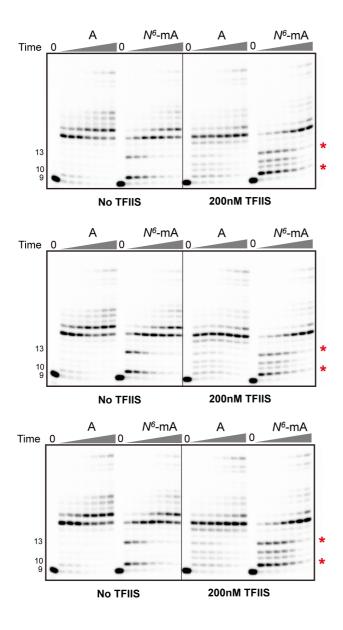
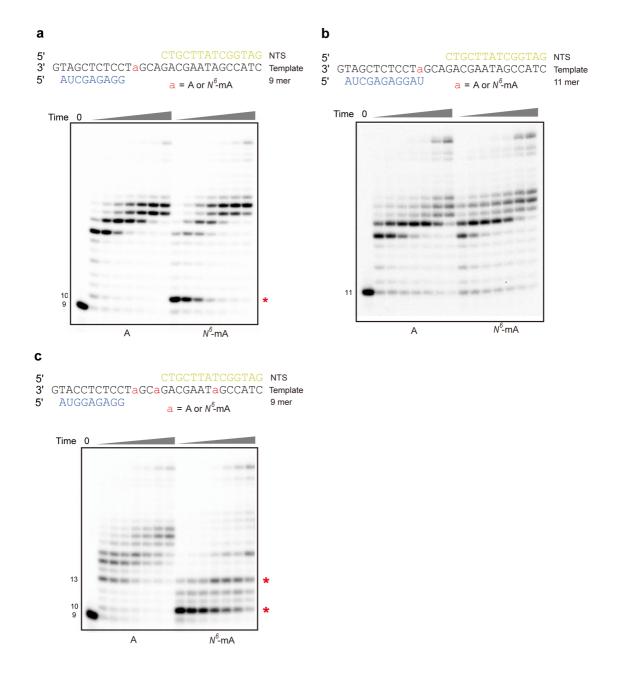
Supporting Information

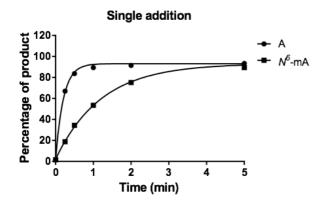
Epigenetic DNA Modification N⁶-Methyladenine Causes Site-Specific RNA Polymerase II Transcriptional Pausing

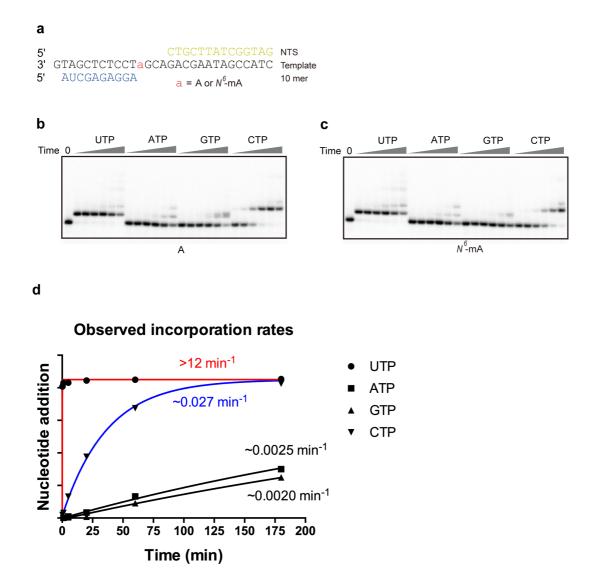

Wei Wang^{†,#}, Liang Xu^{†, #}, Lulu Hu[§], Jenny Chong[†], Chuan He[§] and Dong Wang^{†,‡,*}

[†] Division of Pharmaceutical Sciences, Skaggs School of Pharmacy & Pharmaceutical Sciences and [‡]Department of Cellular & Molecular Medicine, School of Medicine, University of California, San Diego, La Jolla, CA 92093-0625, USA.


