Supporting Information

Highly recyclable fluoride for enhanced cascade hydrosilylationcyclization of levulinates to γ -valerolactone at low temperatures

Wenfeng Zhao,^a† Tingting Yang,^a† Hu Li,^{a*} Weibo Wu,^a Zhongwei Wang,^a Chengjiang Fang,^a Shunmugavel Saravanamurugan^b and Song Yang^{a*}

^a State-Local Joint Engineering Lab for Comprehensive Utilization of Biomass, State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering (Ministry of Education), Center for R&D of Fine Chemicals, Guizhou University, Guizhou, Guiyang 550025, China

^b Center of Innovative and Applied Bioprocessing, Mohali 160071, Punjab, India

[†] W.Z. and T.Y. contributed equally to this work.

* Corresponding Authors E-mail: lhpesticide@163.com (H.L.); jhzx.msm@gmail.com (S.Y.)

Number of Pages: 13

Number of Figures: 10

Number of Tables: 3

Experimental section

Materials

Diphenyl (silane-d₂) (97 atom % D) was purchased from Sigma-Aldrich Co. LLC. Poly(methylhydrosiloxane) (PMHS), dimethyl sulfoxide (DMSO, >99.8%), and *N*,*N*-dimethyl formamide (DMF, 99.8%) were purchased from Shanghai Aladdin Industrial Inc. *n*-Butanol (AR), methanol (AR), THF (AR), and *n*-hexane (AR) were bought from Beijing J&K Scientific Ltd. Trimethoxysilane (>99%), triethoxysilane (98%), phenylsilane (>97%), diphenylsilane (>98%), heptamethyltrisiloxane (\geq 98%), triethylsilane (99%), tetramethyldisiloxane (>98%), KF (99%), CsF (99%), LiF (>99%), NaF (>99%), KCl (>99%), KBr (>99%) DMSO-d₆ (99.8 atom%D), methyl levulinate (>99%), ethyl levulinate (EL, 99%), *n*-butyl levulinate (>98%), *α*-angelica lactone (98%), 2(5H)-furanone (98%), and *γ*-valerolactone (GVL, 99%) were purchased from Beijing Innochem Sci. & Tech. Co. Ltd.

Catalysts Characterization

BET (Brunauer–Emmett–Teller) surface areas of the porous materials were determined from nitrogen physisorption measurements at liquid nitrogen temperature on a Micromeritics ASAP 2010 instrument (Tristar II 3020, Norcross, GA). XPS (X-ray photoelectron spectroscopy) measurements were recorded using a Physical Electronics Quantum 2000 Scanning ESCA Microprobe (Physical Electronics Inc., PHI, MN) equipped with a monochromatic AlKa anode. EDX (Energy dispersive X-ray) spectrum was acquired with an aberration corrected FEI TECNAI G2 F30 S-TWIN (S)TEM (Hillsboro, OR) operating at 300 kV. ICP-OES (inductively coupled plasma-optical emission spectrometer) was recorded on an Optima 5300 DV instrument (PerkinElmer Inc., Waltham, MA).

Reaction procedures

All the reactions were carried out in a 15 mL Ace tube. In a typical procedure, 0.5 mmol EL, 15 mg KF, 2.0 mL DMF and 2.5 equiv. PMHS were added into the tube, which was magnetically stirred at 650 rpm for a specific reaction time. The time zero was defined as the tube was placed into an oil bath that was preheated to 40, 60, 80 and 100 °C (or at room temperature). After the reaction, liquid products were quantitatively analyzed by GC (Agilent 7890B).

Analysis of products

Liquid products and major by-products were identified with GC-MS (Agilent 6890N GC/5973 MS, Santa Clara, CA). The reaction mixtures were quantitatively analyzed with GC (Agilent 7890B) with a HP-5 column (30 m × 0.320 mm × 0.25 μ m) and a flame ionization detector using naphthalene as internal standard and referring to the standard curves (with R² ≥ 0.996) made from commercial samples.

Catalyst recycling

After each cycle of reaction, the remaining catalyst in the mixture was recovered by centrifugation, followed by successively washing with DMF, ethanol and acetone for 3-5 times, and drying at 80 °C in N_2 for 5 h, which was then directly used for the next run.

