SUPPORTING INFORMATION

Hybrid MoS₂/h-BN Nanofillers As Synergic Heat Dissipation and Reinforcement Additives in Epoxy Nanocomposites

Hélio Ribeiro^{1,2*}, João Paulo C. Trigueiro^{2,3}, Wellington M. Silva², Cristiano F. Woellner^{1,4}, Peter S. Owuor¹, Alin Cristian Chipara¹, Magnovaldo C. Lopes², Chandra S. Tiwary¹, Jairo J. Pedrotti^{1,5}, Rodrigo Villegas Salvatierra⁶, James M. Tour⁶, Nitin Chopra⁷, Ihab N. Odeh⁷, Glaura G. Silva², Pulickel M. Ajayan¹.

*Corresponding author: helioribeiro@hotmail.com

- Department of Materials Science and Nanoengineering Rice University. 6100 Main St, Houston, TX, 77005 USA.
- 2- Departamento de Química Universidade Federal de Minas Gerais. Av. Antônio
 Carlos, 6627 Pampulha, CEP 31270-901, Belo Horizonte MG, Brazil.
- 3- Instituto Federal de Minas Gerais Campus Congonhas. Av. Michael Pereira de Souza, 3007 - Campinho, CEP 36415-000, Congonhas - MG, Brazil.
- 4- Departamento de Física Aplicada Universidade Estadual de Campinas. Rua Sérgio Buarque de Holanda, 777 - CEP 13083-859, Campinas, SP, Brazil.
- 5- Centro de Pesquisas Avançadas em Grafeno, Nanomateriais e Nanotecnologias -Universidade Presbiteriana Mackenzie. Rua da Consolação, 930, CEP 01302-907, São Paulo - SP, Brazil.
- 6- Department of Chemistry Rice University- 6100 Main St, Houston, TX, 77005 USA.
- 7- SABIC Americas Inc, Sugar Land, TX 77478, USA.

Figure S1. (a) FTIR spectra and (b) XRD patterns of MoS₂, h-BN and hybrid MoS₂/h-BN material. The dash lines indicate the correspondence in the signals for the hybrid composite and the pure nanomaterials.

The FTIR spectra of h-BN, MoS₂, and mixture of h-BN/MoS₂ (Figure S1a), show the main characteristic peaks, which are considered fingerprints of sp² bonds of h-BN: at 1372 cm⁻¹ corresponding to the in-plane B–N transverse stretching and 820 cm⁻¹ corresponding to the out-of-plane B–N–B bending vibration.¹ The broad band around ~3428 cm⁻¹ can be attributed by the residual bonded N-H or caused to the water molecules absorbed on the surface of the samples.¹⁻⁴ The vibrational modes at ~3435 and 1650 cm⁻¹ are assigned to hydroxyl functionalities of adsorbed moisture on the MoS₂ nanosheets.⁵

The XRD patterns of h-BN, MoS₂, and mixture of h-BN/MoS₂ are shown in Figure S1b. The intense diffraction peak $2\theta \sim 26.76^{\circ}$, (002) plane, denote the high crystallinity of the h-BN nanostructure.¹ MoS₂ showed characteristic peaks at 2θ of 12.00°, 32.00°, 40.00°, and 50.01° due to diffraction from (002), (100), (103), and (105) planes, respectively.⁵

The diffraction pattern was found to be fully matched with JCPDS file 37-1492. The sample of the heterostructure h-BN/MoS₂ showed peaks corresponding to both h-BN and MoS₂ separated samples.

Figure S2. DSC curves of neat epoxy and composites containing 1.0 wt.% of MoS₂, h-BN and hybrid MoS₂/h-BN.

DSC curves for pure epoxy and the composites containing 1.0 wt% of MoS₂, h-BN and MoS₂/h-BN in the second heating scan are shown in Figure S2. The glass transition temperature (T_g) was determined from the midpoints of three measurements (average values) for each sample. The T_g values showed standard deviation of \pm 1°C. Increases in T_g values for all systems were observed, however, the system containing 1.0 wt % of MoS₂/h-BN showed the best increase of up to 19°C when compared to pure polymer. Generally, in epoxy systems the increase of the glass transition temperature is associated with restriction of the mobility of their polymer chains due to a high degree of cross-link and reduction of free volume.⁶ Factors that affect the value of T_g for epoxy nanocomposites include: the degree of dispersion of the nanofillers, interaction between nanofillers/polymer and curing process conditions. Under the conditions studied here, it can be said that the cross-linking process was not affected by the addition of nanofillers, i.e., the polymer chains were not generated with free ends as observed by other authors.⁷ Moreover, it is possible that the interface between the introduced MoS₂ and h-BN served as chemical anchor points for epoxy chains, thus impacting the mobility thereof and increasing the T_g values in the hydride composite.

