Supporting Information for

Direct Synthesis of Large-Scale ortho-lodinated Perylene Diimides: Key Precursors for Functional Dyes

Jiajun Wu, Dezhi He, Li Zhang, Yudong Liu, Xiaogang Mo, Jianbin Lin* and Hui-Jun Zhang*

Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, P. R. China.

Contents:

1) General Information S2
2) Reaction Optimization S2-S4
3) Procedures and Characterization Data S4-S9
4) References S9
5) NMR and HRMS Spectra S10-S23
6) X-ray Single-Crystal Structure of 2b S24-S27
7) Optical and Redox properties of PDIs 1-6 S28-S29
8) Characterization data of CMP 7-8 S30-S31

1) General Information

Deuterated solvents were purchased from Cambridge Isotope Laboratories. The other materials and solvents were commercially available and used without further purification. PDIs 1a and 1b were prepared from 3,4,9,10-perylenetetracarboxylic dianhydride according to the literature procedure. ${ }^{[1]}{ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 400 MHz or 500 MHz in CDCl_{3} as solvent. Chemical shifts are given in ppm with reference to the residual solvent resonance of the deuterated solvents. High-resolution mass spectra were recorded on a FT-MS instrument using ESI technique or APCI technique. Absorption spectra and Fluorescence spectra were obtained on a Varian Cary 300 UV-Vis spectrophotometer and Hitachi F-4500, respectively. SEM measurements were carried out on Hitachi S-4800. Cyclic voltammetry (CV) measurements were performed on a Bio-Logic-Science Instrument EC-LAB SP-200. Diffuse reflectance UV-Vis absorption spectra were obtained on Varian Cary 5000 UV-Vis spectrophotometer.

2) Reaction Optimization

Bromonation

Iodination

Table S1 Catalyst Screening ${ }^{\text {a }}$

entry	[M] (mol\%)	[Ag] (mol\%)	additive (equiv)	t (h)	yield (\%) ${ }^{\text {b }}$
1	[$\left.\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(5)$	$\mathrm{AgSbF}_{6}(80)$	$\mathrm{Cu}(\mathrm{OAc})_{2}(4)$	48	56
2	-	$\mathrm{AgSbF}_{6}(80)$	$\mathrm{Cu}(\mathrm{OAc})_{2}(4)$	48	NR
3	[$\left.\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(5)$	$\mathrm{AgNTf}_{2}(60)$	$\mathrm{Cu}(\mathrm{OAc})_{2}(4)$	48	49
4	[$\left.\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(5)$	AgOTf (60)	$\mathrm{Cu}(\mathrm{OAc})_{2}(4)$	48	trace
5	$\mathrm{Ru}_{3}(\mathrm{CO})_{12}(10)$	-	$\mathrm{Cu}(\mathrm{OAc})_{2}(4)$	36	NR
6	$\mathrm{Ru}_{3}(\mathrm{CO})_{12}(10)$	$\mathrm{AgOAc}(20)$	-	36	NR
7	$\mathrm{Pd}(\mathrm{OAc})_{2}(40)$	-	p-TsOH (2)	46	0
8	$\mathrm{Rh}_{2}(\mathrm{OAc})_{4}(5)$	-	$\mathrm{Cu}(\mathrm{OAc})_{2}(4)$	48	NR
9	$\mathrm{Cp}^{*} \mathrm{Rh}(\mathrm{OAc})_{2}(10)$	-	$\mathrm{Cu}(\mathrm{OAc})_{2}(4)$	48	NR

${ }^{a}$ Reaction conditions: $\mathbf{1 a}(0.05 \mathrm{mmol})$, $\mathrm{NIS}(0.4 \mathrm{mmol}),[\mathrm{M}],[\mathrm{Ag}]$, additive, $\mathrm{DCE}(1 \mathrm{~mL}), \mathrm{Ar}, 80^{\circ} \mathrm{C} .{ }^{\mathrm{b}}$ isolated yield.

Table S2 Solvent Screening ${ }^{\text {a }}$

entry	$\mathrm{AgSbF}_{6}(\mathrm{~mol} \%)$	solvent (mL)	yield (\%) ${ }^{\text {b }}$
1	80	HFIP (1)	29 (62) ${ }^{\text {c }}$
2	60	DCE (0.8) / t-AmylOH (0.2)	NR
3	60	DCE (0.8) / HFIP (0.2)	33
4	60	DCE (0.2) / HFIP (0.8)	38
5	80	TFA (1)	NR
6	80	$\mathrm{CHCl}_{3}(1)$	NR
7	80	DCE (1.5)	39
8	80	DCE (2)	39

${ }^{a}$ Reaction conditions: 1a (0.05 mmol), NIS (0.4 mmol), $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}, \mathrm{Cu}(\mathrm{OAc})_{2}(0.2 \mathrm{mmol})$, solvent, $\mathrm{Ar}, 80$ ${ }^{\circ} \mathrm{C} .{ }^{b}$ isolated yield. ${ }^{c}$ Value in parentheses indicates the yield of corresponding tri-iodinated PDI product.

Table S3 Additive Screening ${ }^{\text {a }}$

entry	$[\mathrm{Ag}]\left(\mathrm{mol}_{2}\right)$	additive (equiv)	$t(\mathrm{~h})$	yield (\%) $^{\text {b }}$
1	$\mathrm{AgSbF}_{6}(40)$	$\mathrm{CuBr}_{2}(8)$	36	0
2	$\mathrm{AgSbF}_{6}(40)$	$\mathrm{CuO}(8)$	28	0
$3^{\text {c }}$	$\mathrm{AgSbF}_{6}(40)$	$\mathrm{CuI}(8)$	28	NR
4	$\mathrm{AgSbF}_{6}(40)$	$\mathrm{Cu}(\mathrm{OTf})_{2}(4)$	30	0
5	$\mathrm{AgSbF}_{6}(60)$	$\mathrm{Cu}(\mathrm{acac})_{2}(4)$	48	NR
6	$\mathrm{AgSbF}_{6}(80)$	-	48	0

