Supporting Information

Catalytic Asymmetric [4+2]-Cycloaddition of Dienes with Aldehydes

Luping Liu, Hyejin Kim, Youwei Xie, Christophe Farès, Philip S. J. Kaib, Richard Goddard, and Benjamin List*

Max-Planck-Institut für Kohlenforschung, Kaiser Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
*Correspondence to: list @ kofo.mpg.de
General Information S2
Synthesis and Characterization of Chiral Imidodiphosphorimidates (IDPis) S3
Optimization of Reaction Conditions S15
Substrate Synthesis and Characterization S27
General Procedure for the Asymmetric [4+2]-Cycloaddition S29
Characterization of Cycloadducts S29
Gram Scale Reaction and Derivatization S52
Kinetic Isotope Effect (KIE) Studies S55
Single-Crystal X-ray Diffraction Analysis S59
Copies of NMR Spectra S84
HPLC and GC Traces S155
References S189

General information

Unless otherwise stated, all reagents were purchased from commercial suppliers and used without further purification. Aldehydes were distilled and stored under argon prior to use. All solvents used in the reactions were distilled from appropriate drying agents prior to use. Reactions were monitored by thin layer chromatography (TLC) on silica gel pre-coated plastic sheets (0.2 mm , Macherey-Nagel) or glass plates (SIL G-25 UV $254,0.25 \mathrm{~mm}$, (Macherey-Nagel). Visualization was accomplished by irradiation with UV light at 254 nm and/or phosphomolybdic acid (PMA) stain. PMA stain: PMA (10 g) in EtOH (100 mL). Column chromatography was performed on Merck silica gel (60, particle size 0.040-0.063 mm). NMR spectra were recorded on Bruker AV-500, Bruker AV-400 or Bruker AV-300 spectrometer in deuterated solvents. Proton chemical shifts are reported in ppm (δ) relative to tetramethylsilane (TMS) with the solvent resonance employed as the internal standard (CDCl_{3} $\delta 7.26 \mathrm{ppm} ; \mathrm{CD}_{2} \mathrm{Cl}_{2} \delta 5.32 \mathrm{ppm}$). Data are reported as follows: chemical shift, multiplicity (s $=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{p}=$ pentet, sext $=$ sextet, $\mathrm{h}=$ heptet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad), coupling constants (Hz) and integration. ${ }^{13} \mathrm{C}$ chemical shifts are reported in ppm from tetramethylsilane (TMS) with the solvent resonance as the internal standard $\left(\mathrm{CDCl}_{3} \delta 77.16 \mathrm{ppm} ; \mathrm{CD}_{2} \mathrm{Cl}_{2} \delta 53.84 \mathrm{ppm}\right) .{ }^{19} \mathrm{~F},{ }^{31} \mathrm{P}$ NMR spectra were referenced in ppm from $\mathrm{CCl}_{3} \mathrm{~F}$ and $\mathrm{H}_{3} \mathrm{PO}_{4}$, respectively. High resolution mass spectra were determined on a Bruker APEX III FTMS (7 T magnet). All reported yields, unless otherwise specified, refer to spectroscopically and chromatographically pure compounds. Optical rotations were determined with Autopol IV polarimeter (Rudolph Research Analytical) at 589 nm and 20 or $25^{\circ} \mathrm{C}$. Data are reported as follows: [α] $\lambda^{\text {temp }}$, concentration ($c ; \mathrm{g} / 100 \mathrm{~mL}$), and solvents. Enantiomeric ratios (e.r.) were determined by GC or HPLC analysis employing a chiral stationary phase column specified in the individual experiment, by comparing the samples with the appropriate racemic mixtures. Diastereomeric ratios (d.r.) were determined by ${ }^{1} \mathrm{H}$ NMR spectra of the crude reaction mixtures, GC or HPLC analysis employing a chiral stationary phase. The crystals were measured and analyzed in the department of Chemical Crystallography and Electron Microscopy at Max-Planck-Institut für Kohlenforschung. Data were face-indexed absorption corrected and scaled using the program SADABS (Bruker AXS, 2014). The structure was solved and refined using the programs SHELXS and SHELXL, both programs from G. M. Sheldrick (Göttingen, 2014).

