Effect of Pore Size, Solvation and Defectivity on the Perturbation of Adsorbates in MOFs: the Paradigmatic $\mathbf{M g}_{2}$ (dobpdc) Case Study

Jenny G. Vitillo, ${ }^{++*}$ Gabriele Ricchiardi ${ }^{+}$
${ }^{\dagger}$ Department of Chemistry, NIS Centre and INSTM, University of Turin, via Quarello 15, I-10135 Torino, Italy.
${ }^{\ddagger}$ Department of Chemistry, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455-0431. Phone: 612-624-5923. E-mail: jg.vitillo@gmail.com.

Content

\qquad
S1. Materials and methods.2
S2. Optimised structures of Mg_{2} (dobpdc)-act, $\mathrm{CO}_{2} / \mathrm{Mg}_{2}$ (dobpdc)-act, $\mathrm{CO} / \mathrm{Mg}_{2}$ (dobpdc)-act and $\mathrm{N}_{2} / \mathrm{Mg}_{2}$ (dobpdc)-act. 3
S3. ATR-FTIR spectrum of Mg_{2} (dobpdc)-act 12
S4. IR spectra of toluene, chloroform, methanol, and water on Mg_{2} (dobpdc)-act. 16
S5. Volumetric measurements of N_{2} at 77 K and CO_{2} at RT. 24
S6. IR spectra of CO_{2} on Mg_{2} (dobpdc)-act, on Mg_{2} (dobpdc)-sol and Mg_{2} (dobpdc)-air. 26
S7. IR spectra of CO at 100 K on Mg_{2} (dobpdc)-act, Mg_{2} (dobpdc)-sol and Mg_{2} (dobpdc)-air. 29
S8. IR spectra of N_{2} at 100 K on Mg_{2} (dobpdc)-act, on Mg_{2} (dobpdc)-sol and Mg_{2} (dobpdc)-air. 32
S9. Electrostatic potential maps of MOF-74-Mg and Mg_{2} (dobpdc)-act. 35
S10. Instructions to visualize the calculated vibrational modes of Mg_{2} (dobpdc)-act, CO_{2} / Mg_{2} (dobpdc)-act, $\mathrm{CO} / \mathrm{Mg}_{2}$ (dobpdc) -act and $\mathrm{N}_{2} / \mathrm{Mg}_{2}$ (dobpdc)-act. 37

S1. Materials and methods

FTIR spectroscopy in attenuated total reflection (ATR-FTIR). Fourier transformed infrared spectra in air ($2 \mathrm{~cm}^{-1}$ resolution, average on 256 scans) were collected in Attenuated Total Reflection (ATR) mode on loose powder on a Bruker Alpha spectrophotometer (DTGS detector), equipped with an internal reflection element in diamond and placed in a M Braun Lab Star Glove Box supplied with pure 5.5 grade Nitrogen ($<0.5 \mathrm{ppm} \mathrm{O}_{2},<0.5 \mathrm{ppm} \mathrm{H}_{2} \mathrm{O}$). The relative intensity of the bands over the spectral region considered was corrected for the different decay in the sample of the evanescent wave as function of the incident wavelength, by dividing the original band intensities by the corresponding absorption wavelength.

S2. Optimised structures of $\mathbf{M g}_{2}$ (dobpdc)-act, $\mathrm{CO}_{2} / \mathbf{M g}_{2}$ (dobpdc)-act, $\mathbf{C O} / \mathrm{Mg}_{2}$ (dobpdc)-act and $\mathbf{N}_{2} / \mathrm{Mg}_{2}$ (dobpdc)-act.

The inclusion of the Grimme correction caused a shrinking of the cell volume of about 2% and a shortening of the average $\mathrm{Mg}-\mathrm{O}$ bond length from 2.052 to $2.040 \AA$. The calculated cell parameters after the inclusion in the Hamiltonian of the D^{*} terms become closer to their experimental values $(a=b=21.7008(8) \AA \text { and } c=6.847(1) \AA)^{1}$ being the calculated values $0.8 / 2 \%$ and $0.5 / 0.9 \%$ larger than their experimental values before and after the Grimme correction. The IR spectra calculated for Mg_{2} (dobpdc) with and without the Grimme correction are reported in Figure S2, showing that the inclusion of the Grimme correction has only a slight influence on the intensity of some peaks.

Basis sets used

14	
0031.01 .00	
34.0613410	$0.602519780 \mathrm{E}-02$
5.12357460	$0.450210940 \mathrm{E}-01$
1.16466260	0.201897260
0010.01 .00	
0.327230410	1.00000000
0010.01 .00	
0.103072410	1.00000000
0210.001 .00	
$0.8000000000 \mathrm{D}+00$	$0.1000000000 \mathrm{D}+01$
610	
0052.01 .00	
8506.03840	$0.533736640 \mathrm{E}-03$
1275.73290	$0.412502320 \mathrm{E}-02$
290.311870	$0.211713370 \mathrm{E}-01$
82.0562000	$0.824178600 \mathrm{E}-01$
26.4796410	0.240128580
0012.01 .00	
9.24145850	1.00000000
0010.01 .00	
3.36435300	1.00000000
0010.01 .00	
0.871741640	1.00000000

0010.01 .00
$0.363523520 \quad 1.00000000$
0010.01 .00 $0.128731350 \quad 1.00000000$
0242.01 .00 $34.7094960 \quad 0.533009740 \mathrm{E}-02$ $7.95908830 \quad 0.358658140 \mathrm{E}-01$ $2.37869720 \quad 0.142002990$ $0.815400650 \quad 0.342031050$
0210.01 .00 $0.289537850 \quad 1.00000000$
0210.01 .00 $0.100847540 \quad 1.00000000$
0310.001 .00 $0.8000000000 \mathrm{D}+00 \quad 0.1000000000 \mathrm{D}+01$
10710
0052.01 .00

11913.4168	$-0.522970174 \mathrm{E}-03$
1786.72138	$-0.404284040 \mathrm{E}-02$
406.590128	$-0.207727151 \mathrm{E}-01$
114.925251	$-0.811831378 \mathrm{E}-01$
37.1058834	-0.238714974