[§] Department of Chemistry and Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, Chicago, IL 60637, USA.

Department of Chemistry, Sun Yat-Sen University, Guangzhou, China.


Key words: Transcription, Epigenetics, DNA methylation, N⁶-methyladenine, RNA Polymerase II.


Figure S1. N^6 -mA causes site-specific pol II pausing due to a slow incorporation step. Three additional repeats for Figure 1c and 1d.

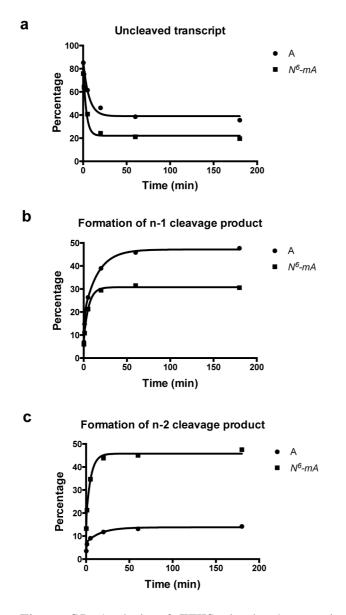

Figure S2. N^6 -mA causes site-specific pol II pausing due to a slow incorporation step. (a) Gel analysis of nucleotide incorporation against N^6 -mA, and (b) subsequent extension after N^6 -mA in the presence of 25 μ M NTP. Time points are 0s, 15 s, 30 s, 1 min, 2 min, 5 min, 20 min, and 1 hr, respectively. (c) N^6 -mA cause site-specific pol II pausing (highlighted with *) in the presence of 1 μ M TFIIS.

Figure S3. Quantitative analysis of observed kinetic rates for single UMP incorporation. For the unmodified template, $k_{\text{obs},A}$ =4.8 ± 0.3 min⁻¹; for the N^6 -mA, $k_{\text{obs},\text{mA}}$ = 0.83 ± 0.04 min⁻¹.

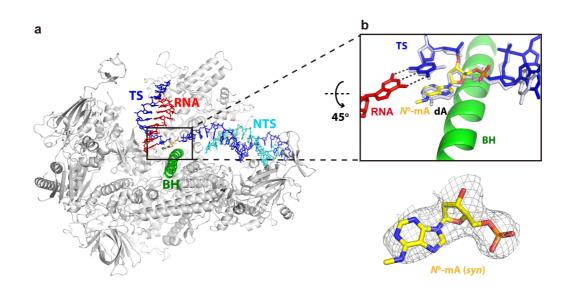


Figure S4. UMP is selectively incorporated opposite the N^6 -mA site. (a) RNA/DNA scaffold used in this *in vitro* transcription assay. Single nucleotide addition for the unmodified template (b) and N^6 -mA template (c). The nucleotide concentration is 1 mM. The first lane in the left refers to time zero. Other time points are 0, 15 s, 1 min, 5 min, 20 min, 1 hr, and 3 hr, respectively. (d) Quantitative analysis of nucleotide incorporation opposite of N^6 -mA template.