7	$\mathrm{AgSbF}_{6}(20)$	$\mathrm{Cu}(\mathrm{OAc})_{2}(4) / \mathrm{HNTf}_{2}(0.6)$	48	23
8	$\mathrm{AgNTf}_{2}(20)$	$\mathrm{Cu}(\mathrm{OAc})_{2}(4) / \mathrm{HNTf}_{2}(0.6)$	48	19
9	$\mathrm{AgSbF}_{6}(80)$	$\mathrm{Cu}(\mathrm{OAc})_{2}(4) / t-\mathrm{BuCl}(2)^{d}$	48	NR

${ }^{a}$ Reaction conditions: 1a (0.05 mmol), NIS (0.4 mmol), [$\left.\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(5 \mathrm{~mol} \%),[\mathrm{Ag}]$, additive, $\mathrm{DCE}(1 \mathrm{~mL}), \mathrm{Ar}, 80^{\circ} \mathrm{C} .{ }^{b}$ isolated yield. ${ }^{c} 120^{\circ} \mathrm{C} .{ }^{d} t$-BuCl was added for the generation of a hidden acid catalyst from silver salt. ${ }^{[2]}$

3) Procedures and Characterization Data

General Procedures for the ortho-lodination of PDIs.

Synthesis of 2a.

0.05 mmol reaction: In a $15-\mathrm{mL}$ Schlenk tube containing a magnetic stirring bar, a mixture of $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(0.00375 \mathrm{mmol}, 2.3 \mathrm{mg})$ and $\mathrm{AgSbF}_{6}(0.045 \mathrm{mmol}, 15.5 \mathrm{mg})$ in DCE (0.2 mL) was stirred at room temperature for 20 minutes under argon. And then, followed by adding 1a ($0.05 \mathrm{mmol}, 37.8 \mathrm{mg}$), NIS $(0.4 \mathrm{mmol}, 98.0 \mathrm{mg}), \mathrm{Cu}(\mathrm{OAc})_{2}(0.2$ $\mathrm{mmol}, 36.3 \mathrm{mg}$), and DCE (0.8 mL) in succession, the tube was sealed and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 96 hours under argon. After cooling down to room temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and brine. The residue was purified by silica gel column chromatography using DCM/PE as eluent. After recrystallization from chloroform/methanol, compound $\mathbf{2 a}$ was obtained in 82% yield (51 mg).
10 mmol reaction: In a $500-\mathrm{mL}$ Schlenk flask containing a magnetic stirring bar, a mixture of $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(0.5 \mathrm{mmol}, 309.1 \mathrm{mg})$ and $\mathrm{AgSbF}_{6}(8 \mathrm{mmol}, 2.75 \mathrm{~g})$ was stirred at room temperature in DCE (20 mL) for 30 minutes under argon. And then, $\mathbf{1 a}(10 \mathrm{mmol}, 7.55 \mathrm{~g})$, NIS ($80 \mathrm{mmol}, 19.60 \mathrm{~g}$), $\mathrm{Cu}(\mathrm{OAc})_{2}(10 \mathrm{mmol}, 1.82 \mathrm{~g})$, and DCE $(180 \mathrm{~mL})$ were added in succession and the flask was sealed with a rubber stopper. The mixture was stirred at 80 ${ }^{\circ} \mathrm{C}$ for 120 hours. After cooling down to ambient temperature, the resulting solution was filtered through a pad of Celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated to a small volume under reduced pressure and layered with methanol. Red needle-like crystals (see below) of the product 2a were isolated and dried under vacuum ($10.5 \mathrm{~g}, 83 \%$). The ${ }^{1} \mathrm{H}$ NMR spectra of 2a obtained through two different work-up strategies are shown below.

2a: red solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.01$ (s, 4H), 5.23-5.07 (m, 2H), 2.27-2.12 (m, 4H), $1.97-1.84(\mathrm{~m}, 4 \mathrm{H}), 1.37-1.20(\mathrm{~m}, 32 \mathrm{H}), 0.84(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.86,138.47,131.73,131.29,125.67,123.82,101.16,56.48$,
32.36, 31.92, 29.34, 27.15, 22.75, 14.20; HR-MS (APCI) m/z: $[\mathrm{M}+\mathrm{H}]+$ Calcd for $\mathrm{C}_{50} \mathrm{H}_{59} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{I}^{+}$1259.0648; Found 1259.0653.

Synthesis of 2b.

1 mmol reaction: In a $100-\mathrm{mL}$ Schlenk flask containing a magnetic stirring bar, a mixture of $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(0.075 \mathrm{mmol}, 46.4 \mathrm{mg})$ and $\mathrm{AgSbF}_{6}(0.9 \mathrm{mmol}, 309.3 \mathrm{mg})$ in DCE $(2 \mathrm{~mL})$ was stirred at room temperature for 30 minutes under argon. Followed by adding 1b (1
 the flask was sealed with a rubber stopper. The mixture was stirred at $80^{\circ} \mathrm{C}$ for 96 hours. After cooling down to room temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and brine. The residue was purified by silica gel column chromatography using DCM/PE as eluent. After recrystallization from chloroform/methanol, compound 2b was obtained in 84% yield (868 mg).
5 mmol reaction: In a $500-\mathrm{mL}$ Schlenk flask containing a magnetic stirring bar, a mixture of $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(0.25 \mathrm{mmol}, 154.5 \mathrm{mg})$ and $\mathrm{AgSbF}_{6}(4 \mathrm{mmol}, 1.37 \mathrm{~g})$ was stirred at room temperature in DCE (10 mL) for 30 minutes under argon. And then, 1b ($5 \mathrm{mmol}, 2.65 \mathrm{~g}$), NIS ($40 \mathrm{mmol}, 9.80 \mathrm{~g}$), $\mathrm{Cu}(\mathrm{OAc})_{2}(5 \mathrm{mmol}, 0.91 \mathrm{~g})$, and DCE (90 mL) were added in succession and the flask was sealed with a rubber stopper. The mixture was stirred at 80 ${ }^{\circ} \mathrm{C}$ for 120 hours. After cooling down to ambient temperature, the resulting solution was filtered through a pad of Celite and washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was concentrated to a small volume under reduced pressure and layered with methanol. Red needle-like crystals of the product $\mathbf{2 b}$ were isolated and dried under vacuum with 71% yield (3.7 g).
2b: red solid; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.09(\mathrm{~s}, 4 \mathrm{H}), 5.13-5.00(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.16$ (m, 4H), $2.04-1.94(\mathrm{~m}, 4 \mathrm{H}), 0.94(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 161.08, 138.69, 131.97, 131.51, 125.89, 123.69, 101.31, 59.37, 25.07, 11.55; HR-MS (ESI) m/z: [M+Na]+ Calcd for $\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{I}_{4} \mathrm{Na}^{+}$1056.7964; Found 1056.7938.