0012.01 .00
$12.9716762 \quad 1.00000000$
0010.01 .00
$4.73022912 \quad 1.00000000$
0010.01 .00
$1.25251843 \quad 1.00000000$
0010.01 .00 $0.512600712 \quad 1.00000000$
0010.01 .00 $0.179397140 \quad 1.00000000$
0243.01 .00
$49.2187584 \quad 0.555269535 \mathrm{E}-02$
$11.3489353 \quad 0.380546180 \mathrm{E}-01$
$3.42850882 \quad 0.149414122$
$1.17995126 \quad 0.348981874$
0210.01 .00 $0.417261226 \quad 1.00000000$
0210.01 .00 $0.142951313 \quad 1.00000000$
0310.001 .00 $0.1000000000 \mathrm{D}+01 \quad 0.1000000000 \mathrm{D}+01$
810
0052.01 .00 15902.6475
$0.514998037 \mathrm{E}-03$
2384.95378
$0.398197644 \mathrm{E}-02$
$542.719572 \quad 0.204769719 \mathrm{E}-01$
$153.404079 \quad 0.802623679 \mathrm{E}-01$
$49.5457161 \quad 0.237668399$
0012.01 .00 $17.3396499 \quad 1.00000000$
0010.01 .00 $6.33033553 \quad 1.00000000$
0010.01 .00
$1.69958822 \quad 1.00000000$
0010.01 .00 $0.689544913 \quad 1.00000000$
0010.01 .00 $0.239360282 \quad 1.00000000$
0244.01 .00

63.2705240	$0.607092060 \mathrm{E}-02$
14.6233123	$0.419476887 \mathrm{E}-01$
4.44895180	0.161568840
1.52815132	0.356827793

0210.01 .00 $0.529973159 \quad 1.00000000$
0210.01 .00 $0.175094460 \quad 1.00000000$
0310.001 .00 $0.1200000000 \mathrm{D}+01 \quad 0.1000000000 \mathrm{D}+01$
128
0072.1 .00
31438.3496 4715.51534 $0.609123113 \mathrm{E}-03$ $0.470661965 \mathrm{E}-02$ $0.241358207 \mathrm{E}-01$ $0.936289598 \mathrm{E}-01$ 0.266467421 0.478909299 0.336984903
0032.1 .00 64.8769130 19.7255208 2.89518043

002 2. 1.00 1.19604547 0.543294512
1.68276034 0.521410920
0010.1 .00 $0.100991041 \quad 1.00000000$
0256.1 .00 179.871896 42.1200694
$0.537995490 \mathrm{E}-02$ $0.393180141 \mathrm{E}-01$ 13.1205030 0.157401295 0.359190941 4.62575036 0.455333793

021 0. 1.00 $0.585510121 \quad 1.00000000$
021 0. 1.00 0.189
1.00000000

031 0. 1.00 $3.444 \quad 1.00$
10810
0052.01 .00 15902.6475 2384.95378 542.719572
$0.514998037 \mathrm{E}-03$ $0.398197644 \mathrm{E}-02$ $0.204769719 \mathrm{E}-01$ 153.404079
$0.802623679 \mathrm{E}-01$ 49.5457161
$0.191808893 \mathrm{E}-01$
$0.909137044 \mathrm{E}-01$ -0.395637561
1073.16292 303.572388 98.6262510 34.9438084 12.8597852 . 521410920
.
0012.01 .00 17.3396499
0010.01 .00 6.33033553
0010.01 .00 1.69958822
1.00000000
1.00000000
1.00000000
0010.01 .00 $0.689544913 \quad 1.00000000$
0010.01 .00 $0.239360282 \quad 1.00000000$
0244.01 .00 $63.2705240 \quad 0.607092060 \mathrm{E}-02$
$14.6233123 \quad 0.419476887 \mathrm{E}-01$ $4.44895180 \quad 0.161568840$ $1.52815132 \quad 0.356827793$
0210.01 .00 $0.529973159 \quad 1.00000000$
0210.01 .00 $0.175094460 \quad 1.00000000$
0310.001 .00 $0.1200000000 \mathrm{D}+01 \quad 0.1000000000 \mathrm{D}+01$
10610
0052.01 .00
$8506.03840 \quad 0.533736640 \mathrm{E}-03$
$1275.73290 \quad 0.412502320 \mathrm{E}-02$ $290.311870 \quad 0.211713370 \mathrm{E}-01$ $82.0562000 \quad 0.824178600 \mathrm{E}-01$ $26.4796410 \quad 0.240128580$
0012.01 .00 9.24145850
1.00000000
0010.01 .00 3.36435300
1.00000000
0010.01 .00 $0.871741640 \quad 1.00000000$
0010.01 .00 $0.363523520 \quad 1.00000000$
0010.01 .00 $0.128731350 \quad 1.00000000$
0242.01 .00 $34.7094960 \quad 0.533009740 \mathrm{E}-02$ $7.95908830 \quad 0.358658140 \mathrm{E}-01$ $2.37869720 \quad 0.142002990$ $0.815400650 \quad 0.342031050$
0210.01 .00 $0.289537850 \quad 1.00000000$
0210.01 .00 $0.100847540 \quad 1.00000000$
0310.001 .00 $0.8000000000 \mathrm{D}+00 \quad 0.1000000000 \mathrm{D}+01$

Structure of Mg_{2} (dobpdc)-act as optimized at the B3LYP/TZVp level (CIF file format):

Structure of Mg_{2} (dobpdc)-act as optimized at the B3LYP-D*/TZVp level (CIF file format):

```
data-
_audīt_creation_date
_audit_creation_method
_symmetry_space_group_name_H-M
_symmetry_Int_Tables_number
_symmetry_ce17_setting
loop_
_symmetry_equiv_pos_as_xyz
    x,y,z
    -y,x-y,z+2/3
    -x+y,-x,z+1/3
    y,x,-z
    x-y,-y,-z+1/3
-x,-x+y,-z+2/3
_celil_length_a 
-ce11-1ength_b
_ce11_length_c
_cel1_angle_alpha
_ce11_angle_beta
21.81334463
21.81334463
cell angle alpha 
'crysta114 opt from J.G. Vitillo crytocif script'
'P3221'
    154
    HEXAGONAL
_ce11_angle_gamma
7oop
_atom_site_1abe1
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_fract_z _
_atom_site_adp_type
```

-atom_site_occupa				
MG1	MG -3 8115609111	00	Uiso	1.00
07	-3.480919576095E-01		Uiso	1.00
13	O-3.592249172517E-01	1E-02 0.00000	Uiso	1.00
019	0-4.149606909544E-01 2.094398649947E-01	$3.637359092785 \mathrm{E}-010.00000$	Uiso	1.00
C25	C -3.829050435402E-01 1.758616455377E-01	-1.331601042264E-01 0.00000	Uiso	1.00
31	C -4.307168198618E-01 4.049918970620E-01	. $335141007335 \mathrm{E}-030.00000$	Uiso	1.00
C37	C -4.637727668903E-01 4.412407452674E-01	-6.979334203501E-02 0.00000	Uiso	1.00
43	H -4.525555168848E-01 4.587043884170E-01	$2.186416517397 \mathrm{E}-010.00000$	Uiso	1.00
	C $4.918973503667 \mathrm{E}-014.556798022882 \mathrm{E}-01$	$121134067969 \mathrm{E}-020.00000$	Uiso	1.00
C55	C -4.334184682577E-01 4.865698286481E-02	-9.791972917319E-02 0.00000	Uiso	1.00
	H -4.423965080866E-01 4.519046227380E-03	-6.832955312489E-03 0.00000	Uiso	1.00
	C -3.988531713111E-01 1.160117255540E-01	-2.072743349704E-02 0.00000	Uiso	1.00
	H -3.819562793406E-01 1.247752429734E-01	$1.289087033956 \mathrm{E}-010.00000$	Uiso	1.00
	C -3.860454885198E-01 3.917321569441E-01	$-1.320404415919 \mathrm{E}-010.00000$	Uiso	1.00