Synthesis and Characterization of Chiral Imidodiphosphorimidates (IDPis)

Figure S1. Synthesis of IDPis $\mathbf{4 c}-\mathbf{4 f}$.

2-(3,5-Bis(perfluoropropyl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborol (S2b)

To a flame-dried Schlenk flask charged with activated copper powder ($13 \mathrm{~g}, 0.20 \mathrm{~mol}, 8.0$ equiv) were added degassed dry DMF $(65 \mathrm{~mL}), 1,3$-dibromobenzene $(6.0 \mathrm{~g}, 25 \mathrm{mmol}, 1.0$ equiv), and perfluoropropyl iodide ($20 \mathrm{~g}, 69 \mathrm{mmol}, 2.8$ equiv) under argon at room temperature. The mixture was then heated to $100^{\circ} \mathrm{C}$ for 2 days. Upon completion of the reaction, the reaction mixture was cooled to room temperature, diluted with water (65 mL), filtered through celite, and washed with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$. The filtrate was washed with HCl $(1.0 \mathrm{M}$, aq., 100 mL$)$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 150 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. Filtration through a short pad of silica gel using pentane as an eluent afforded 1,3-bis(perfluoropropyl)benzene $(7.5 \mathrm{~g}, 18 \mathrm{mmol}, 68 \%)$ as a colorless liquid which was then used for the next step without further purification.

To a flame-dried Schlenk flask charged with bis(1,5-cyclooctadiene)di- μ-methoxydiiridium(I) ($0.31 \mathrm{~g}, 0.46 \mathrm{mmol}, 0.05$ equiv), $4,4^{\prime}$-di-tert-butyl-2,2' -dipyridyl ($0.25 \mathrm{~g}, 0.92 \mathrm{mmol}, 0.10$ equiv), bis(pinacolato)diboron $(3.5 \mathrm{~g}, \quad 14 \mathrm{mmol}, \quad 1.5$ equiv), and 1,3bis(perfluoropropyl)benzene ($3.8 \mathrm{~g}, 9.2 \mathrm{mmol}, 1.0$ equiv) was added dry THF (54 mL) under argon at room temperature. The mixture was then heated to $80^{\circ} \mathrm{C}$ for 16 h . Upon completion of the reaction monitored by TLC, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. Filtration through a short pad of silica gel using hexanes as an eluent afforded 2-(3,5-bis(perfluoropropyl)phenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane ($\mathbf{S 2 b}, 4.7 \mathrm{~g}, 93 \%$) as a colorless solid which was then used for the next step without further purification.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.21(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.85(\mathrm{~s}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{11} \mathbf{B} \mathbf{N M R}\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 30.22$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $136.5(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{C}), 131.4(\mathrm{br}, 1 \mathrm{C}), 129.3(\mathrm{t}, J=24.7 \mathrm{~Hz}$, 2C), 127.8 ($\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{C}$), 118.1 ($\mathrm{qt}, J=288,34 \mathrm{~Hz}, 2 \mathrm{C}$), 114.9 (tt, $J=256,31 \mathrm{~Hz}, 2 \mathrm{C}$), 108.7 (tq, $J=264,38 \mathrm{~Hz}, 2 \mathrm{C}), 85.03$ ($\mathrm{s}, 2 \mathrm{C}$), 25.0 ($\mathrm{s}, 4 \mathrm{C}$).
${ }^{19}$ F NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-126.2(\mathrm{~s}, 4 \mathrm{~F}),-112.1(\mathrm{q}, J=9.8 \mathrm{~Hz}, 4 \mathrm{~F}),-80(\mathrm{t}, J=9.8 \mathrm{~Hz}$, 6 F).

HRMS (EI) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~B}_{1} \mathrm{~F}_{14}[\mathrm{M}]: 540.0940$; found: 540.0942.