Isotopic labeling experiments

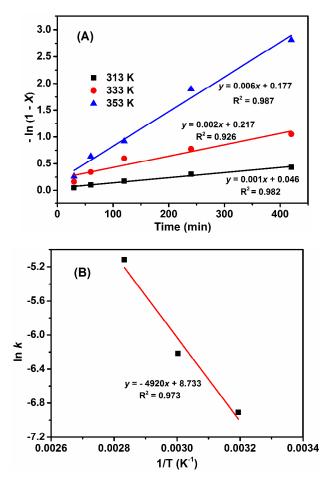
For isotopic kinetic and mechanism study, ¹H, ¹³C and ¹⁹F NMR spectra of the reaction mixtures were performed in the deuterium solvent DMSO-d₆ on a JEOL-ECX 500 NMR spectrometer at room temperature spectrometer operating at 500 MHz.

Entry	Catalyst	Mole of	Mole/Pressure of	$T_{omm}(^{0}C)$	$C_{opy}(0/)$	Viald(0/)	$S_{2}(0/)$	Dof
Entry	Catalyst	substrate	H-donor	Temp.(°C)	Conv.(%)	Yield(%)	Sel.(%)	Ref.
1	Au-Pd/TiO ₂	51.7 mmol	4 MPa H_2	200	90	87.8	97.5	S1
2	Cu/Al_2O_3 -Si O_2	0.54 mmol	3 MPa H_2	160	99	95	96	S2
3	Ni/SiO ₂	0.5 mmol	3 MPa H_2	250	99	88	0.88	S3
4	$Fe_3(CO)_{12}$	1 mmol	4 mmol HCOOH	180	100	92	92	S4
5	Ru/C	8.6 mmol	52 mmol HCOOH	190	87	75	86	S5
6	$ZrO(OH)_2 \cdot xH_2O$	11.6 mmol	633 mmol 2-propanol	240	93.6	88.5	94.5	S6
7	Cu-Ni/Al ₂ O ₃	1 mmol	21.8 mmol 2-butanol	150	99	97	97.9	S7
8	Hf-ATMP	1 mmol	50 mmol 2-propanol	150	86	85.5	86	S8

Table S1. Some previously reported results of EL-to-GVL conversion with different H-donors

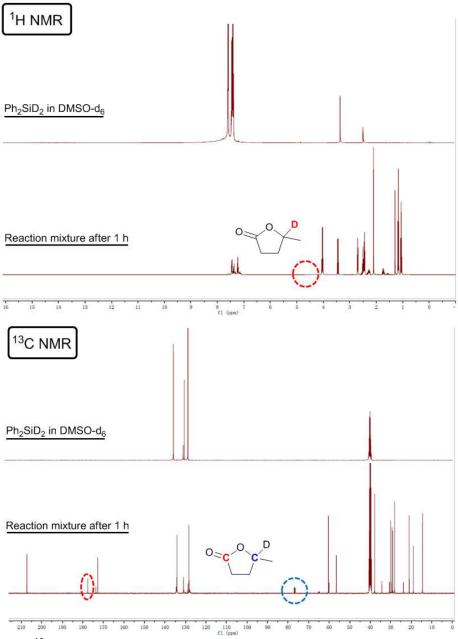
Table S2. The effect of different silanes on the conversion of EL to GVL

Silane name	Structure	EL conv.	GVL yield	GVL sel.
	Structure	(%)	(%)	(%)
Trimethoxysilane	(MeO) ₃ SiH	62	26	42
Triethoxysilane	(EtO) ₃ SiH	92	68	74
Phenylsilane	PhSiH ₃	95	79	83
Diphenylsilane	Ph_2SiH_2	90	82	91
Triethylsilane	Et ₃ SiH	23	11	48
Heptamethyltrisiloxane	Me ₃ Si-O-MeSiH-O-SiMe ₃	66	61	92
Tetramethyldisiloxane	Me ₂ SiH-O-HSiMe ₂	57	53	93
Polymethylhydrosiloxane (PMHS)	Me ₃ Si-O-(MeSiH-O) _n -SiMe ₃	94	91	97


Reaction conditions: 0.5 mmol EL, 15 mg KF, 0.1 g silane, 2.0 mL DMF, 80 °C, 7 h.

The relative activity of different silanes for the conversion of EL to GVL seems to be depended on the stabilization possibility of each silicon atom.

Table S3. Surface area, volume and porosity of Fresh and reused KF					
Catalyst	$S_{BET} (m^2/g)^{[a]}$	$S_{micro} (m^2/g)^{[b]}$	$S_{meso} (m^2/g)^{[c]}$	$V_{pore} (cm^3/g)^{[d]}$	$D_{mean} (nm)^{[e]}$
Fresh KF	37	26	11	0.05	4.7
Reused KF	125	50	75	0.29	8.4


^[a] BET surface area was obtained from N₂ adsorption isotherm. ^[b] Surface area of micropore was gained from the t-plot method. ^[c] Surface area of mesopore = $(S_{BET} - S_{micro})$. ^[d] Volume of pores was estimated from BJH Adsorption cumulative volume of pores. ^[e] Average pore size was estimated from the adsorption average pore diameter.