Structure of $\mathrm{CO}_{2} / \mathrm{Mg}_{2}$ (dobpdc)-act $\left(\mathrm{P}_{2}\right.$ symmetry, no imaginary frequency) as optimized at the
B3LYP-D*/TZVp level (CIF file format):


```
085 0 -4.948205980047E-01 1.977706609910E-01 3.909056878302E-02 0.00000 Uiso 1.00
088 0 3.111625230029E-01 -1.949236641562E-01 2.920867261294E-01 0.00000 Uiso 1.00
C91 C 4.665100353462E-01 1.462059125031E-01 1.249109534680E-01 0.00000 Uiso 1.00
C94 C 3.356085488560E-01 -1.380080512923E-01 2.244597799855E-01 0.00000 Uiso 1.00
097 0 -3.317783200806E-01 -4.269418660008E-01 -4.601463047775E-01 0.00000 Uiso 1.00
O100 0 8.165528556793E-02 4.400226996875E-01 -1.730178839646E-01 0.00000 Uiso 1.00
```

Structure of $\mathrm{CO}_{2} / \mathrm{Mg}_{2}$ (dobpdc)-act $\left(\mathrm{P}_{2} 21\right.$ symmetry, 5 imaginary frequencies) as optimized at the B3LYP-D*/TZVp level (CIF file format):

```
data_-
_audīt_creation_date
_audit_creation_method
_symmetry_space_group_name_H-M
_symmetry_Int_Tables_number
_symmetry_ce17_setting
10op_
_symmetry_equiv_pos_as_xyz
    x,y,z
    -y,x-y,z+2/3
    -x+y,-x,z+1/3
    y,x,-z
    x-y,-y, -z+1/3
-x,-x+y,-z+2/3
_ce11-1ength_a
_ce11_length_b
_ce11_1ength_c
_ce11_ang1e_a1pha
21.77399557
21.77399557
6.93220481
_ce11__angle_beta
90.000000
_ce11__angle_beta
90.000000
7oop
_atom_site_1abe1
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
__atom_site_fract_z
_atom_site_u_iso_or_equiv
_atom_site_adp_type
_atom_site_occupancy
MG1 MG -3.8
07 0 -3.495258339699E-01 2.389988194923E-01 -4.617699375976E-02 0.00000 Uiso 1.00
013 0 -3.537010468108E-01 3.593898213124E-01 -6.357445658315E-02 0.00000 Uiso 1.00
O19 0-4.179775155472E-01 2.102610334775E-01 3.706001609471E-01 0.00000 Uiso 1.00
C25 C -3.849195334512E-01 1.755600788140E-01 -1.299743420991E-01 0.00000 Uiso 1.00
C31 C -4.281775207009E-01 4.071593442522E-01 7.077339552055E-03 0.00000 Uiso 1.00
C37 C -4.613925587844E-01 4.431478458749E-01 -6.698422996051E-02 0.00000 Uiso 1.00
H43 H -4.499013060264E-01 4.605014285522E-01 -2.153996771693E-01 0.00000 Uiso 1.00
C49 С 4.938404201611E-01 4.576973459470E-01 4.204433167222E-02 0.00000 viso 1.00
C55 C -4.355981670180E-01 4.791638453140E-02 -9.754435235826E-02 0.00000 Uiso 1.00
H61 H -4.447768378179E-01 3.393928197221E-03 -7.790282687385E-03 0.00000 Uiso 1.00
C67 C -4.008731852326E-01 1.152024477920E-01 -1.9411440763509E-02 0.00000 Uiso 1.00
H73 H -3.839083662069E-01 1.237280502823E-01 1.297731112749E-01 0.00000 Uiso 1.00
C79 C -3.819662539900E-01 3.947790364193E-01 -1.254175687489E-01 0.00000 Uiso 1.00
085 0 -4.998120246688E-01 2.201403594346E-01 5.482658318946E-02 0.00000 Uiso 1.00
C91 C 4.527028400301E-01 1.954341831824E-01 1.629530590313E-01 0.00000 Uiso 1.00
097 0-2.342306646986E-01 -4.049943330657E-01 -3.998966596929E-01 0.00000 Uiso 1.00
```

Structure of $\mathrm{CO} / \mathrm{Mg}_{2}$ (dobpdc)-act as optimized at the B3LYP-D*/TZVp level (CIF file format):

```
data_-
_aud\overline{i}t_creation_date 12-10-2016
_audit_creation_method 'crystal14 opt'
_symmetry_space_group_name_H-M
_symmetry_Int_Tables__number
_symmetry_ce11_setting
'P3221'
    'P322
    HEXAGONAL
\oop_
_symmetry_equiv_pos_as_xyz
    x,y,z
    -y,x-y,z+2/3
```

```
    -x+y,-x,z+1/3
    y,x,-z
    x-y,-y,-z+1/3
    -x,-x+y,-z+2/3
_ce11_length_a
_ce11_1ength_b
_ce11_1ength_c
_ce11_ang7e_a7pha
_ce11_angle_beta
_ce11_angle_gamma
10op
_atom_site_1abe1
_atom_site_type_symbol
_atom_site_fract_x
_atom_site_fract_y
_atom_site_fract_z
_atom_site_u_iso_or_equiv
-atom_site_adp_type
_atom_site_occupancy
MG1 MG -3.835581641602E-01 2.830676839988E-01 1.510682663219E-01 0.00000 Uiso 1.00
07 O -3.488814009294E-01 2.393281495009E-01 -4.852937931280E-02 0.00000 Uiso 1.00
013 0-3.530471814196E-01 3.600689248982E-01 -6.412016526669E-02 0.00000 Uiso 1.00
019 0-4.153351423152E-01 2.100042951292E-01 3.678427543569E-01 0.00000 Uiso 1.00
C25 C -3.841924122843E-01 1.758561928464E-01 -1.315571226591E-01 0.00000 Uiso 1.00
C31 C -4.290238552472E-01 4.062191735065E-01 5.614805323070E-03 0.00000 uiso 1.00
C37 C -4.623413679862E-01 4.422282021532E-01 -6.785667117116E-02 0.00000 Uiso 1.00
H43 н -4.510802718950E-01 4.593794569992E-01 -2.161247498555E-01 0.00000 Uiso 1.00
C49 С 4.932770099009E-01 4.570798368414E-01 4.162759186590E-02 0.00000 Uiso 1.00
C55 C -4.353964969118E-01 4.815221337705E-02 -9.796625472982E-02 0.00000 Uiso 1.00
H61 H -4.448010751891E-01 3.675673583077E-03 -7.894760112898E-03 0.00000 Uiso 1.00
C67 C -4.007835805565E-01 1.154668420881E-01 -2.035132833960E-02 0.00000 Uiso 1.00
H73 H -3.841979360559E-01 1.240768390415E-01 1.287623384308E-01 0.00000 Uiso 1.00
C79 С -3.829491946406E-01 3.937984740811E-01 -1.275268519043E-01 0.00000 Uiso 1.00
C85 C 4.952014774075E-01 2.164443348975E-01 1.330200457866E-02 0.00000 Uiso 1.00
091 0 4.393882787273E-01 1.867450247618E-01 -4.247674951845E-02 0.00000 Uiso 1.00
```