Table S1. Storage modulus, T_g and cross-link density values of neat epoxy and nanocomposites with different wt% of 2D nanofiller

System (wt%)	Storage Modulus at <i>T_g</i> (MPa)	<i>T</i> g (°C) ±1	Cross-link Density (mol cm ⁻³)
Neat epoxy	1662±13	123	0.5056±0,0011
MoS ₂ 0.25	1642±11	125	0.5289±0,0015
MoS ₂ 0.50	1725±21	126	0.5312±0,0008
MoS ₂ 1.0	1738±19	126	$0.5828 {\pm} 0.0014$
h-BN 0.25	1613±22	127	0.5013±0.0013
h-BN 0.50	1645±27	128	0.5343±0.0010
h-BN 1.0	1637±29	130	0.6371±0.0011
MoS ₂ / h-BN 0.25	2627±22	131	0.5917±0.0014
MoS_2/h -BN 0.50	2674±26	133	0.6273±0.0012
MoS ₂ / h-BN 1.0	2777±18	135	0.7183±0.0013

The values of brittleness (*B*) for viscoelastic materials enables the comparative analysis of several types of polymer-based materials, metal, alloys, ceramics and glasses.⁸ The parameters obtained from tensile testing can be connected with the brittleness through the equation proposed by Brostow and Narkis.⁹

$$B = \frac{1}{(\varepsilon_b E')} \tag{2}$$

where \mathcal{E}_b is the tensile elongation at break, and E' is the storage modulus determined by DMA test at 1 Hz, both at same temperature. ⁸⁻¹⁰. The numerical values of storage modulus, tensile elongation and brittleness at 25°C for neat epoxy and nanocomposites are shown in Table S2.

Table S2. Storage modulus (*E*'), tensile elongation at break (\mathcal{E}_b), and brittleness (B) values of neat epoxy and nanocomposites with different wt% of 2D nanofiller at 25°C

System (wt%)	<i>E′</i> (Pa)/10 ⁸	Еь (%)	B (%Pa/10 ¹⁰)
Neat epoxy	$44.49{\pm}09$	15.28	0.147
MoS ₂ 0.25	46.72 ± 11	18.69	0.115
MoS ₂ 0.50	46.35±13	20.27	0.106
MoS ₂ 1.0	44.25±15	19.38	0.116
h-BN 0.25	48.28±07	19.83	0.104
h-BN 0.50	49.54±17	19.85	0.102
h-BN 1.0	50.21±14	17.56	0.113
MoS ₂ / h-BN 0.25	56.68 ± 10	18.33	0.093
MoS ₂ / h-BN 0.50	55.24±15	21.76	0.081
MoS ₂ / h-BN 1.0	59.97±12	23.25	0.074

References

 Zhao, Z.; Yang, Z.; Wen, Y.; Wang, Y. Facile Synthesis and Characterization of Hexagonal Boron Nitride Nanoplates by Two-Step Route. *J. Am. Ceram. Soc.* 2011, *94*, 4496-4501.

2. Kim, K. K.; Hsu, A.; Jia, X.; Kim, S. M.; Shi, Y.; Dresselhaus, M.; Palacios, T.; Kong, J. Synthesis and Characterization of Hexagonal Boron Nitride Film as a Dielectric Layer for Graphene Devices. *ACS Nano* **2012**, *6*, 8583-8590.

3. Huang, C.; Chen, C.; Ye, X.; Ye, W.; Hu, J.; Xu, C.; Qiu, X. Stable Colloidal Boron Nitride Nanosheet Dispersion and its Potential Application in Catalysis. *J. Mater. Chem. A* **2013**, *1*, 12192-12197.

 Lima, M. C. F. S.; Zaida do Amparo, S.; Ribeiro, H.; Soares Jr, A. L.; Viana, M.
 M.; Seara, L. M.; Paniago, R. M.; Silva, G. G.; Caliman, V. Aqueous Suspensions of Carbon Black with Ethylenediamine and Polyacrylamide-Modified Surfaces: Applications for Chemically Enhanced Oil Recovery. *Carbon* 2016, *109*, 290-299.

5. Massey, A. T.; Gusain, R.; Kumari, S.; Khatri, O. P. Hierarchical Microspheres of MoS₂ Nanosheets: Efficient and Regenerative Adsorbent for Removal of Water-Soluble Dyes. *Ind. Eng. Chem. Res.* **2016**, *55*, 7124-7131.

6. Kim, J.; Yim, B.-s.; Kim, J.-m.; Kim, J. The Effects of Functionalized Graphene Nanosheets on The Thermal and Mechanical Properties of Epoxy Composites for Anisotropic Conductive Adhesives (ACAs). *Microelectron. Reliab.* **2012**, *52*, 595-602.

7. Putz, K. W.; Palmeri, M. J.; Cohn, R. B.; Andrews, R.; Brinson, L. C. Effect of Cross-Link Density on Interphase Creation in Polymer Nanocomposites. *Macromolecules* **2008**, *41*, 6752-6756.

8. Brostow, W.; Hagg Lobland, H. E. Brittleness of Materials: Implications for Composites and a Relation to Impact Strength. *J. Mater. Sci.* **2009**, *45*, 242-250.

9. Brostow, W.; Lobland, H. E. H.; Narkis, M. Sliding Wear, Viscoelasticity, and Brittleness of Polymers. *J. Mater. Res.* **2006**, *21*, 2422-2428.

10. Brostow, W.; Hagg Lobland, H. E.; Khoja, S. Brittleness and Toughness of Polymers and Other Materials. *Mater. Lett.* **2015**, *159*, 478-480.