Supporting information of

Direct infusion resonance-enhanced multi-photon ionization mass spectrometry (DI-REMPI-MS) of liquid samples under vacuum conditions

Claudia Kruth $^{\dagger,\parallel}$, Hendryk Czech $^{\dagger,\parallel}$, Martin Sklorz †,‡ , Johannes Passig †,‡ , Sven Ehlert $^{\dagger,\eta}$, Achille Cappiello § , Ralf Zimmermann †,‡,*

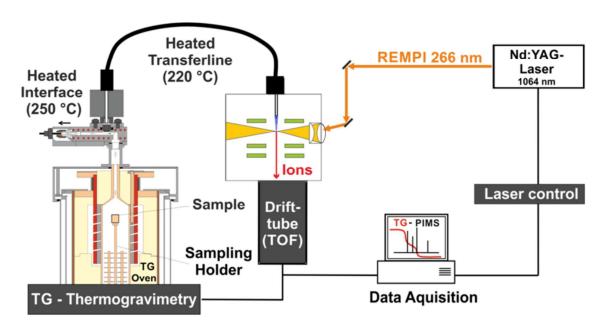
*corresponding author: Ralf Zimmermann, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany email: ralf.zimmermann@uni-rostock.de

Contents:

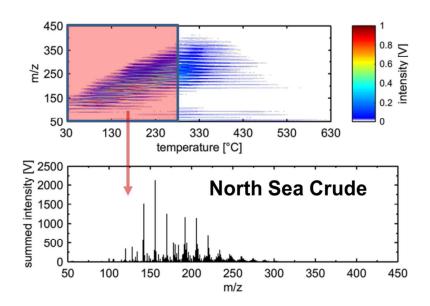
Figure S1 - Instrumental setup of thermogravimetry (TG) coupled to REMPI-TOFMS

Figure S2 – Contour plot from TG-REMPI-TOFMS analysis of North Sea Crude oil

Figure S3 – Mass losses of oil samples in thermal analysis


[†] Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, 18059 Rostock, Germany

[‡]Joint Mass Spectrometry Centre, Cooperation Group "Comprehensive Molecular Analytics" (CMA), Helmholtz Zentrum München – German Research Centre for Environmental Health, 85764 Neuherberg, Germany


[¶]Photonion GmbH, Hagenower Strasse 73, 19061 Schwerin, Germany

[§]DiSTeVA, LC-MS Laboratory, University of Urbino, Piazza Rinascimento 6, 61029 Urbino, Italy

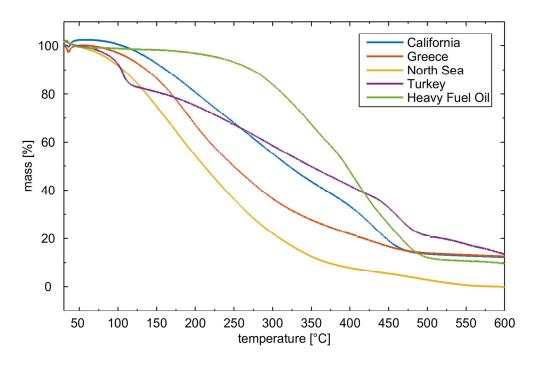

These authors contributed equally.

Figure S1 Instrumental setup the the thermogravimetry (TG) coupled to resonance-enhanced multiphoton ionization (REMPI) time-of-flight mass spectrometry (TOFMS).

Figure S2 Contour plot of North Sea crude oil from a total TG-REMPI-TOFMS analysis (top). Spectra (red shadowed) up to the repeller temperature of the direct-REMPI setup (280 °C) are summed up and visualized as bar chart (bottom). The appearance of lower m/z in the temperature region between 200 °C and 500°C indicates thermal decomposition of the sample by pyrolysis.

Figure S3 Mass losses of the five investigated oil samples during thermal analysis with 10 K/min which suggest the following order for the heaviness of the crude oils: North Sea < Greece < California < Turkey. The heavy fuel oil does not fit into this concept due to its production process.