Structure of $\mathrm{N}_{2} / \mathrm{Mg}_{2}$ (dobpdc)-act as optimized at the B3LYP-D*/TZVp level (CIF file format):

data_- audīt_creation_date	24-10-2016		
-audit_creation_method	'crystal14 opt'		
_symmetry_space_group_name_H-M	'P3221'		
_symmetry_Int_Tables_number	154		
_symmetry_ce11_setting	HEXAGONAL		
10op_			
_symmetry_equiv_pos_as_xyz			
$\mathrm{x}, \mathrm{y}, \mathrm{z}$			
-y, $x-y, z+2 / 3$			
-x+y, -x, z+1/3			
y, x,-z			
x-y,-y,-z+1/3			
-x, -x+y, -z+2/3			
_ce11-1ength_a	21.76999874		
_ce11-1ength_b	21.76999874		
_ce11_1ength_c	6.94168557		
_ce11_angle_alpha	90.000000		
_cell_angle_beta	90.000000		
_cel1_angle_gamma	120.000000		
10op_			
_atom_site_1abe1			
_atom_site_type_symbol			
_atom_site_fract_x			
_atom_site_fract_y			
_atom_site_fract_z			
_atom_site_U_iso_or_equiv			
_atom_site_adp_type			
_atom_site_occupancy			
MG1 MG -3.829962821378E-01 2.83	15737817E-01 1.523130470151E-01 0.00000	Uiso	1.00
07 O -3.492403090124E-01 2.39370	030157E-01-4.849760734578E-02 0.00000	Uiso	1.00
013 O-3.535449512575E-01 3.597	$6008399 \mathrm{E}-01-6.414502395726 \mathrm{E}-020.00000$	Uiso	1.00
019 0-4.154892842885E-01 2.100	0442168E-01 3.676747505422E-01 0.00000	Uiso	1.00
C25 C -3.842104277908E-01 1.7581	$2268904 \mathrm{E}-01-1.316962453799 \mathrm{E}-010.00000$	Uiso	1.00
C31 C -4.290878817377E-01 4.062	$4354515 \mathrm{E}-015.410622367808 \mathrm{E}-030.00000$	Uiso	1.00
C37 C -4.624395227817E-01 4.422	0371200E-01-6.814060487595E-02 0.00000	Uiso	1.00
H43 H -4.511147236297E-01 4.5958	$9979128 \mathrm{E}-01-2.163983384128 \mathrm{E}-010.00000$	Uiso	1.00
C49 C $4.930506328155 \mathrm{E}-014.56848$	980877E-01 4.156374233375E-02 0.00000	Uiso	
C55 C -4.350043349282E-01 4.821	$6722667 \mathrm{E}-02-9.802635723199 \mathrm{E}-020.00000$	Uiso	1.00

$$
\begin{array}{lllllllll}
\text { H61 } & \text { H } & -4.443308669932 \mathrm{E}-01 & 3.764919709938 \mathrm{E}-03 & -7.853864189770 \mathrm{E}-03 & 0.00000 & \text { Uiso } & 1.00 \\
\text { C67 } & \text { C } & -4.004372031055 \mathrm{E}-01 & 1.155583134970 \mathrm{E}-01 & -2.044314132072 \mathrm{E}-02 & 0.00000 & \text { Uiso } & 1.00 \\
\text { H73 } & \text { H } & -3.837845026090 \mathrm{E}-01 & 1.242147453434 \mathrm{E}-01 & 1.287382418266 \mathrm{E}-01 & 0.00000 & \text { Uiso } & 1.00 \\
\text { C79 } & \mathrm{C} & -3.830969081922 \mathrm{E}-01 & 3.938074323287 \mathrm{E}-01 & -1.276041329815 \mathrm{E}-01 & 0.00000 & \text { Uiso } & 1.00 \\
\text { N85 } & \text { N } & 4.993855463268 \mathrm{E}-01 & 2.188822849234 \mathrm{E}-01 & 1.654841102768 \mathrm{E}-02 & 0.00000 & \text { Uiso } & 1.00 \\
\text { N91 } & \text { N } & 4.455493348151 \mathrm{E}-01 & 1.899920067327 \mathrm{E}-01 & -4.063272933261 \mathrm{E}-02 & 0.00000 & \text { Uiso } & 1.00
\end{array}
$$

Figure S1. Optimized structures at B3-LYP-D*/TZVp of (from left to right, top to bottom)
Mg_{2} (dobpdc)-act, $\mathrm{CO}_{2} / \mathrm{Mg}_{2}$ (dobpdc)-act, $\mathrm{CO} / \mathrm{Mg}_{2}$ (dobpdc)-act and $\mathrm{N}_{2} / \mathrm{Mg}_{2}$ (dobpdc)-act. The C atoms are reported in gray, H atoms in white, O in red, Mg in green and N in blue.

S3. ATR-FTIR spectrum of $\mathbf{M g}_{2}$ (dobpdc)-act

The ATR-IR spectrum of Mg_{2} (dobpdc)-act is shown in Figure S2. The corresponding spectrum as obtained in transmission is reported as red curve in Figure 1b of the article.

The IR spectra calculated for Mg_{2} (dobpdc) with and without the Grimme correction are also reported in Figure S 1 as solid violet line and dotted magenta line, respectively, showing that the inclusion of the Grimme correction has only a slight influence on the intensity of some peaks. In both cases a good agreement with the experimental spectrum is obtained, although the calculated IR frequencies results shifted of $+50 \mathrm{~cm}^{-1}$ with respect to the experimental ones.