2-(3,5-Bis(perfluoropropan-2-yl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (S2c)

To a flame-dried Schlenk flask charged with activated copper powder ($13 \mathrm{~g}, 0.20 \mathrm{~mol}, 8.0$ equiv) were added degassed dry DMF (70 mL), 1,3-dibromobenzene ($6.0 \mathrm{~g}, 25 \mathrm{mmol}, 1.0$ equiv), and heptafluoro-2iodopropane ($26 \mathrm{~g}, 87 \mathrm{mmol}, 3.5$ equiv) under argon at room temperature. The mixture was then heated to $100^{\circ} \mathrm{C}$ for 2 d . Upon completion of the reaction, the reaction mixture was cooled to room temperature, diluted with water (70 mL), filtered through celite, and washed with $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$. The filtrate was washed with $\mathrm{HCl}(1.0 \mathrm{M}$, aq., $100 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(2 \times 150 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated under reduced pressure. Filtration through a short pad of silica gel using pentane as an eluent afforded 1,3-bis(perfluoropropan-2-yl)benzene ($5.1 \mathrm{~g}, 12$ $\mathrm{mmol}, 50 \%$) as a colorless liquid which was then used for the next step without further purification.

To a flame-dried Schlenk flask charged with bis(1,5-cyclooctadiene)di- μ-methoxydiiridium(I) $(0.18 \mathrm{~g}, 0.27 \mathrm{mmol}, 0.04$ equiv), 4,4' -di-tert-butyl-2,2' -dipyridyl ($0.14 \mathrm{~g}, 0.53 \mathrm{mmol}, 0.08$ equiv), bis(pinacolato)diboron ($2.5 \mathrm{~g}, 10 \mathrm{mmol}, 1.5$ equiv), and 1,3-bis(perfluoropropan-2yl)benzene ($2.8 \mathrm{~g}, 6.7 \mathrm{mmol}, 1.0$ equiv) was added dry THF (30 mL) under argon at room temperature. The mixture was then heated to $80^{\circ} \mathrm{C}$ for 16 h . Upon completion of the reaction monitored by TLC, the reaction mixture was cooled to room temperature and concentrated under reduced pressure. Filtration through a short pad of silica gel using hexanes as an eluent afforded 2-(3,5-bis(perfluoropropan-2-yl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane ($\mathbf{S 2 c}, 3.1 \mathrm{~g}, 5.8 \mathrm{mmol}, 86 \%$) as a colorless solid which was then used for the next step without further purification.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.19(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.90(\mathrm{~s}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 12 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 134.3(\mathrm{~d}, J=10.1 \mathrm{~Hz}), 127.4(\mathrm{dd}, J=20.8,2.5 \mathrm{~Hz}), 125.4(\mathrm{t}$, $J=11.5 \mathrm{~Hz}), 120.3(\mathrm{qd}, J=286.7,27.9 \mathrm{~Hz}), 91.1(\mathrm{dp}, J=203.6,33.2 \mathrm{~Hz}), 84.8,24.8$.
${ }^{11} \mathbf{B} \mathbf{N M R}\left(160 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 30.37$.
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-75.62(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 12 \mathrm{~F}),-182.48$ (hept, $\left.J=7.3 \mathrm{~Hz}, 2 \mathrm{~F}\right)$.
HRMS (EI) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{2} \mathrm{~B}_{1} \mathrm{~F}_{14}$ [M]: 540.0940; found: 540.0942.

(S)-3,3'-Bis(3,5-bis(pentafluoro- λ^{6}-sulfanyl)phenyl)-[1,1'-binaphthalene]-2,2'-diol (S3a)