Synthesis of 2a-lı. In a $15-\mathrm{mL}$ Schlenk tube, a mixture of $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(0.0025 \mathrm{mmol}, 1.6$ mg) and $\mathrm{AgSbF}_{6}(0.0175 \mathrm{mmol}, 6.0 \mathrm{mg})$ was stirred at room temperature in DCE $(0.2 \mathrm{~mL})$ for 10 minutes under argon. And then, followed by adding 1a ($0.05 \mathrm{mmol}, 37.8 \mathrm{mg}$), NIS $(0.06 \mathrm{mmol}, 14.7 \mathrm{mg}), \mathrm{Cu}(\mathrm{OAc})_{2}(0.025 \mathrm{mmol}, 4.5 \mathrm{mg})$, and DCE $(1.3 \mathrm{~mL})$ in succession, the tube was sealed and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 hours. After cooling down to room temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and brine. The organic layer was collected, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography using DCM/PE as eluent. After recrystallization from dichloromethane/methanol, compound $\mathbf{2 a -} \mathbf{I}_{1}$ was obtained in 50% yield (22 mg).
2a-lı: red solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.11$ (s, 1H), 8.67 (d, $\left.J=7.6 \mathrm{~Hz}, 3 \mathrm{H}\right), 8.57$ (dd, $J=8.1,1.7 \mathrm{~Hz}, 2 \mathrm{H}$), $8.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.13(\mathrm{~m}, 2 \mathrm{H}), 2.29-2.16(\mathrm{~m}, 4 \mathrm{H})$, $1.93-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.20(\mathrm{~m}, 32 \mathrm{H}), 0.83(\mathrm{td}, J=6.9,4.5 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.67,163.22,138.02,134.85,134.28,133.84,133.06,131.82,130.96$, $129.59,126.45,126.39,123.55,123.34,123.13,55.65,55.05,32.58,32.47,31.91,29.35$, 27.11, 22.73, 14.15; HR-MS (ESI) m/z: [M+Na] Calcd for $\mathrm{C}_{50} \mathrm{H}_{61} \mathrm{~N}_{2} \mathrm{O}_{4} 1 \mathrm{Na}^{+} 903.3568$; Found 903.3548 .

Synthesis of 2a-l2. In a $15-\mathrm{mL}$ Schlenk tube, a mixture of $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(0.0025 \mathrm{mmol}, 1.6$ mg) and $\mathrm{AgSbF}_{6}(0.0175 \mathrm{mmol}, 6.0 \mathrm{mg})$ was stirred at room temperature in DCE $(0.2 \mathrm{~mL})$ for 10 minutes under argon. And then, followed by adding 1a ($0.05 \mathrm{mmol}, 37.8 \mathrm{mg}$), NIS $(0.15 \mathrm{mmol}, 36.7 \mathrm{mg}), \mathrm{Cu}(\mathrm{OAc})_{2}(0.025 \mathrm{mmol}, 4.5 \mathrm{mg})$, and DCE (0.8 mL) in succession, the mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 hours. After cooling down to room temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and brine. The organic layer was collected, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography using DCM/PE as eluent to give $\mathbf{2 a -} \mathbf{I}_{2}$ with 45% yield (20.5 mg) as a mixture of three regioisomers. One of the three isomers could be isolated through a more careful column chromatography (for ${ }^{1} \mathrm{H}$ NMR spectra, see below). HR-MS (ESI) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{50} \mathrm{H}_{60} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{I}_{2} \mathrm{Na}^{+}$1029.2535; Found 1029.2568.

Synthesis of 2a- \mathbf{I}_{3}. In a $15-\mathrm{mL}$ Schlenk tube, a mixture of $\left[\mathrm{Cp}^{*} \mathrm{RhCl}_{2}\right]_{2}(0.0025 \mathrm{mmol}, 1.6$ mg) and $\mathrm{AgSbF}_{6}(0.04 \mathrm{mmol}, 13.8 \mathrm{mg})$ was stirred at room temperature in $\operatorname{HFIP}(0.2 \mathrm{~mL})$ for 10 minutes under argon. And then, followed by adding 1a ($0.05 \mathrm{mmol}, 37.8 \mathrm{mg}$), NIS $(0.4 \mathrm{mmol}, 98.0 \mathrm{mg}), \mathrm{Cu}(\mathrm{OAc})_{2}(0.2 \mathrm{mmol}, 36.3 \mathrm{mg})$ and HFIP $(0.8 \mathrm{~mL})$ in succession, the tube was sealed and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 48 hours. After cooling down to room temperature, the reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with sat. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ solution and brine. The organic layer was collected, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated. The residue was purified by silica gel column chromatography with DCM/PE as eluent to afford the product $2 \mathrm{a}-\mathrm{I}_{3}$ in 62% yield (35 mg).
2a-l3: red solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.10(\mathrm{~s}, 1 \mathrm{H}), 9.01(\mathrm{~s}, 2 \mathrm{H}), 8.69(\mathrm{~d}, \mathrm{~J}=7.3 \mathrm{~Hz}$, 1 H), 8.51 ($\mathrm{d}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}$), $5.23-5.13(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.15(\mathrm{~m}, 4 \mathrm{H}), 1.95-1.86(\mathrm{~m}, 4 \mathrm{H})$, $1.34-1.22(\mathrm{~m}, 32 \mathrm{H}), 0.84$ (td, $J=7.0,4.5 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.29$, 161.03, 138.39, 138.28, 133.27, 132.81, 132.09, 131.80, 131.40, 130.56, 125.94, 125.80, 123.66,101.36, 56.36, 55.76, 32.40, 32.28, 31.91, 29.83, 29.33, 27.13, 22.74, 14.21; HR-MS (ESI) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{50} \mathrm{H}_{59} \mathrm{~N}_{2} \mathrm{O}_{4} 1_{3} \mathrm{Na}^{+} 1155.1501$; Found 1155.1479 .