Figure S2. ATR-IR spectrum of Mg_{2} (dobpdc)-act in nitrogen atmosphere. Simulated IR spectra as obtained at the B3-LYP/TZVp level with (solid violet line) and without (dotted cyan line) the Grimme correction are also reported (Gaussian convolution, band width $30 \mathrm{~cm}^{-1}$).

The assignment of the main IR bands presents in the spectrum of Mg_{2} (dobpdc)-act reported in Figure S2 on the basis of the calculations performed at the B3LYP-D*/TZVp level is shown in Table S1.

Table S1. Assignment of the IR vibrational modes of Mg_{2} (dobpdc)-act on the basis of periodic calculations performed at the B3LYP-D*/TZVp level.

Expt. frequency (cm^{-1})	Calc. IR mode (cm^{-1})	assignment
3066	3218-3212	ring beat mode
3034	3205-3187	C-H stretching
1616	1658-1652	asymmetric $\mathrm{C}-\mathrm{C}$ stretching
1573	1597-1587	asymmetric COO stretching
1534	1580-1568	C-C stretching
1467	1532-1499	C-O (of alcohlate) stretching $+\mathrm{C}-\mathrm{H}$ bending + ring stretching
1425	1478-1442	```symmetric COO stretching \(+\mathrm{C}-\mathrm{H}\) bending + ring stretching```
1384	1425-1398	$\begin{aligned} & \text { symmetric } \mathrm{COO} \text { stretching } \\ & +\mathrm{C}-\mathrm{H} \text { bending + ring } \\ & \text { stretching } \end{aligned}$
1293	1343-1318	C-O (of alcohlate) stretching + symmetric $\mathrm{C}-\mathrm{C}$ stretching of the two couples of vicinal C-H on the ring
	1293-1291	bending CCO (of alcoholate) + ring stretching
1239	1283-1263	C-O (of alcohlate) stretching + ring stretching
1160 (s) and 1151	1186-1173	CH bending (kekule)

1102	1136-1134	$\mathrm{C}(\mathrm{CH}) \mathrm{C}$ bending
1050	1075-1074	ring breathing
1021	519	overtone Mg-O stretching
958	983	C-H bending out of plane twisting
931	964-951	C-H bending out of plane
887	909-905	COO bending + CCC bend
844	871-865	C-H bending out of plane wagging
826	853-852	Mg-O stretching + ring breathing
818	828-823	C of COO movement out of plane $+\mathrm{C}-\mathrm{H}$ bending out of plane
770	789	COO bending + CCC bending
741	758-743	COO bending + Ring torsion
726	758-743	COO bending + Ring torsion
693	718-714	COO bending + Ring deformation
669	684	$\text { CCC bending }+\mathrm{Mg}-\mathrm{O}$ stretching
616	635	Mg-O stretching + ring rotation
	629-606	Mg -O stretching +CH out of plane wagging

S4. IR spectra of toluene, chloroform, methanol, and water on $\mathbf{M g}_{2}$ (dobpdc)act.

The IR spectra of toluene, chloroform, methanol, and water in interaction with Mg_{2} (dobpdc)-act at beam temperature are shown in Figure S3-Figure S7 at different gas pressures.

For toluene (Figure S3) and dichloromethane (Figure S4), being coincident the spectra recorded during adsorption and desorption, only the spectra obtained during adsorption have been reported.

A significant perturbation of several MOF bands was observed upon solvent sorption (see Table S2).

Figure S3. IR spectra of toluene at beam temperature on Mg_{2} (dobpdc)-act. The spectra are reported for increasing dosing of toluene from vacuum (black curve) up to 20 mbar (orange line). Light grey curves refer to intermediate coverage. The spectrum obtained after degassing overnight at beam temperature was coincident with that of $\mathrm{Mg}_{2}($ dobpdc $)-$ act and then it was not reported.

Figure S4. IR spectra of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at beam temperature on Mg_{2} (dobpdc)-act. The spectra are reported for increasing dosing of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ from vacuum (black curve) up to 0.3 (grey curve) and 52 mbar (dark grey line). Light grey curves refer to intermediate coverage. The spectrum obtained after degassing overnight at beam temperature was coincident with that of Mg_{2} (dobpdc)-act and then it was not reported.

For methanol (Figure S5) and water (Figure S7), on the contrary, the spectra recorded during vapor adsorption and desorption have been plotted in two different graphs. These solvents were desorbed completely only at temperatures higher than BT, because of the strong interaction between the solvent molecules and Mg^{2+} ions. After prolonged degassing at beam temperature, only the solvent molecules bond to Mg^{2+} were left in the MOF, selectively poisoning these sites. For methanol, being the adsorption process characterized by a time evolution for pressures lower than 2 mbar , the spectra recorded in time for a pressure dose of 0.2 mbar are also reported in Figure S 6 (see below for the discussion), evidencing as in this case the adsorption process is constituted by two steps. In the first step, methanol molecules form small clusters as suggested by the presence of the band at $3309 \mathrm{~cm}^{-1}$. Slowly the clusters disaggregate with the migration of methanol molecules on the Mg^{2+} sites (band at $3603 \mathrm{~cm}^{-1}$).

After outgassing overnight at $180^{\circ} \mathrm{C}$ the sample exposed to methanol, the initial spectrum was restored.

Figure S5. IR spectra of methanol at beam temperature on Mg_{2} (dobpdc)-act. (top) The spectra are reported for increasing dosing of $\mathrm{CH}_{3} \mathrm{OH}$ from vacuum (black curve) to 0.7 mbar (dark green line) as obtained at equilibrium. The spectrum obtained at very low dosages is reported as light green line. Light grey curves refer to intermediate coverage. (bottom) The spectra are reported upon degassing at beam temperature. The spectrum obtained after degassing overnight at beam temperature is reported as black line. Light grey curves refer to intermediate coverage. The spectrum obtained after degassing overnight at $180^{\circ} \mathrm{C}$ was coincident with that of Mg_{2} (dobpdc)act and then it was not reported.

Figure S6. IR spectra of methanol at beam temperature on Mg_{2} (dobpdc)-act recorded in time upon subsequent dosages having a starting pressure of 0.2 mbar (from bottom to the top). Black spectra refer to the spectrum recorded immediately after the vapour dosage. Green spectra refer to spectra recorded at the equilibrium. Light grey curves refer to intermediate coverage. The disappearance of the band at $3309 \mathrm{~cm}^{-1}$ is evident with the parallel growth in intensity of the signal at $3603 \mathrm{~cm}^{-1}$. The presence of two isosbestic points at 3062 and $3032 \mathrm{~cm}^{-1}$ marks the transition from methanol clusters to single methanol molecules adsorbed on Mg^{2+} sites.