 N_2 adsorption-desorption shows that the resued KF catalyst possesses an enhanced average pore diameter (8.4 nm), surface area (125 m²/g) and pore volume (0.29 cm³/g), as compared with the fresh KF (Table S3), which can be ascribed to the formation of PMHS-based resin.

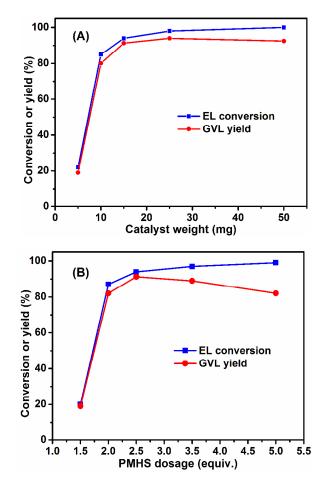


Figure S1. (A) Kinetic profiles and (B) Arrhenius plot of KF-catalyzed conversion of EL to GVL; Reaction conditions: 0.5 mmol EL, 2.5 equiv. PMHS, 15 mg KF, and 2.0 mL DMF

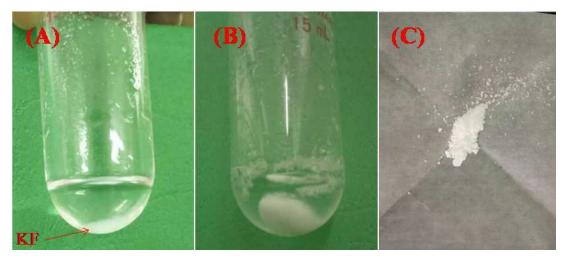

Assumed that EL-to-GVL conversion is a 1st order process, the reaction rate could be expressed as follows: d[GVL]/dt = k[EL] = d[EL]/dt; after the subsequent integral calculation, the original equation would further become: $-\ln(1 - X) = kt + C$. Values of $-\ln(1 - X)$ (where X is conversion of EL) were plotted against reaction time (*t*) at different temperatures in order to obtain rate constants (*k*): $k(80 \text{ °C}) = 0.006 \text{ min}^{-1} > k(60 \text{ °C}) = 0.002 \text{ min}^{-1} > k(40 \text{ °C}) = 0.001 \text{ min}^{-1}$ (FigureS2A). Then the activation energy (Ea) was calculated from rate constants by the Arrhenius equation: $\ln k = -Ea/RT + \ln A$ (FigureS2B), and found to be 40.9 kJ/mol.

Figure S2. ¹H and ¹³C NMR spectra of EL-to-GVL conversion in DMSO-d₆; Reaction conditions: 0.5 mmol EL, 2.5 equiv. Ph₂SiD₂, 15 mg KF, 2.0 mL DMSO-d₆, 80 °C for 1 h

Figure S3. (A) The effect of catalyst weight and (B) PMHS dosage on the conversion of EL to GVL; Reaction conditions: 0.5 mmol EL, 2.5 equiv. (or variable) PMHS, 15 mg (or variable) KF, 2.0 mL DMF, 80 °C for 7 h

Figure S4. Photos of the KF-catalyzed reaction: (A) initial reaction solution, (B) after the reaction, and (C) the recovered silicone resin containing F species

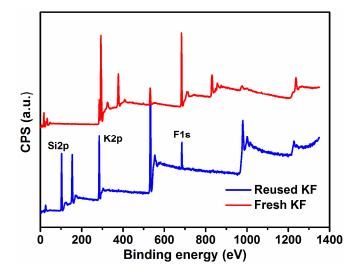
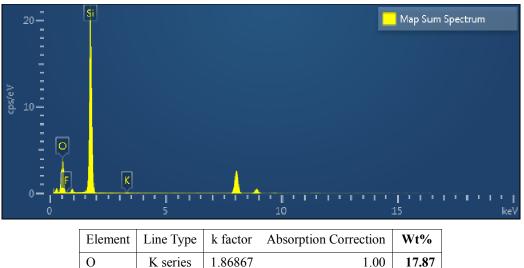



Figure S5. XPS spectra of fresh and recovered KF after six cycles

		-		
0	K series	1.86867	1.00	17.87
F	K series	1.75182	1.00	5.06
Si	K series	1.00000	1.00	75.40
K	K series	0.96973	1.00	1.67
Total:				100.00

Figure S6. EDX spectrum and results of recovered KF after six cycles

Weight of F in the fresh catalyst = $15 \text{ mg} \times 19/58 = 4.91 \text{ mg}$

Weight of F in the recovered catalyst after six cycles = $90 \text{ mg} \times 5.06 \% = 4.55 \text{ mg}$

These results showed the little leaching of fluoride into solution during six consecutive cycles, which was consistent with the results of ICP-OES.