Synthesis of 3a. To a $15-\mathrm{mL}$ Schlenk tube, 2a ($0.05 \mathrm{mmol}, 62.9 \mathrm{mg}$) and aniline (2.5 mL) were added under argon. Then, the tube was sealed and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 5 hours. After cooling down to ambient temperature, 10 mL of methanol was added. The resulting precipitate was filtered, washed, and dried under vacuum to give product 3a
quantitatively.
3a: dark purple solid, (56 mg); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 11.91$ (d, $J=5.5 \mathrm{~Hz}, 4 \mathrm{H}$), 7.79 (s, 4H), $7.40-7.27(\mathrm{~m}, 16 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 4 \mathrm{H}), 5.35-5.27(\mathrm{~m}, 2 \mathrm{H}), 2.31-2.21(\mathrm{~m}$, $4 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.23(\mathrm{~m}, 32 \mathrm{H}), 0.83(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 12 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) б 167.00, 166.69, 151.47, 139.28, 135.22, 135.05, 134.55, 129.82, 125.44, 124.50, 112.91, 106.81, 101.09, 100.56, 54.08, 32.68, 31.94, 29.45, 27.29, 22.75, 14.18; HR-MS (ESI) m/z: [M+Na]+ Calcd for $\mathrm{C}_{74} \mathrm{H}_{82} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Na}^{+} 1141.6290$; Found 1141.6245.

Synthesis of 3b and 3c. To a $15-\mathrm{mL}$ Schlenk tube, 2a ($0.05 \mathrm{mmol}, 62.9 \mathrm{mg}$), phenol or thiophenol ($0.3 \mathrm{mmol}, 6.0$ equiv), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.3 \mathrm{mmol}, 41.5 \mathrm{mg}$), and NMP $(1.0 \mathrm{~mL})$ were added under argon. Then, the tube was sealed and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 5 hours. Subsequently, the reaction mixture was concentrated under vacuum. The residue was purified by column chromatography using DCM/PE as eluent to afford the product 3b or 3c.
3b: red solid; yield 64\% (36 mg); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.57$ (s, 4H), 7.36 (t, $\mathrm{J}=7.9$ $\mathrm{Hz}, 8 \mathrm{H}$), 7.22 (t, J=7.4 Hz, 4H), 7.07 (d, J=7.8 Hz, 8H), $5.14-5.05(\mathrm{~m}, 2 \mathrm{H}), 2.16-2.05$ (m, 4H), $1.83-1.74(\mathrm{~m}, 4 \mathrm{H}), 1.27-1.17(\mathrm{~m}, 32 \mathrm{H}), 0.81(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl 3) $\delta 161.77,161.02,155.65,134.57,133.70,130.22,124.94,119.68$, 118.93, 115.25, 112.16, 54.64, 32.37, 31.90, 29.31, 27.12, 22.68, 14.14; HR-MS (ESI) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{74} \mathrm{H}_{79} \mathrm{~N}_{2} \mathrm{O}_{8}{ }^{+} 1123.5831$; Found 1123.5795 .

3c: dark red solid; yield 95\% (56 mg); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.51$ - 7.37 (m, 24H), $5.31-5.18(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.19(\mathrm{~m}, 4 \mathrm{H}), 1.97-1.85(\mathrm{~m}, 4 \mathrm{H}), 1.34-1.22(\mathrm{~m}, 32 \mathrm{H}), 0.82(\mathrm{t}$, $J=7.0 \mathrm{~Hz}, 12 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.23,163.59,151.20,150.74,134.52$, 132.94, 132.56, 131.13, 130.24, 129.49, 122.16, 121.25, 117.26, 116.73, 55.20, 32.43, 31.90, 29.33, 27.14, 22.71, 14.16; HR-MS (ESI) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{74} \mathrm{H}_{79} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{4}{ }^{+}$ 1187.4917; Found 1187.4886.

Synthesis of 4. To a $15-\mathrm{mL}$ Schlenk tube, 2a ($0.05 \mathrm{mmol}, 62.9 \mathrm{mg}$), CuCN (0.3 mmol , 26.9 mg), and 1.5 mL of dry DMF were added under argon, and the mixture was stirred at $140{ }^{\circ} \mathrm{C}$ overnight. After cooling down to room temperature, the resulting solution was poured into water and extracted with DCM. The organic layer was collected, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using DCM/PE as eluent to afford the product 4 in 96% yield (41 mg).
4: orange red solid; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.05$ (s, 4H), $5.24-5.15(\mathrm{~m}, 2 \mathrm{H}), 2.26$ $2.15(\mathrm{~m}, 4 \mathrm{H}), 1.96-1.86(\mathrm{~m}, 4 \mathrm{H}), 1.32-1.20(\mathrm{~m}, 32 \mathrm{H}), 0.83(\mathrm{t}, J=6.5 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl 3) ठ 160.86, 159.70, 132.79, 130.71, 129.55, 128.33, 127.27, 117.32, 116.71, 57.02, 32.17, 31.81, 29.20, 27.10, 22.65, 14.11; HR-MS (ESI) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{54} \mathrm{H}_{58} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{Na}^{+} 877.4412$; Found 877.4392.