In the case of water, on the contrary, after activation the MOF spectrum was characterized by the appearance of two signals in the OH region, related to the formation of defects. It is interesting to notice that no other significant changes were observed in the MOF spectrum, although the significant decrease in the material surface area (see Table S3 and Ref. 1).

Figure S7. IR spectra of water at beam temperature on Mg_{2} (dobpdc)-act. (top) The spectra are reported for increasing dosing of $\mathrm{H}_{2} \mathrm{O}$ from vacuum (black curve), to 1 (light blue curve) and 20 mbar (blue curve). Light grey curves refer to intermediate coverage. (bottom) The spectra are reported upon degassing at beam temperature. The spectrum obtained after degassing overnight at beam temperature is reported as light blue curve. Light grey curves refer to intermediate coverage. The spectrum obtained after degassing overnight at $250^{\circ} \mathrm{C}$ is reported as dark grey line.

The nature of these defects, that is of vicinal $\mathrm{Mg}-\mathrm{OH}$ and HO-C couples (accordingly to what suggested in the literature), ${ }^{2}$ allows to expect a partial restoration of exposed Mg^{2+} sites from condensation of vicinal hydroxyl groups as it happens on oxidic surfaces. A decrease in the signals related to -OH groups involved in H -bonds ($3288 \mathrm{~cm}^{-1}$ band) is observed upon thermal treatment at increasing temperature by means of IR spectroscopy, validating this hypothesis (see Figure S8).

Figure S8. IR spectra obtained after activation at increasing temperatures of Mg_{2} (dobpdc)-act after exposure to a water saturated atmosphere. The spectrum of the undamaged Mg_{2} (dobpdc)-act sample is reported. The spectrum obtained after a dosage of water lower than the one necessary for the saturation of Mg^{2+} sites is also shown for comparison.

It is evident that no signal related to water molecules is present in these spectra at $200^{\circ} \mathrm{C}$. The signals relative to hydroxyl groups $\left(3605,3288\right.$ and $\left.763 \mathrm{~cm}^{-1}\right)$ decrease in intensity from 200 to $300^{\circ} \mathrm{C}$. After treatment at $400^{\circ} \mathrm{C}$, the band at $3288 \mathrm{~cm}^{-1}$ is disappeared suggesting the absence of vicinal hydroxyl groups whereas the band at $3605 \mathrm{~cm}^{-1}$, relative to isolated hydroxyl groups, is shifted to higher wavenumbers $\left(3670 \mathrm{~cm}^{-1}\right)$ suggesting the formation of more basic -OH and then to the formation of $\mathrm{Mg}-\mathrm{OH}$ nanoclusters.

It has been previously reported that MOF decomposition can be avoided after material exposure to water if washed with acetone or a low surface tension solvent before pumping them down. ${ }^{3}$ Although such an experiment cannot be carried out in the present apparatus, it would be interesting to verify if also for such an air-instable MOF, actually the decomposition happens during the water removal process. This issue will be addressed in future studies.

Table S2. Shift of IR vibrational modes of Mg_{2} (dobpdc)-act (in cm^{-1}) after interaction with different solvents at the higher vapor pressure considered (see Figures S3-S7).

mode	toluene	dichloromethane	methanol	water
1916	+31	-2	-4	-7
1838	+25	+1	+3	+4
1107	-3	-2	-7	-6
1053	-3	-2	-3	+3
958	-3	-1	-2	-4
929	-2	0	+3	+3
776	-4	-	-7	-5

S4.1 Time evolution of the solvents adsorption spectra

Besides the reversibility of the adsorption process, solvent polarity influenced also the time evolution of the adsorption process. In fact, for toluene and dichlorometane (that is for the solvents having the lowest polarity) the time evolution of the IR spectra after each vapor dosage was characterized by a parallel increase of the intensity of all the solvent bands until equilibration was reached. In the case of methanol, different behaviors were observed at different pressures.

At pressures lower than 1 mbar, after each pressure step a slow evolution is observed. Initially, methanol prefers to interact with other methanol molecules through hydrogen bonding (band at $3309 \mathrm{~cm}^{-1}$) instead to coordinate to the MOF (peak at $3603 \mathrm{~cm}^{-1}$). Only in a second time, they slowly migrate on the Mg^{2+} sites. The process can be easily followed in time by means of IR spectroscopy, showing the decrease in the intensity of the $3309 \mathrm{~cm}^{-1}$ signal and the parallel increase
of that located at $3603 \mathrm{~cm}^{-1}$ at each pressure pulse. In a qualitative description of the process, on the basis of the partial information obtained from the IR spectra, firstly the methanol molecules interact with the MOF walls preferentially through the methyl group leaving the -OH free to interact by hydrogen bonding with other methanol molecules forming small aggregates likely outside the pores. The slow diffusion of aggregates in the MOF pores and their interaction with an open Mg^{2+} site would cause the transfer of one methanol molecule from methanol clusters to the metal sites. At equilibrium, all the methanol molecules are coordinated to a Mg^{2+} site. At pressures higher than 1 mbar (even in the case of the first pressure dosage), this first step is not observed and coordination to Mg^{2+} occurs from the beginning. For what concerns water, such a process was not observed likely because of the strong polar nature of this molecule and its higher interaction energy with the Mg^{2+} sites.

S5. Volumetric measurements of N_{2} at 77 K and CO_{2} at RT.

The experimental N_{2} isotherms obtained at 77 K on Mg_{2} (dobpdc)-act, Mg_{2} (dobpdc)-sol and Mg_{2} (dobpdc)-air are shown in Figure S9. The surface area and pore volume obtained from the analysis of these isotherms are reported in Table S3, along with the N_{2} (at 77 K and 0.95 bar) and CO_{2} (at RT and 1 bar) uptake. The values reported for MOF-74-Mg in Ref. ${ }^{4}$ are also shown in this table. The comparison between MOF-74-Mg and Mg_{2} (dobpdc)-act evidences once again the important role of Mg^{2+} in the CO_{2} adsorption in the pressure and temperature conditions adopted in the present paper: in fact, although MOF-74 is characterized by a surface area that is about half of the Mg_{2} (dobpdc)-act one, the CO_{2} adsorbed per Mg^{2+} site is the same (about 1) and the CO_{2} uptake per gram of material in even higher. This is due to the lower molecular mass of MOF-74Mg formula unit.

For what concerns Mg_{2} (dobpdc)-sol and Mg_{2} (dobpdc)-air, it is impressive the larger detrimental effect on the CO_{2} uptake of the poisoning of the Mg^{2+} sites by residual solvent molecules with respect to the degradation of the material, reversing what expected on the basis of the surface area measurements.

