 K, the residence time of 1 s and three equivalence ratios ($\phi = 0.5$, 1.0 and 2.0). Mole fractions were measured with gas chromatography and Fourier transformed infrared spectrometry. These literature data² were used to validate present model. Figures S2 and S3 provide experimental and simulated mole fractions at $\phi = 0.5$ and 1.0, respectively.

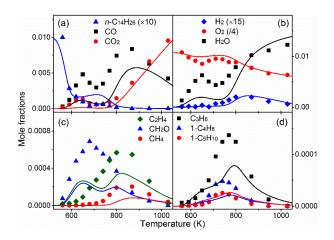


Figure S2 Mole fractions for *n*-tetradecane oxidation in a jet stirred reactor at 10 bar, $\tau = 1$ s and $\phi = 0.5$. Symbols represent literature experiments². Solid lines represent simulations by present model.

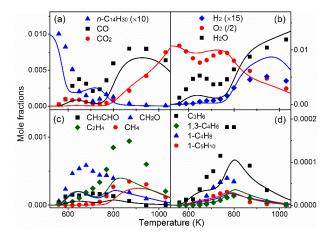


Figure S3 Mole fractions for *n*-tetradecane oxidation in a jet stirred reactor at 10 bar, $\tau = 1$ s and $\phi = 1.0$. Symbols represent literature experiments². Solid lines represent simulations by present model.

Moreover, performances of literature models, *i.e.* Westbrook model³, Mzé-Ahmed model², Chang model⁴, and present model against literature JSR experimental data² are presented in Fig. S4.

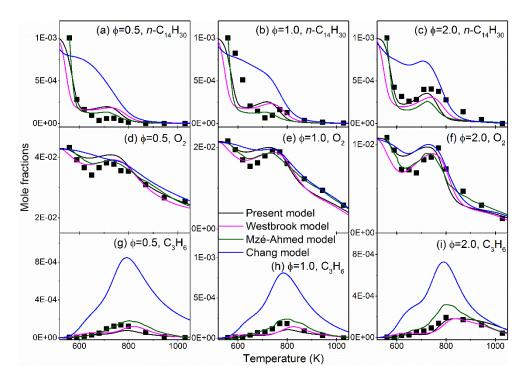
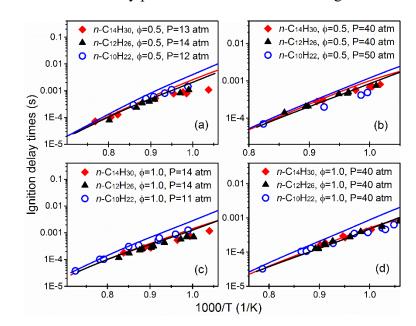



Figure S4 Mole fractions for *n*-tetradecane oxidation in a jet stirred reactor at 10 bar, $\tau = 1$ s and $\phi = 0.5$, 1.0 and 2.0. Symbols represent literature experiments². Solid lines represent simulations by present model, Westbrook model³, Mzé-Ahmed model² and Chang model⁴, respectively.

3. Ignition delay times of *n*-decane, *n*-dodecane and *n*-tetradecane

Shen and coworkers⁵ investigated ignition delay times of n-decane/air mixtures, n-dodecane/air mixtures and n-tetradecane/air mixtures in a heated shock tube at $\phi = 0.5$ and 1.0 at similar experimental conditions. Both literature experiments of n-decane, n-dodecane and n-tetradecane as well as simulations by present model are shown in Fig. S5.

Figure S5 Ignition delay times of *n*-decane/air mixtures, *n*-dodecane/air mixtures and *n*-tetradecane/air mixtures. Symbols represent literature experimental ignition delay times from Shen and coworkers⁵. Lines represent simulations by present model.

References:

- (1) Zeng, M.R.; Yuan, W.H.; Wang, Y.Z.; Zhou, W.X.; Zhang, L.D.; Qi, F.; Li, Y.Y. Combust. Flame **2014**, *161*, 1701-1715.
- (2) Mzé-Ahmed, A.; Dagaut, P.; Dayma, G.; Diévart, P.; Hadj-Ali, K. *Combust. Sci. Technol.* **2014**, *186*, 594-606.
- (3) Westbrook, C.K.; Pitz, W.J.; Herbinet, O.; Curran, H.J.; Silke, E.J. *Combust. Flame* **2009**, *156*, 181-199.
- (4) Chang, Y.C.; Jia, M.; Liu, Y.D.; Li, Y.P.; Xie, M.Z.; Yin, H.C. Energy Fuels 2013, 27, 3467-3479.
- (5) Shen, H.P.S.; Steinberg, J.; Vanderover, J.; Oehlschlaeger, M.A. *Energy Fuels* **2009**, *23*, 2482-2489.