Synthesis of 5. In a $15-\mathrm{mL}$ Schlenk tube containing a magnetic stirring bar, 2a (0.1 mmol , 125.8 mg), alkyne ($0.48 \mathrm{mmol}, 4.8$ equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}(0.02 \mathrm{mmol}, 14.1 \mathrm{mg})$, and Cul $(0.02 \mathrm{mmol}, 3.8 \mathrm{mg}$) were dissolved in dry diisopropylamine (4 mL) under argon. The mixture was stirred at room temperature overnight. And then, the diisopropylamine was
evaporated using a rotary evaporator. The residue was purified by silica gel column chromatography using DCM/PE as eluent to afford 5 .
5a: red solid; yield 82% (93 mg); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60(\mathrm{~s}, 4 \mathrm{H}), 5.20-5.09(\mathrm{~m}$, 2 H), $2.26-2.17(\mathrm{~m}, 4 \mathrm{H}), 1.93-1.83(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.22(\mathrm{~m}, 32 \mathrm{H}), 0.85(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}$, 12 H), 0.41 (s, 36H); ${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 161.92,132.05,130.55,129.80$, 127.37, 125.06, 107.46, 104.73, 100.22, 54.97, 32.46, 31.91, 29.38, 27.08, 22.76, 14.19, -0.01 ; HR-MS (ESI) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{70} \mathrm{H}_{94} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Si}_{4} \mathrm{Na}^{+}$1161.6183; Found 1161.6188.

5b: brown solid; yield 92% (106 mg); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.73$ (s, 4H), 7.82 (dd, J $=6.4,3.0 \mathrm{~Hz}, 8 \mathrm{H}$), 7.45 (dd, $J=4.9,1.7 \mathrm{~Hz}, 12 \mathrm{H}), 5.29-5.20(\mathrm{~m}, 2 \mathrm{H}), 2.35-2.24(\mathrm{~m}$, $4 \mathrm{H}), 2.00-1.90(\mathrm{~m}, 4 \mathrm{H}), 1.39-1.21(\mathrm{~m}, 32 \mathrm{H}), 0.83(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (126 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.32,132.64,132.22,131.04,129.56,129.42,128.67,128.02,124.91$, 123.26, 100.68, 100.17, 90.54, 55.17, 32.49, 31.95, 29.47, 27.24, 22.79, 14.19; HR-MS (APCI) m/z: [M+H] ${ }^{+}$Calcd for $\mathrm{C}_{82} \mathrm{H}_{79} \mathrm{~N}_{2} \mathrm{O}_{4}{ }^{+} 1155.6034$; Found 1155.6036.
5c: brown solid; yield 76% (96 mg); ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 10.08$ (s, 4H), 8.70 (s, 4H), 7.96 (d, J = $1.6 \mathrm{~Hz}, 16 \mathrm{H}$), $5.27-5.19$ (m, 2H), $2.35-2.22$ (m, 4H), $2.01-1.90$ (m, $4 \mathrm{H}), 1.37-1.23(\mathrm{~m}, 32 \mathrm{H}), 0.82(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 191.42$, 136.49, 133.05, 132.24, 130.97, 129.80, 129.38, 129.16, 125.40, 99.27, 93.58, 55.41, 32.45, 31.93, 29.42, 27.22, 22.77, 14.18.

Synthesis of 6. A mixture of 2a ($0.05 \mathrm{mmol}, 62.9 \mathrm{mg}$), phenylboronic acid or 2-thienylboronic acid (4.8 equiv), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(0.01 \mathrm{mmol}, 11.6 \mathrm{mg}\right.$), $\mathrm{K}_{2} \mathrm{CO}_{3}(0.6 \mathrm{mmol}, 82.9$ mg), and solvent (1 mL , DMF for $\mathbf{6 a}$ and 1,4-dioxane for $\mathbf{6 b}$) was intensively stirred under argon at $100^{\circ} \mathrm{C}$ for 12 hours. Then, the mixture was extracted with DCM, washed with water, dried with anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under reduced pressure. The residue was purified by silica gel column chromatography using DCM/PE as eluent to afford 6.
6a: red solid; yield $75 \%(40 \mathrm{mg})$; ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40(\mathrm{~s}, 4 \mathrm{H}), 7.49(\mathrm{t}, \mathrm{J}=7.5$ Hz, 12H), 7.45 (d, J = $7.6 \mathrm{~Hz}, 8 \mathrm{H}$), $4.97-4.87$ (m, 2H), $2.13-2.01$ (m, 4H), $1.63-1.58$ (m, 4H), $1.29-1.21$ (m, 32H), $0.85(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 164.01, 163.51, 147.87, 142.32, 132.80, 131.25, 128.59, 128.21, 128.06, 127.43, 125.41, 54.95, 32.21, 32.02, 29.36, 27.06, 22.74, 14.21; HR-MS (ESI) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{74} \mathrm{H}_{78} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{Na}^{+} 1081.5854$; Found 1081.5821.
6b: red solid; yield $85 \%(46 \mathrm{mg})$; ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.50(\mathrm{~s}, 4 \mathrm{H}), 7.54$ (dd, $J=$ 5.1, 1.2 Hz, 4H), $7.26-7.12(\mathrm{~m}, 8 \mathrm{H}), 5.04-4.93(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.11(\mathrm{~m}, 4 \mathrm{H}), 1.71-1.62$ $(\mathrm{m}, 4 \mathrm{H}), 1.31-1.21(\mathrm{~m}, 32 \mathrm{H}), 0.84(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 142.86, 132.48, 131.10, 128.30, 127.61, 127.40, 127.07, 125.82, 121.22, 55.34, 32.35, 32.01, 29.38, 27.09, 22.75, 14.22; HR-MS (ESI) m/z: [M+Na] ${ }^{+}$Calcd for $\mathrm{C}_{66} \mathrm{H}_{7} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{4} \mathrm{Na}^{+}$ 1105.4111; Found 1105.4096.

Synthesis of CMP 7. 2a ($1 \mathrm{mmol}, 1.258 \mathrm{~g}$), 1,4-bis(ethynyl)benzene ($2 \mathrm{mmol}, 0.252 \mathrm{~g}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%, 0.115 \mathrm{~g})$ and $\mathrm{Cul}(10 \mathrm{~mol} \%, 19 \mathrm{mg})$ were dissolved in dry DMF (50 $\mathrm{mL})$ and the solution was degassed for 5 mins. Then $\mathrm{dry}_{\mathrm{Et}}^{3} \mathrm{~N}(50 \mathrm{~mL})$ were added and then the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h under nitrogen atmosphere.