Figure S9. (a) N_{2} isotherms at 77 K and (b) CO_{2} isotherms at RT on Mg_{2} (dobpdc)-act (squares, red line), Mg_{2} (dobpdc)-sol (circles, blue line) and Mg_{2} (dobpdc)-air (triangles, light blue line). The full and empty scatters refer to the adsorption and desorption branches, respectively.

Table S3. Experimental Langmuir and BET surface area and pore volume for Mg_{2} (dobpdc)-act, Mg_{2} (dobpdc)-sol, Mg_{2} (dobpdc)-air and MOF-74-Mg. The CO_{2} loading (at 1 bar and $25^{\circ} \mathrm{C}$) and the N_{2} loading (at 0.95 bar and 77 K) are also reported.

	$\begin{aligned} & S_{\mathrm{BET}} \\ & \left(\mathrm{~m}^{2} \mathrm{~g}^{-1}\right) \end{aligned}$	$\begin{aligned} & S_{\text {Lanmguir }} \\ & \left(\mathrm{m}^{2} \mathrm{~g}^{-1}\right) \end{aligned}$	$V_{\text {pores }}\left(\mathrm{cm}^{3} \mathrm{~g}^{-1}\right)$	$\text { N } \mathrm{N}_{2} @ 77 \mathrm{~K}, 0.95 \mathrm{bar}$ (mmol g ${ }^{-1}$)	$\mathrm{CO}_{2} @ \mathrm{RT}, 1$ bar (mmol g ${ }^{-1}$)
$\begin{aligned} & \mathrm{Mg}_{2}(\text { dobpdc })- \\ & \text { act }^{a} \end{aligned}$	2941	3895	1.47	44.9	6.4
Mg_{2} (dobpdc)-sol ${ }^{\text {a }}$	1761	2332	0.89	25.9	2.1
Mg_{2} (dobpdc)-air ${ }^{\text {a }}$	513	680	0.29	8.4	4.8
MOF-74-Mg ${ }^{\text {a,b }}$	1495	1905	0.68	19.6	8.0

${ }^{a}$ Standard range of pressure considered in the fit for the surface area evaluation: $0.05<p / p_{0}<$
0.20. $V_{\text {pores }}$ evaluated at $p / p_{0}=0.95 .{ }^{b}$ Data from Ref. ${ }^{4}$.

S6. IR spectra of CO_{2} on Mg_{2} (dobpdc)-act, on Mg_{2} (dobpdc)-sol and $\mathbf{M g}_{2}$ (dobpdc)-air.

The IR spectra of CO_{2} reported in the $2500-2200 \mathrm{~cm}^{-1}$ range in Figure 3 in the main text are reported in Figure S7 extending the spectral region to $3900-650 \mathrm{~cm}^{-1}$. A zoom view is reported on the spectral regions around the frequency corresponding to the CO_{2} vibrational features: bending mode (680-620 cm ${ }^{-1}$), CO_{2} Fermi resonance ($3800-3600 \mathrm{~cm}^{-1}$) and CO_{2} asymmetric stretching mode ($2500-2200 \mathrm{~cm}^{-1}$). It is interesting to notice that in the $3800-3600 \mathrm{~cm}^{-1}$ region framework overtones appear after MOF interaction with the CO_{2} molecules, that are superimposed to the CO_{2} Fermi resonance and then less appreciable in the spectra than for CO and N_{2}. These modes were observed upon gas dosage for all the adsorbates used in this study.

Figure S10. FTIR spectra of CO_{2} adsorbed on (from top to bottom) Mg_{2} (dobpdc)-act, Mg_{2} (dobpdc)-sol and Mg_{2} (dobpdc)-air recorded at beam temperature. The spectra were obtained by increasing CO_{2} equilibrium pressure from vacuum (black curve) to 1 mbar (light violet) and 44 mbar (violet curve). Light grey curves refer to intermediate coverage. The spectrum obtained after degassing overnight at beam temperature was coincident with the spectrum recorded initially in vacuum and then it was not reported. The four panels correspond to four different spectral regions (from left to right): $3900-650 \mathrm{~cm}^{-1}$ (the whole spectral region considered in the measurements), $3800-3600 \mathrm{~cm}^{-1}$ (Fermi resonance of the CO_{2} molecules, water contaminants, frameworks overtone), $680-620 \mathrm{~cm}^{-1}\left(\mathrm{CO}_{2}\right.$ bending frequency region), $2500-2200 \mathrm{~cm}^{-1}\left(\mathrm{CO}_{2}\right.$ stretching region). a.u. $=$ absorbance units.

S7. IR spectra of CO at 100 K on $\mathbf{M g}_{2}$ (dobpdc)-act, $\mathbf{M g}_{2}$ (dobpdc)-sol and $\mathbf{M g}_{2}$ (dobpdc)-air.

The IR spectra of CO reported in the $2500-2200 \mathrm{~cm}^{-1}$ range in Figure 3 of the main text are reported in Figure S 7 extending the spectral region to $3900-650 \mathrm{~cm}^{-1}$. A zoom view is reported for the spectral regions corresponding to framework overtones (3800-3540 and 1975-1810 cm^{-1}) and CO stretching mode (2250-2020 cm^{-1}).

Figure S11. FTIR spectra of CO adsorbed on (from top to bottom) Mg_{2} (dobpdc)-act, Mg_{2} (dobpdc)-sol and Mg_{2} (dobpdc)-air recorded at 100 K .44 mbar of CO were dosed at beam temperature on the sample (inset in the right panels) and then the temperature was decreased to 100 K . Once that equilibrium was reached, the spectra were recorded upon decreasing CO equilibrium pressure from 12 mbar (pink curve) to vacuum (black curve). Light grey curves refer to intermediate coverage besides two (at 1 and 0.01 mbar) that have been indicated with pink shades. The spectrum obtained after prolonged degassing was coincident with the spectrum recorded initially in vacuum and then it was not reported. The four panels correspond to four different spectral regions (from left to right): $3900-650 \mathrm{~cm}^{-1}$ (the whole spectral region considered in the measurements), $3800-3540 \mathrm{~cm}^{-1}$ (water contaminants, frameworks overtone), 1975-1810 cm^{-1} (framework overtones), 2250-2020 cm^{-1} (CO stretching region). The inset in the right panels reports the spectrum obtained at BT and 44 mbar of pressure. a.u. $=$ absorbance units.

S8. IR spectra of N_{2} at 100 K on $\mathbf{M g}_{2}$ (dobpdc)-act, on $\mathbf{M g}_{2}$ (dobpdc)-sol and $\mathbf{M g}_{2}$ (dobpdc)-air.