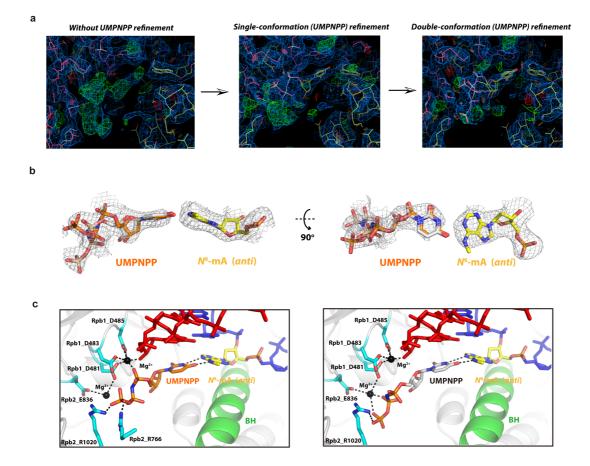


Figure S5. Analysis of TFIIS-stimulated transcript cleavage rates and patterns in the unmodified A template and N^6 -mA template. (a) Quantitative analysis of overall observed transcript cleavage rates derived by the disappearance of starting material using two-phase decay fitting model. $k_{obs,6mA} = 4.9 \pm 1.9 \text{ min}^{-1}$ for N^6 -mA template and $k_{obs,A} = 1.2 \pm 0.3 \text{ min}^{-1}$ for unmodified template. (b) Formation of n-1 cleavage product (pre-translocation state derived cleavage) using two-phase decay fitting model. $k_{obs,6mA} = 4.8 \pm 2.0 \text{ min}^{-1}$ for N^6 -mA template and $k_{obs,A} = 1.3 \pm 0.3 \text{ min}^{-1}$ for unmodified template. Population of pre-translocation derived by curve plateau are $31 \pm 1\%$ for the N^6 -mA template and $47 \pm 1\%$ for the unmodified A template. (c) Formation of n-2 cleavage product (backtracked state derived cleavage) using

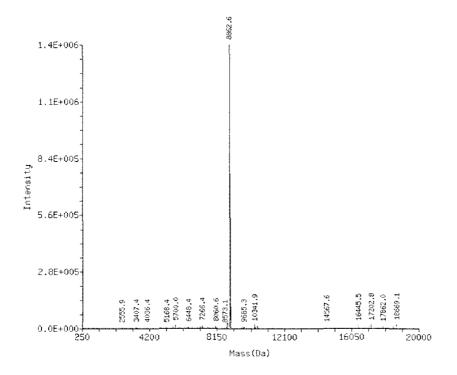

two-phase decay fitting model. $k_{obs,6mA} = 5 \pm 2 \text{ min}^{-1}$ for N^6 -mA template and $k_{obs,A} = 2.4 \pm 0.8$ min⁻¹ for unmodified template. Population of backtracked state derived by curve plateau are $46 \pm 1\%$ for the N^6 -mA template and $14 \pm 0.4\%$ for the unmodified A template.

Figure S6. Crystal structure of RNA pol II elongation complex with an N^6 -mA at i+1 position (EC-I). (a) Overall structure of pol II EC. All representations and colors are the same as pol II EC-II in Figure 3. (b) Comparison of N^6 -mA with the corresponding canonical template nucleotide (silver colored, PDB code 2NVZ). Bottom panel: $2F_0$ - F_c map (grey) of N^6 -mA is contoured at 1.0 σ .

Figure S7. Electron density maps of pol II EC-II and two conformations of UMPNPP. (a) The original refinement process of UMPNPP is shown in software of COOT. 2*F*o-*F*c map is colored as blue (1.0 σ), and *F*o-*F*c map is colored as green (3.0 σ). (b) 2*F*o-*F*c maps (grey) of UMPNPP and *N*⁶-mA are contoured at 1.0 σ from two views. Two conformations of UMPNPP are colored as white and orange sticks, respectively. (c) Interaction network of hydrogen bonds between two different conformations of UMPNPP and *N*⁶-mA.

Figure S8. Representative deconvoluted ESI mass spectrum characterization of synthetic N^{6} mA containing DNA oligo. The sequence is 5' CTACCGATAAGCAGACG(N^{6} mA)TCCTCTCGATG 3'. The theoretical molecular weight is 8860.8 Da.

	EC-I	EC-II
Data collection		
Space group	C2	C2
Cell dimensions		
a, b, c (Å)	167.2, 222.0, 192.7	168.7, 224.0, 193.1
α, β, γ (°)	90, 100.6, 90	90, 101.0,90
Resolution (Å)	95.8-3.6 (3.67-3.6)	96.4-3.4 (3.58-3.4)
Mean I/ σ	5.0 (1.3)	5.5 (1.3)
CC 1/2	0.98 (0.53)	0.98 (0.47)
Completeness (%)	100 (100)	99.6 (99.8)
Redundancy	5.4 (5.4)	3.7 (3.7)
Refinement		
Resolution (Å)	81.0-3.6	82.8-3.4
Diffraction Anisotropy a, b, c (Å)	4.0, 3.6, 3.6	3.7, 3.4, 3.4
No. reflections	71390	83721
$R_{\rm work}/R_{\rm free}$	0.227/0.259	0.227/0.254
RMSD bands	0.002	0.002
RMSD angles	0.514	0.536
Ramachandran favored (%)	92.5	92.6

 Table S1. X-ray Diffraction Data and Refinement Statistics.