After the reaction was cooled to room temperature, methanol was added and the precipitated powder was filtered and washed with water. The residue was washed in a Soxhlet-Extractor with methanol and DCM for 12 h respectively. The final product was obtained after drying under reduced pressure overnight to give CMP 7 as a black solid (1.003 g).

Synthesis of CMP 8. 2a ($0.5 \mathrm{mmol}, 0.629 \mathrm{~g}$), 4,4'-diethynybiphenyl ($1 \mathrm{mmol}, 0.202 \mathrm{~g}$), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%, 57.8 \mathrm{mg})$ and Cul ($10 \mathrm{~mol} \%, 9.6 \mathrm{mg}$) were dissolved in dry DMF (50 mL) and the solution was degassed for 5 mins. Then $\mathrm{dry}_{\mathrm{Et}}^{3} \mathrm{~N}(50 \mathrm{~mL})$ were added and then the reaction mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h under nitrogen atmosphere. After the reaction was cooled to room temperature, methanol was added and the precipitated powder was filtered and washed with water. The residue was washed in a Soxhlet-Extractor with methanol and DCM for 12 h respectively. The final product was obtained after drying under reduced pressure overnight to give CMP 8 as a black solid (0.638 g).

Table S4. Element analysis results for the CMP 7 and CMP 8.

	Theory			Found		
CMP	C	H	N	C	H	N
$\mathbf{7}$	83.80	7.03	2.79	80.43	7.520	3.164
$\mathbf{8}$	85.23	6.80	2.42	81.46	6.897	2.598

4) References

[1] (a) Che, Y.; Datar, A.; Balakrishnan, K.; Zang, L. J. Am. Chem. Soc. 2007, 129, 7234-7235; (b) Huang, Y.; Hu, J.; Kuang, W.; Wei, Z.; Faul, C. F. J. Chem. Commun. 2011, 47, 5554-5556.
[2] Dang, T. T.; Boeck, F.; Hintermann, L. J. Org. Chem. 2011, 76, 9353-9361.

5）${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

$$
\begin{aligned}
& \text { 2a }
\end{aligned}
$$

$\begin{aligned} & \circ \\ & \stackrel{\infty}{0} \\ & \stackrel{-}{1} \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\square} \\ & \frac{\square}{\square} \end{aligned}$		＋ \sim \sim \sim	

[^0]2b

a

2b

$\begin{aligned} & \stackrel{\infty}{\stackrel{\circ}{\bullet}} \\ & \stackrel{+}{\circ} \end{aligned}$		$\begin{aligned} & \bar{m} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \hline \end{aligned}$	Fig	$1 \underset{\sim}{c}$	ल	-

[^1]

Non

$\underset{\square}{7}$

1			17					1													
200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10

5c

[^2]

6b

6b

露
m-man ส

6) X-ray Single-Crystal Structure of 2b

Table S5 Crystal data and structure refinement for $\mathbf{2 b}$.

Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/Å
b/Å
$c / A ̊$
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ} \quad 116.925(6)$
$\mathrm{V}^{\prime}{ }^{\circ}$
Volume $/ \AA^{3}$
Z
$\rho_{\text {calcg }} / \mathrm{cm}^{3}$
μ / mm^{-1}

F(000)

Crystal size $/ \mathrm{mm}^{3}$
Radiation
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes [$1>=2 \sigma(\mathrm{I})$]
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
31.875

2b
$\mathrm{C}_{34} \mathrm{H}_{26} \mathrm{I}_{4} \mathrm{~N}_{2} \mathrm{O}_{4}$
1034.17

173
monoclinic
P2 $1 / \mathrm{c}$
18.7978(9)
5.0125(2)
18.4802(9)

90

90
1552.52(14)

2
2.212
976.0
$0.1 \times 0.1 \times 0.1$
CuKa ($\lambda=1.54184$)
9.58 to 124.21
$-20 \leq h \leq 21,-5 \leq k \leq 5,-21 \leq 1 \leq 17$
7821
$2433\left[R_{\text {int }}=0.0567, R_{\text {sigma }}=0.0600\right]$
2433/0/201
1.037
$\mathrm{R}_{1}=0.0338, \mathrm{wR}_{2}=0.0827$
$R_{1}=0.0414, w R_{2}=0.0894$
0.92/-1.06

Table S6 Fractional Atomic Coordinates $\left(\times 10^{4}\right)$ and Equivalent Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{2 b}$. Ueq is defined as $1 / 3$ of of the trace of the orthogonalised Uıtensor.

Atom x		y	z	$\mathrm{U}(\mathrm{eq})$
12	7583.4(2)	12090.2(8)	619.2(2)	18.95(15)
11	6067.0(2)	643.5(9)	3164.8(2)	19.41(16)
01	7594(3)	3326(10)	3480(3)	24.4(11)
O2	8096(3)	10597(10)	2329(3)	25.3(12)
N1	7829(3)	7051(11)	2935(3)	13.7(11)
C1	6587(4)	4548(13)	2185(4)	12.5(13)
C6	6127(4)	8838(13)	55(4)	13.9(13)
C8	6965(4)	8023(12)	1487(4)	11.0(13)
C7	6816(4)	9337(13)	774(4)	13.2(13)
C10	5708(4)	5521(13)	738(4)	12.1(13)
C4	5162(4)	3556(12)	728(4)	10.8(12)
C5	5567(4)	6996(12)	24(4)	10.0(12)
C3	5331(4)	2203(13)	1439(4)	13.6(13)
C2	6023(4)	2714(12)	2152(4)	12.7(13)
C11	7369(4)	4882(13)	2915(4)	13.8(13)
C12	7667(4)	8692(13)	2271(4)	15.5(14)
C9	6419(4)	6053(12)	1472(4)	10.0(12)
C15	9027(4)	9377(15)	5124(4)	24.8(16)
C13	8578(4)	7625(14)	3694(4)	17.3(14)
C14	8427(4)	7668(14)	4445(4)	18.5(14)
C16	9244(4)	5722(15)	3773(4)	22.0(15)
C17	9493(5)	5943(19)	3097(5)	39(2)

Table S7 Anisotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for 2b. The Anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U_{11}+2 h k a^{*} b^{*} U_{12}+\ldots\right]$.