To a three-necked round bottom flask with a condenser were added barium hydroxide octahydrate ($2.3 \mathrm{~g}, 7.2 \mathrm{mmol}, 4.5$ equiv), a $1,4-$ dioxane $/ \mathrm{H}_{2} \mathrm{O}$ solution $\quad(3: 1,30 \mathrm{~mL})$, (S)-2,2'-(2,2'-bis(methoxymethoxy)-[1,1'-binaphthyl]-3,3'-diyl)bis(4,4,-5,5-tetramethyl-1,3,2-dioxaborolane $)^{25}(\mathbf{S 1 a}, 1.0 \mathrm{~g}, 1.6 \mathrm{mmol}, 1.0$ equiv), and 2,4-bis(pentafluorosulfanyl)bromobenzene (S2a, $2.17 \mathrm{~g}, 5.3 \mathrm{mmol}$, 3.3 equiv). After degassing the reaction mixture with argon for 20 min , tetrakis(triphenylphosphine)palladium $(0.14 \mathrm{~g}, 0.12 \mathrm{mmol}, 0.075$ equiv) was added. The mixture was refluxed for 24 h , then cooled to room temperature, and quenched with HCl (10 $\mathrm{mL}, 1.0 \mathrm{M}, \mathrm{aq}$.). After extraction with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30 \mathrm{~mL})$, the combined organic layers were successively washed with $\mathrm{HCl}\left(60 \mathrm{~mL}, 1.0 \mathrm{M}\right.$, aq.), $\mathrm{NaHCO}_{3}(60 \mathrm{~mL}$, sat., aq.), and brine (60 $\mathrm{mL})$. The organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated under reduced pressure. 1,4-dioxane (90 mL) and $\mathrm{HCl}(30 \mathrm{~mL}$, conc. aq.) were added to the residue and the reaction mixture was stirred at $70^{\circ} \mathrm{C}$ for 5 h in a round bottom flask equipped with a condenser. After cooling to room temperature, the reaction solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The organic layers were combined, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel using 5$10 \%$ ethyl acetate/hexanes to give (S)-3,3'-Bis(3,5-bis(pentafluoro- λ^{6}-sulfanyl)phenyl)-[1,1'-binaphthalene]-2,2'- diol $^{26}(\mathbf{S 3 a}, 1.0 \mathrm{~g}, 1.06 \mathrm{mmol}, 66 \%)$ as a colorless solid.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.33(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 4 \mathrm{H}), 8.17(\mathrm{t}, J=1.9 \mathrm{~Hz}, 2 \mathrm{H}), 8.10(\mathrm{~s}, 2 \mathrm{H})$, 8.02 (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{ddd}, J=8.0,6.9,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{ddd}, J=8.3,6.9,1.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.22$ (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 5.39$ ($\mathrm{s}, 2 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.9,153.7,153.6,153.4,153.3,149.8,139.6,133.5,132.7$, $130.4,129.6,129.1,127.1,125.6,124.1,123.1,111.9 ; \delta 153.6(\mathrm{p}, J=18.8 \mathrm{~Hz})$.
${ }^{19}$ F NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 81.94(\mathrm{p}, J=150.5 \mathrm{~Hz}), 63.09(\mathrm{~d}, J=150.5 \mathrm{~Hz})$.
HRMS (ESI-) (m / z): calculated for $\mathrm{C}_{32} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~F}_{20} \mathrm{~S}_{4}[\mathrm{M}-\mathrm{H}]^{-}: 940.9798$; found: 940.9803.

To a flame-dried two-necked round-bottom flask charged with
(S)-3,3'-diiodo-2,2'-bis(methoxymethoxy)-1,1'-binaphthalene ${ }^{27}$
(S1b, $1.9 \mathrm{~g}, \quad 3.0 \mathrm{mmol}, \quad 1.0$ equiv), 2-(3,5-bis(perfluoropropyl)phenyl)-4,4,5,5-tetramethyl-1,3,2dioxaborolane ($\mathbf{S 2 b}, 4.6 \mathrm{~g}, 8.5 \mathrm{mmol}, 2.8$ equiv), and palladium(II)-acetate ($68 \mathrm{mg}, 0.30 \mathrm{mmol}, 0.10$ equiv) in THF $(160 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(2.0 \mathrm{M}$, aq., 18 mL) at room temperature. After degassing the reaction mixture with argon for 5 min, tri-tertbutylphosphine (1.0 M in toluene, $0.30 \mathrm{mmol}, 0.10$ equiv) was added to the mixture. The reaction mixture was then heated to $85^{\circ} \mathrm{C}$ for 24 h . After cooling down to room temperature, $\mathrm{HCl}(10 \%$, aq., 20 mL$)$ was added and the reaction mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 150 \mathrm{~mL})$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (R_{f} 0.32, hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, \quad 10: 1$) to give (S)-3,3'-bis(3,5-bis(perfluoropropyl)phenyl)-2,2'-bis(methoxymethoxy)-1,1'-binaphthalene ($2.7 \mathrm{~g}, 2.3 \mathrm{mmol}, 74 \%$) as a colorless solid (HRMS (ESI+) (m / z): calculated for $\mathrm{C}_{48} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~F}_{28} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}: 1221.1276$; found 1221.1274).