The IR spectra of N_{2} reported in the $2500-2200 \mathrm{~cm}^{-1}$ in Figure 3 in the main text are reported in Figure S 7 extending the spectral region to $3900-650 \mathrm{~cm}^{-1}$. A zoom view is shown on the spectral regions corresponding to frameworks overtone (3800-3540 and 1975-1810 cm^{-1}), and the N_{2} stretching region (2400-2300 cm^{-1}).

Figure S12. FTIR spectra of N_{2} adsorbed on (from top to bottom) Mg_{2} (dobpdc)-act, Mg_{2} (dobpdc)-sol and Mg_{2} (dobpdc)-air recorded at 100 K .44 mbar of N_{2} were dosed at beam temperature on the sample (spectra reported in the insets of the rights panels) and then the temperature was decreased to 100 K . Once that equilibrium was reached, the spectra were recorded upon decreasing N_{2} equilibrium pressure from 41 mbar (blue curve) to vacuum (black curve). Light grey curves refer to intermediate coverage besides the one recorded at 21 mbar (light blue curve). The spectrum obtained after prolonged degassing at beam temperature was coincident with the spectrum recorded initially in vacuum. The four panels correspond to four different spectral regions (from left to right): $3900-650 \mathrm{~cm}^{-1}$ (the whole spectral region considered in the measurements), $3800-3540 \mathrm{~cm}^{-1}$ (water contaminants, frameworks overtone), $1975-1810 \mathrm{~cm}^{-1}$ (framework overtones), $2400-2300 \mathrm{~cm}^{-1}\left(\mathrm{~N}_{2}\right.$ stretching region). The inset in the right panels reports the spectrum obtained at BT and 44 mbar of pressure. a.u. $=$ absorbance units.

Figure S13. FTIR spectra of N_{2} adsorbed on Mg_{2} (dobpdc)-act recorded at 100 K as in Figure S12 in the 2250-2100 cm^{-1} range. a.u. $=$ absorbance units.

S9. Electrostatic potential maps of MOF-74-Mg and $\mathbf{M g}_{2}$ (dobpdc)-act

In Figure S 14 , the structure of MOF-74-Mg is reported. The calculated electrostatic potential map of MOF-74- Mg and Mg_{2} (dobpdc) are compared in Figure S 15 in the region around the Mg^{2+} sites. The two structures are indistinguishable for what concerns their electrostatic properties. The dark cyan region (largest positive value of the electrostatic potential) is observed in correspondence of the Mg^{2+} site. For what concerns the oxygen atoms, the five O around Mg^{2+} are characterized by a different polarity. Two of them are from two different carboxylate units, each of them shared with another Mg ion ($\mathrm{O}_{\mathrm{coos}}$). One oxygen is from one of the previous carboxylate units, but it is not shared with another Mg ion $\left(\mathrm{O}_{\mathrm{COOu}}\right)$. The two remaining oxygens belong to the deprotonated OH group of two other linkers, each of them shared with another Mg ion $\left(\mathrm{O}_{\mathrm{OHs}}\right)$. In one channel are present simultaneously $1 \mathrm{O}_{\mathrm{ohs}}, 2 \mathrm{O}_{\text {coos. }} 1 \mathrm{O}_{\text {coous }}$. Only the two $\mathrm{O}_{\text {ohs }}$ and the $\mathrm{O}_{\text {coou }}$ give a significant contribution to the ESP (red regions in the map) whereas the Ocoos are almost apolar (yellow-green regions).

Figure S14. Structure of MOF-74-Mg. From left to right: inorganic node, organic linker and pore structure, as optimized at the B3-LYP-D*/TZVp level. The C atoms are reported in gray, H atoms in white, O in red, Mg in dark cyan.

Color map settings

$-2.0529+0.2046$
e- "bohre-3
Figure S15. Electrostatic potential map of MOF-74-Mg and Mg_{2} (dobpdc)-act around the Mg^{2+} site (maps obtained by using the online version of the J-ICE program). ${ }^{5}$

S10. Instructions to visualize the calculated vibrational modes of $\mathbf{M g}_{2}$ (dobpdc)-act, $\mathrm{CO}_{2} / \mathbf{M g}_{2}$ (dobpdc)-act, $\mathrm{CO} / \mathrm{Mg}_{2}$ (dobpdc)-act and $\mathbf{N}_{2} / \mathbf{M g}_{2}$ (dobpdc)-act.

The calculated normal modes for Mg_{2} (dobpdc)-act, $\mathrm{CO}_{2} / \mathrm{Mg}_{2}$ (dobpdc)-act, $\mathrm{CO} / \mathrm{Mg}_{2}$ (dobpdc)act and $\mathrm{N}_{2} / \mathrm{Mg}_{2}$ (dobpdc)-act can be visualized by using the *.mol files present in the Supporting Information, readable with the Moldraw software (freeware upon registration at http://www.moldraw.unito.it/).

Open the program and then click on Read and select the *.mol file.
Then go in the menu:
Crystal
Make Box
Click on ok.
In this way you will visualize the crystal cell.
To visualize the normal modes select:
View
Normal modes
Select the frequency and then click on Animate. In order to better appreciate the movement, click on + or - of the Speed and Amplitude options.

To close the Frequency windows, click on Dismiss.

References

(1) Vitillo, J. G.; Bordiga, S. Increasing the Stability of Mg_{2} (dobpdc) Metal-Organic Framework in Air Through Solvent Removal, Mater. Chem. Front. 2017, 1, 444-448.
(2) Tan, K.; Zuluaga, S.; Gong, Q.; Canepa, P.; Wang, H.; Li, J.; Chabal, Y. J.; Thonhauser, T. Water Reaction Mechanism in Metal Organic Frameworks with Coordinatively Unsaturated Metal Ions: MOF-74, Chem. Mater. 2014, 26, 6886-6895.
(3) Mondloch, J. E.; Katz, M. J.; Planas, N.; Semrouni, D.; Gagliardi, L.; Hupp, J. T.; Farha, O. K. Are Zr6-based MOFs water stable? Linker hydrolysis vs. capillary-force-driven channel collapse, Chem. Commun. 2014, 50, 8944-8946.
(4) Caskey, S. R.; Wong-Foy, A. G.; Matzger, A. J. Dramatic Tuning of Carbon Dioxide Uptake via Metal Substitution in a Coordination Polymer with Cylindrical Pores, J. Am. Chem. Soc. 2008, 130, 10870-10871.
(5) Canepa, P.; Hanson, R. M.; Ugliengo, P.; Alfredsson, M. J-ICE: a new Jmol interface for handling and visualizing crystallographic and electronic properties, 2011, 44, 225-229.