Atom U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}	
I2	$17.0(3)$	$25.0(3)$	$14.5(2)$	$-0.53(16)$	$6.73(19)$	$-8.82(16)$
I1	$17.2(3)$	$27.5(3)$	$10.9(2)$	$5.09(16)$	$4.00(18)$	$-4.29(16)$
O1	$23(3)$	$23(3)$	$15(2)$	$5(2)$	$-2(2)$	$-4(2)$
O2	$23(3)$	$24(3)$	$16(2)$	$3(2)$	$-2(2)$	$-14(2)$
N1	$10(3)$	$17(3)$	$10(3)$	$-2(2)$	$1(2)$	$-3(2)$
C1	$7(3)$	$20(4)$	$8(3)$	$-5(3)$	$1(3)$	$2(2)$
C6	$9(3)$	$21(3)$	$9(3)$	$4(3)$	$1(3)$	$2(2)$
C8	$5(3)$	$14(3)$	$12(3)$	$-3(2)$	$1(3)$	$-1(2)$
C7	$11(3)$	$15(3)$	$15(3)$	$-6(3)$	$8(3)$	$-6(2)$
C10	$9(3)$	$16(3)$	$11(3)$	$0(3)$	$4(3)$	$-1(2)$
C4	$12(3)$	$10(3)$	$11(3)$	$-1(2)$	$6(3)$	$2(2)$
C5	$10(3)$	$12(3)$	$9(3)$	$-3(2)$	$5(3)$	$0(2)$
				S25		

C3	$10(3)$	$18(3)$	$15(3)$	$4(3)$	$8(3)$	$1(2)$
C2	$16(3)$	$10(3)$	$10(3)$	$2(2)$	$4(3)$	$-2(2)$
C11	$15(3)$	$14(3)$	$12(3)$	$-1(3)$	$4(3)$	$0(3)$
C12 $17(4)$	$16(3)$	$8(3)$	$-3(3)$	$1(3)$	$-2(3)$	
C9 11(3)	$12(3)$	$8(3)$	$-1(2)$	$5(3)$	$5(2)$	
C15 21(4)	$29(4)$	$16(3)$	$-4(3)$	$0(3)$	$-1(3)$	
C13 14(4)	$21(4)$	$9(3)$	$4(3)$	$-3(3)$	$-4(3)$	
C14 12(3)	$26(4)$	$13(3)$	$3(3)$	$2(3)$	$-1(3)$	
C16 13(4)	$25(4)$	$20(4)$	$-3(3)$	$1(3)$	$-2(3)$	
C17 27(5)	$54(6)$	$40(5)$	$-4(4)$	$19(4)$	$0(4)$	

Table S8 Bond Lengths for 2b.

Atom	Atom	Length/A	Atom	Atom	Length/A
I2	C7	$2.107(6)$	C8	C12	$1.491(9)$
I1	C2	$2.109(6)$	C8	C9	$1.415(9)$
O1	C11	$1.215(8)$	C10	C4	$1.415(9)$
O2	C12	$1.223(8)$	C10	C5	$1.429(9)$
N1	C11	$1.379(9)$	C10	C9	$1.435(9)$
N1	C12	$1.391(9)$	C4	C51	$1.472(9)$
N1	C13	$1.498(8)$	C4	C3	$1.382(9)$
C1	C2	$1.383(9)$	C5	C41	$1.472(9)$
C1	C11	$1.489(9)$	C3	C2	$1.393(9)$
C1	C9	$1.424(9)$	C15	C14	$1.517(10)$
C6	C7	$1.394(9)$	C13	C14	$1.537(9)$
C6	C5	$1.382(9)$	C13	C16	$1.528(10)$
C8	C7	$1.384(9)$	C16	C17	$1.524(11)$

Table S9 Bond Angles for 2b.

Atom	Atom	Atom	Angle/ ${ }^{\circ}$
C 11	N 1	C 12	$124.0(5)$
C 11	N 1	C 13	$119.2(5)$
C 12	N 1	C 13	$116.7(5)$
C 2	C 1	C 11	$122.5(6)$
C 2	C 1	C 9	$117.9(6)$
C 9	C 1	C 11	$119.5(6)$
C 5	C 6	C 7	$121.4(6)$
C 7	C 8	C 12	$121.9(6)$
C 7	C 8	C 9	$118.7(6)$
C 9	C 8	C 12	$119.4(6)$
C 6	C 7	I 2	$112.7(5)$

Atom	Atom	Atom	Angle $^{\circ}$
C6	C 5	C^{1}	$122.1(6)$
C 10	C 5	C^{1}	$118.6(6)$
C 4	C 3	C 2	$121.5(6)$
C 1	C 2	I1	$124.5(5)$
C 1	C 2	C 3	$122.2(6)$
C 3	C 2	I1	$113.2(4)$
O 1	C 11	N 1	$120.9(6)$
O 1	C 11	C 1	$121.5(6)$
N 1	C 11	C 1	$117.5(6)$
O 2	C 12	N 1	$120.8(6)$
O 2	C 12	C 8	$121.2(6)$

C8	C7	12	125.8(5)	N1	C12	C8	117.9(6)
C8	C7	C6	121.5(6)	C1	C9	C10	119.8(6)
C4	C10	C5	121.2(6)	C8	C9	C1	119.8(6)
C4	C10	C9	120.1(6)	C8	C9	C10	120.4(5)
C5	C10	C9	118.7(6)	N1	C13	C14	111.6(5)
C10	C4	C5 ${ }^{1}$	120.2(6)	N1	C13	C16	110.6(5)
C3	C4	C10	118.4(6)	C16	C13	C14	113.7(6)
C3	C4	C5 ${ }^{1}$	121.4(6)	C15	C14	C13	112.5(6)
C6	C5	C10	119.3(6)	C17	C16	C13	114.8(6)

Table S10 Hydrogen Atom Coordinates $\left(\AA \times 10^{4}\right)$ and Isotropic Displacement Parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{2 b}$.

