Two dimensional supramolecular assemblies from pH responsive poly(ethyl glycol)-*b*poly(L-glutamic acid)-*b*-poly(N-octylglycine) triblock copolymer

Yunxia Ni¹, Jing Sun¹*, Yuhan Wei¹, Xiaohui Fu¹, Chenhui Zhu², Zhibo Li¹*

¹Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department; School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China

²Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley,

California 94720, United States

Scheme S1. Synthetic routes of (a) Oct-NNCA and (b) PEG-b-PGA-b-PNOG.

Figure S1. ¹H NMR of (a) BLG-NCA (500 MHz, $CDCl_3$, δ , ppm): 1.86-2.12 (m, 2H), 2.52 (t, 2H), 4.47 (t, 2H), 5.09 (s, 2H), 7.31-7.36 (m, 5H) and (b) Oct-NNCA (500 MHz, $CDCl_3$, δ , ppm): 0.90 (t, 3H), 1.28-1.32 (m, 10H), 1.60-1.64 (m, 2H), 3.41 (t, 2H), 4.10 (s, 2H). * indicates $CDCl_3$.

Figure S2. FTIR spectrums of BLG-NCA, Oct-NNCA, PEG-*b*-PBLG and PEG-*b*-PBLG-*b*-PNOG.

Figure S3. Representative GPC chromatograms of (a) PEG-*b*-PBLG₆₄ and PEG-*b*-PBLG₆₄-*b*-PNOG₂₁; (b) PEG-*b*-PBLG₂₄ and PEG-*b*-PBLG₂₄-*b*-PNOG₁₇; (c) PEG-*b*-PBLG₂₄ and PEG-*b*-PBLG₂₄-*b*-PNOG₁₁.

Figure S4. The DSC thermograms of all the triblock copolymers: black curve represents PEG-*b*-PGA₆₄-*b*-PNOG₂₁; pink curve represents PEG-*b*-PGA₂₄-*b*-PNOG₁₁; blue curve represents PEG-*b*-PGA₂₄-*b*-PNOG₁₇; red curve represents PEG-*b*-PGA₄₂-*b*-PNOG₁₇.

Figure S5. CD spectrum of (a) PEG-*b*-PGA₆₄-*b*-PNOG₂₁; (b) PEG-*b*-PGA₂₄-*b*-PNOG₁₇; (c) PEG*b*-PGA₂₄-*b*-PNOG₁₁ at different pH.

Figure S6. Cryo-TEM micrographs of (freshly prepared) 0.2 wt % PEG-*b*-PGA₄₂-*b*-PNOG₁₇ in aqueous solution at (a) pH 7.2 and (b) pH 4.8. The arrows indicate the self-assemblies that lie orthogonal to the plane.

Figure S7. TEM image of PEG-*b*-PGA₄₂-*b*-PNOG₁₇ at pH 2.5 at concentration of 2 mg/mL.

Figure S8. AFM image of (a) $PEG-b-PGA_{64}-b-PNOG_{21}$ at pH 4.8 and (b) $PEG-b-PGA_{24}-b-PNOG_{17}$ at pH 7.2 at concentration of 2 mg/mL.

Figure S9. (a) TEM image and (b) AFM image of PEG-*b*-PGA₆₄-*b*-PNOG₂₁ at pH 7.2 at concentration of 2 mg/mL. (c) TEM image and (d) AFM image of PEG-*b*-PGA₂₄-*b*-PNOG₁₇ at pH 4.8 at concentration of 2 mg/mL.

Figure S10. TEM image of PEG-*b*-PGA₂₄-*b*-PNOG₁₁ at (a) pH 7.2 and (c) pH 4.8 at concentration of 2 mg/mL; AFM image of PEG-*b*-PGA₂₄-*b*-PNOG₁₁ at (b) pH 7.2 and (d) pH 4.8 at concentration of 2 mg/mL.

Samples	Structure Type		Height (nm)	
	pH 7.2	pH 4.8	pH 7.2	pH 4.8
PEG-b-PBLG ₆₄ -b-PNOG ₂₁	disk	disk	5.2±0.4	9.8±0.6
PEG-b-PBLG ₄₂ -b-PNOG ₁₇	disk	sheet	5.9±0.4	10.2±0.4
PEG-b-PBLG ₂₄ -b-PNOG ₁₇	sheet	sheet	9.2±0.6	9.8±0.6
PEG-b-PBLG ₂₄ -b-PNOG ₁₁	disk	sheet	6.0±0.3	8.0±0.5

Table S1. The characteristics of the assembles of all the triblock copolymers at different pH.

*For statistical analysis, ~ 40 nanodisks or nanosheets were traced to determine the size.