Supporting Information

Surfactant-Free Solvothermal Synthesis of 3D Flowerlike Iron Alkoxide Fe-EG Micro/Nanostructures: Structure, Formation Mechanism, and Fenton Oxidation of Azo Dyes

Ting Fan,¹ Yangguang Li, and Hui Zhang^{*}

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing, 100029 (P. R. China)

* Corresponding author.

Tel.: +8610 64425872

Fax: +8610 64425385

E-mail: huizhang67@gst21.com

¹ Present address of T.F.: ShenWu Technology Group Corp., Beijing 102200, China

Figure S1. EDX spectrum of Fe-EG.

Figure S2. TG/DSC profiles of Fe-EG under N₂ flow.

Figure S3. Determination of contact angle for water of Fe-EG.

Figure S4. XPS spectrum of O1s for Fe-EG.

Figure S5. Mass spectrum of the Fe-EG-4h taken from the supernatant solution of the reaction mixture.

Figure S6. Photographs of ethanol suspensions for the Fe-EG-x samples kept after one month in desiccators.

Figure S7. SEM image with low magnification of Fe-EG.

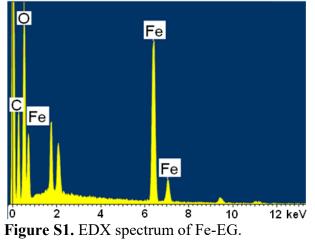

Figure S8. Photograph of the sample collected at reaction time 0.5h.

Figure S9. (a) SEM image of the Fe-EG-ref, and (b) further enlarged SEM image of Fe_3O_4 submicrospheres in the selected quadrate region of (a). (c) XRD pattern and (d) FT-IR spectrum of the Fe-EG-ref.

Figure S10. Effect of the catalyst dosage on AO7 degradation. Experimental conditions: $[AO7] = 35 \text{ mg L}^{-1}$; $[H_2O_2] = 48.5 \text{ mM}$; pH = 6 and 25 °C

Figure S11. Effect of the reaction temperature on AO7 degradation. Experimental conditions: AO7 = 35 ppm; Dosage = 0.25 g L^{-1} ; H₂O₂ = 48.5 mM and pH 6.0.

Figure S12. Recycling performance of Fe-EG for AO7 degradation.

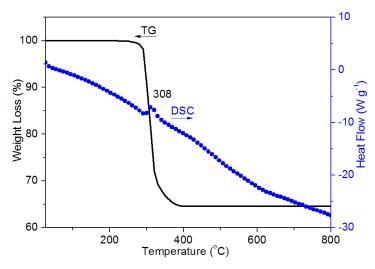


Figure S2. TG/DSC profiles of Fe-EG under N_2 flow.

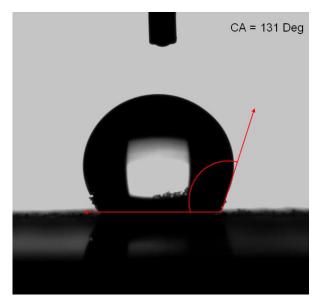


Figure S3. Determination of contact angle for water of Fe-EG.

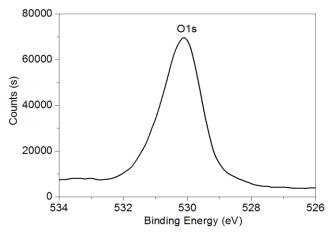
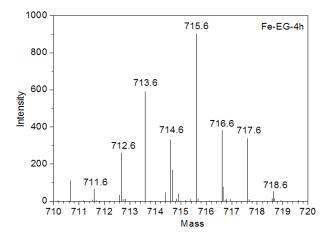



Figure S4. XPS spectrum of O1s for Fe-EG.

Figure S5. Mass spectrum of the Fe-EG-4h taken from the supernatant solution of the reaction mixture.

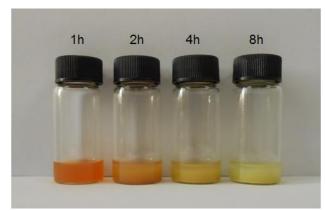
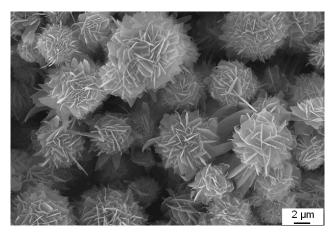
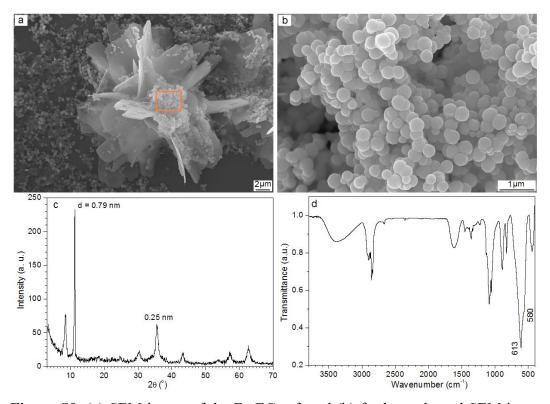
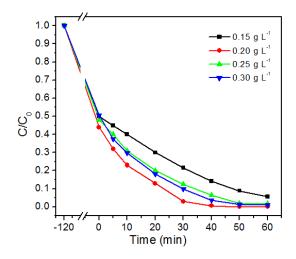


Figure S6. Photographs of ethanol suspensions for the Fe-EG-x samples kept after one month in desiccators.


Figure S7. SEM image with low magnification of Fe-EG.

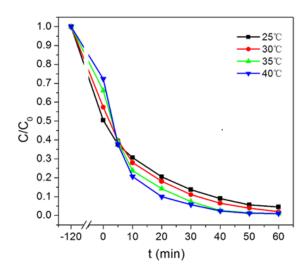

Figure S8. Photograph of the sample collected at reaction time 0.5 h.

Figure S9. (a) SEM image of the Fe-EG-ref, and (b) further enlarged SEM image of Fe_3O_4 submicrospheres in the selected quadrate region of (a). (c) XRD pattern and (d) FT-IR spectrum of the Fe-EG-ref.

Figure S10. Effect of the catalyst dosage on AO7 degradation. Experimental conditions: $[AO7] = 35 \text{ mg L}^{-1}$; $[H_2O_2] = 48.5 \text{ mM}$; $pH = 6 \text{ and } 25 \text{ }^{\circ}\text{C}$

Figure S11. Effect of the reaction temperature on AO7 degradation. Experimental conditions: AO7 = 35 ppm; Dosage = 0.25 g L^{-1} ; H₂O₂ = 48.5 mM and pH 6.0.

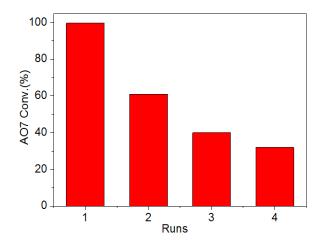


Figure S12. Recycling performance of Fe-EG for AO7 degradation.