Atom	x	y	z	U(eq)
H6	6041	9784	-423	17
H3	4967	893	1442	16
H15A	8966	11244	4949	37
H15B	9569	8772	5259	37
H15C	8935	9219	5604	37
H13	8752	9462	3634	21
H14A	7883	8362	4287	22
H14B	8452	5821	4645	22
H16A	9717	6066	4298	26
H16B	9068	3870	3786	26
H17A 9048	5398	2581	59	
H17B	9953	4780	3219	59
H17C	9639	7794	3055	59

7) Optical and Redox properties of PDIs 1-6

Fig. S1. UV-visible absorption spectra and fluorescence spectra ($\lambda_{\text {exc }}=490 \mathrm{~nm}$) of PDI 1-6 in DCM ($10 \mu \mathrm{M}$).

The electronic absorption spectra of compounds 1-6 were recorded in DCM (Fig. S1). Distinct from most of those known bay-substituted PDIs which exhibit substantial bathochromic shifts due to the twisting of the perylene core, the ortho-substituents have little influence on the absorption maximum of PDIs 2-6. Also, the drop of their maximal absorption intensities were observed. Compared with PDI 1a, hypsochromic shift (7 nm , 10 nm) of absorption maxima is observed for PDIs 2a and 4a probably because of the involvement of electron-withdrawing iodo and cyano substituents. For PDI 3a, the broadening of the absorption line and the loss of the detailed vibronic structure were observed which may be attributed to the enhanced participation of the side groups in the conjugation with PDI core caused by intramolecular hydrogen bonding between carbonyl and NH groups (12.0 ppm of for NH in the ${ }^{1} \mathrm{H}$ NMR spectra). For PDls $\mathbf{5 b} \mathbf{- 6}$, the conjugation of the PDI core with alkynyl and (hetro)aryl substituents gave rise to small bathochromic shifts of the main absorption band to about 530 nm .

Fig. S2. Cyclic voltammograms of PDI 1-6 in $0.1 \mathrm{M} \mathrm{Bu}{ }_{4} \mathrm{NPF}_{6} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution. Potentials are reported vs the $\mathrm{Fc} / \mathrm{Fc}^{+}$redox couple as an internal standard; Counter electrode: Pt, Reference electrode: $\mathrm{Ag} / \mathrm{AgNO}_{3}$, scan rate $=100 \mathrm{mV} / \mathrm{s}$.

Table S11 Optical and Redox properties of PDIs 1-6

	$\lambda \mathrm{abs}$	$\varepsilon_{\text {max }}$	$\lambda_{\text {em }}$	$\boldsymbol{\varphi} \mathrm{f}^{\text {a }}$	Ered1	Ered2	E_{g}	LUMO ${ }^{\text {b }}$	$\mathrm{HOMO}^{\text {c }}$
PDIs	$n m$	$\left(\mathrm{M}^{-1}\right.$	nm		V	V	eV	eV	eV
		$\left.\mathrm{cm}^{-1}\right)$							
1a	526	71600	538	0.89	-1.03	-1.18	2.29	-3.77	-6.06
2a	519	55600	-	-	-0.82	-0.97	2.32	-3.98	-6.30
3a	528	54400	-	-	-1.31	-	2.23	-3.49	-5.72
3b	522	43000	540	0.16	-0.99	-1.03	2.30	-3.81	-6.11
3c	494	46600	-	-	-1.06	-1.22	2.24	-3.74	-5.98
4	516	57000	528	0.95	-0.33	-0.71	2.33	-4.47	-6.80
5a	524	65900	534	0.51	-0.92	-1.02	2.29	-3.88	-6.17
5b	530	53000	-	-	-0.90	-0.99	2.27	-3.90	-6.17
5c	530	45100	-	-	-0.82	-0.98	2.26	-3.98	-6.24
6a	530	54200	540	0.19	-1.05	-1.22	2.27	-3.75	-6.02
6b	532	43300	-	-	-0.94	-1.06	2.23	-3.86	-6.09

${ }^{\text {a }}$ Absolute quantum yield determined by a calibrated integrating sphere system in DCM solution. ${ }^{\text {b LUMO }}$ was estimated vs vacuum level from LUMO $=4.80 \mathrm{eV}-$ Ered1, ${ }^{c} \mathrm{HOMO}$ was calculated from $\mathrm{HOMO}=\mathrm{LUMO}$ Eg)
The fluorescence quantum yields of these PDI derivatives except PDI 4 a (φ_{f} : 95\%) were strongly decreased ($\varphi_{\mathrm{f}}: \mathbf{3 b}$ (16\%), 5a (51\%), 6a (19\%), other derivatives showed a complete quenching, Table S11). For PDI 2a, the fluorescence quenching might be ascribed to the heavy atom effect. For PDIs 3, 5 and 6, higher degree of electronic interaction between the electron-rich substituents and the planar electron-deficient PDI core compared with bay-substituted PDIs is responsible for the decrease of fluorescence quantum yields.

Fig. S3. Energy level diagram of PDIs 1-6

8) FTIR spectra, FESEM images and Diffuse reflectance UV-vis

absorption spectra of CMP 7-8

Fig. S4. FTIR spectra of the prepared CMPs.

Fig. S5. SEM images of the prepared a) CMP 7 and b) CMP 8. (SEM samples were prepared by ultrasonic dispersion in ethonal and then drop-casting solutions on freshly cleaved Silicon dioxide sheet and dried at room temperature for 12 hours.

Figure S6. Diffuse reflectance UV-vis absorption spectra of CMP 7 and CMP 8

[^0]: | 110 | 100 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | 100 | 1 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

[^1]:

[^2]:

