Supporting Information

Straightforward Synthesis of Hierarchically Porous Nitrogen-Doped Carbon via Pyrolysis of Chitosan/Urea/KOH Mixtures and Its Application as a Support for Formic Acid Dehydrogenation Catalysts

Dong-Wook Lee,^{*,†} Min-Ho Jin,[†] Duckkyu Oh,[†] Sung-Wook Lee,[†] Jong-Soo Park[†]

[†] Advanced Materials and Devices Laboratory, Korea Institute of Energy Research (KIER), 152 Gajeongro, Yuseong, Daejeon 305-343, Republic of Korea

- Number of pages: 7
- Number of figures: 4
- Number of tables: 2

^{*} Correspondence should be addressed to D.-W.L. (e-mail: <u>dwlee99@kier.re.kr</u>).

- Chemical reactions during activation with KOH

Chemical activation with KOH involves the following reactions.³⁶

$$2\text{KOH} \rightarrow \text{K}_2\text{O} + \text{H}_2\text{O}$$
$$\text{CO}_2 + \text{K}_2\text{O} \rightarrow \text{K}_2\text{CO}_3$$
$$6\text{KOH} + 2\text{C} \rightarrow 2\text{K} + 3\text{H}_2 + 2\text{K}_2\text{CO}_3$$
$$\text{K}_2\text{CO}_3 \rightarrow \text{K}_2\text{O} + \text{CO}_2$$
$$\text{K}_2\text{CO}_3 + 2\text{C} \rightarrow 2\text{K} + 3\text{CO}$$
$$\text{C} + \text{K}_2\text{O} \rightarrow 2\text{K} + \text{CO}$$

- Calculation method of conversion

The conversion of formic acid was calculated as follows.⁴¹

Conversion [%] =
$$P_{atm}V/(2RTn_{FA}) \times 100$$

where P_{atm} is the atmospheric pressure (101325 Pa), V is the produced H₂ and CO₂ mixture gas volume, R is the universal gas constant (8.3145 m³ Pa mol⁻¹ K⁻¹), T is the room temperature (298 K), and n_{FA} is the initial mole of formic acid.

- Supporting tables and figures

Table S1. Synthesis conditions of KIE-8 samples.

	KOH/chitosan	Urea/chitosan	Pyrolysis		
Sample code	weight ratio	weight ratio	temperature		
	[-]	[-]	$[^{\circ}C]$		
KIE-8-a	0	0	800		
KIE-8-b	1.33	0	800		
KIE-8-c	0	6	800		
KIE-8-d	1.33	6	700		
KIE-8-e	1.33	6	800		
KIE-8-f	1.33	6	900		
KIE-8-g	1.33	6	1000		

	Additive	Temperature - [°C]	TOF ^a	^a TOF ^b TO		TOF ^d	TOF ^e	$\mathrm{TOF}^{\mathrm{f}}$	
Catalysts			initial 10 min	initial 20 min	initial 15% conv.	initial 20% conv.	initial 30% conv.	Full conv.	Reference
Pd/KIE-8	HCOONa	25	280.7	238	320	296	269	-	This work
Pd/CN	-	25	-	-	752	-	-	-	[39]
CoAuPd/Vulcan XC-72	-	25	80	-	-	-	-	-	[40]
PdAgMnO _x /N-SiO ₂	-	25	-	-	-	330	-	-	[41]
AuPd/C-L-7.5	HCOONa	25	-	-	-	-	1153	-	[42]
Au@Pd/N-mrGO	-	25	-	89.1	-	-	-	-	[43]
CoAuPd/DNA- rGO	-	25	-	85	-	-	-	-	[44]
(Co ₆)AgPd/RGO	HCOONa	50	-	-	-	-	-	2739	[45]
Pd/C	HCOONa	60	-	-	-	-	-	7256	[46]
Pd/N-MSC-30	HCOONa	60	-	-	-	-	-	8414	[47]

Table S2.	Catalytic	activity	comparison	of	various	heterogeneous	catalysts	for	formic	acid
dehydroge	enation.									

TOF was calculated ^a at initial 10 min of reaction time (TOF = mole of produced hydrogen gas per hour/mole of metal catalyst), ^b at initial 20 min of reaction time, ^c at initial 15 % conversion, ^d at initial 20 % conversion, ^e at initial 30 % conversion, ^f at full conversion.

Figure S1. A high magnification TEM image of KIE-8-c (scale bar: 10 nm).

Figure S2. A high magnification TEM image of KIE-8-f (scale bar: 10 nm).

Figure S3. FTIR spectra of KIE-8-e and KIE-8-f.

Figure S4. Comparison of formic acid dehydrogenation activity of Pd/KIE-8 with Pd/Nactivated charcoal.