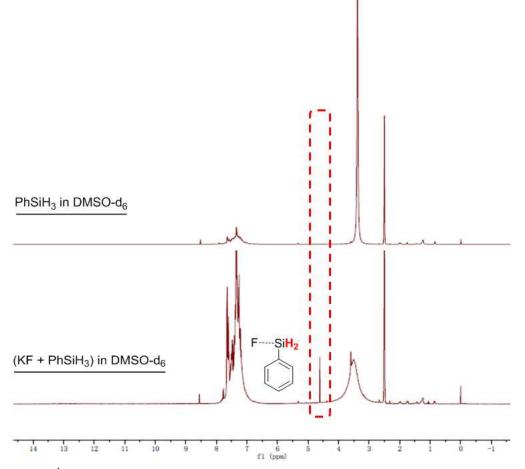


Figure S7. ¹H NMR spectra of PhSiH₃ in DMSO-d₆ without or with KF stirring for 10 min

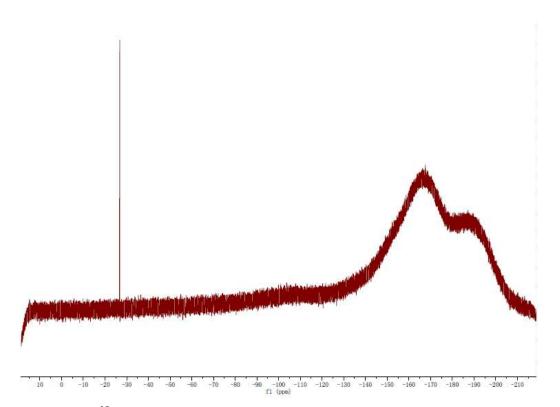


Figure S8. ¹⁹F NMR spectrum of PhSiH₃ in DMSO-d₆ with KF stirring for 10 min

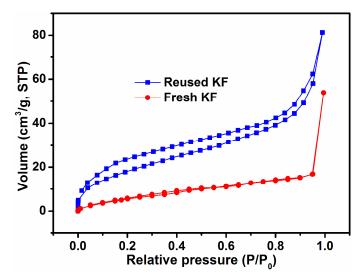


Figure S9. N₂ adsorption-desorption isotherms of fresh and recovered KF after six cycles

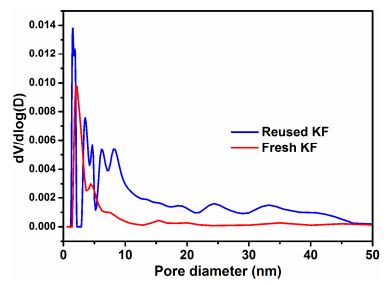


Figure S10. Pore size distribution of fresh and recovered KF after six cycles

References:

- S1. Luo, W.; Sankar, M.; Beale, A. M.; He, Q.; Kiely, C. J.; Bruijnincx, P. C.; Weckhuysen, B. M. Nat. Commun. 2015, 6, 7540-7550.
- S2. Zheng, J.; Zhu, J.; Xu, X.; Wang, W.; Li, J.; Zhao, Y.; Tang, Y. Sci. Rep., 2016, 6, 28898-28907.
- S3. Ruppert, A. M.; Jędrzejczyk, M.; Sneka-Płatek, O.; Keller, N.; Dumon, A. S.; Michel, C.; Sautet, P.; Grams, J. Green Chem. 2016, 18, 2014-2028.
- S4. Ortiz-Cervantes, C.; Flores-Alamo, M.; García, J. J. ACS Catal. 2015, 5, 1424-1431.
- S5. Metzker, G; Burtoloso, A. C. Chem. Commun. 2015, 51, 14199-14202.
- S6. Tang, X.; Chen, H.; Hu, L.; Hao, W.; Sun, Y.; Zeng, X.; Lin, L.; Liu, S. Appl. Catal. B: Environ.
 2014, 147, 827-834.
- S7. Mohan, V.; Venkateshwarlu, V.; Pramod, C. V.; Raju, B. D.; Rao, K. S. R. Catal. Sci. Technol. 2014, 4, 1253-1259.
- S8. Xie, C.; Song, J.; Zhou, B.; Hu, J.; Zhang, Z.; Zhang, P.; Jiang, Z.; Han, B. ACS Sustainable Chem. Eng. 2016, 4, 6231-6236.