To a round-bottom flask charged with (S)-3,3'-bis(3,5-bis(perfluoropropyl)phenyl)-2,2'-bis(methoxymethoxy)-1,1'-binaphthalene ($2.7 \mathrm{~g}, 2.3 \mathrm{mmol}$) in MeOH (100 ml) and THF (20 $\mathrm{mL})$ was added $\mathrm{HCl}(6.0 \mathrm{M} . \mathrm{aq} ., 15 \mathrm{~mL})$ at room temperature. The reaction mixture was then refluxed to $80^{\circ} \mathrm{C}$ for 24 h and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel ($R_{\mathrm{f}} 0.52$, hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 10: 1$) to give (S)-3,3'-bis(3,5-bis(perfluoropropyl)phenyl)-[1,1'-binaphthalene]-2,2'-diol (S3b) as a colorless solid which was then recrystallized from a hot solution of hexanes and EtOAc (10:1) to provide the product as a colorless crystalline solid ($1.5 \mathrm{~g}, 1.4 \mathrm{mmol}, 60 \%$).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.23(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 4 \mathrm{H}), 8.11(\mathrm{~s}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $7.84-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.49$ (ddd, $J=8.1,6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43$ (ddd, $J=8.2,6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), $7.24(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 2 \mathrm{H})$.

[^0]$6.5 \mathrm{~Hz}), 118.1(\mathrm{qt}, J=288.0,34.0 \mathrm{~Hz}), 115.1(\mathrm{tt}, J=256.0,32.5 \mathrm{~Hz}), 108.8(\mathrm{th}, J=265.0$, 38.0 Hz).
${ }^{19}$ F NMR $\left(470 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta-79.92(\mathrm{t}, J=9.8 \mathrm{~Hz}),-111.91(\mathrm{q}, J=9.8 \mathrm{~Hz}),-126.16(\mathrm{br} \mathrm{s})$.
HRMS (ESI-) (m / z): calculated for $\mathrm{C}_{44} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~F}_{28}[\mathrm{M}-\mathrm{H}]^{-}$: 1109.0787; found: 1109.0790.
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{25}:-20.6\left(c=0.36, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
(S)-3,3'-Bis(3,5-bis(perfluoropropan-2-yl)phenyl)-[1,1'-binaphthalene]-2,2'-diol (S3c)

To a flame-dried two-necked round-bottom flask charged with (S)-3,3'-diiodo-2,2'-bis(methoxymethoxy)-1,1'-binaphthalene ${ }^{27}$ (S1b,
$0.25 \mathrm{~g}, 0.4 \mathrm{mmol}, 1.0$ equiv), 2-(3,5-bis(perfluoropropan-2-yl)phenyl)-4,4,5,5-tetramethyl-1,3,2-dioxaborolane (S2c, $0.76 \mathrm{~g}, 1.4$ mmol, 3.5 equiv), and palladium(II)-acetate $(9.0 \mathrm{mg}, 0.04 \mathrm{mmol}$, 0.10 equiv) in THF (21 mL) was added $\mathrm{K}_{2} \mathrm{CO}_{3}(2.0 \mathrm{M}$, aq., 2.4 mL) at room temperature. After degassing the reaction mixture with argon for 5 min , tri-tert-butylphosphine $(1.0 \mathrm{M}$ in toluene, 0.04 $\mathrm{mmol}, 0.10$ equiv) was added to the mixture. The reaction mixture was then heated to $85^{\circ} \mathrm{C}$ for 24 h . After cooling down to room temperature, $\mathrm{HCl}(10 \%$, aq., 2.5 mL$)$ was added and the reaction mixture was extracted three times with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel ($R_{\mathrm{f}} 0.56$, hexanes/EtOAc, 20:1) to give (S)-3,3'-bis(3,5-bis(perfluoropropan-2-yl)phenyl)-2,2'-bis(methoxymethoxy)-1,1'-binaphthalene ($0.37 \mathrm{~g}, 0.31$ $\mathrm{mmol}, 77 \%$) as a colorless solid (HRMS (ESI+) (m / z): calculated or $\mathrm{C}_{48} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{~F}_{28} \mathrm{Na}_{1}$ $[\mathrm{M}+\mathrm{Na}]^{+}: 1221.1276$; found 1221.1285).

To a round-bottom flask charged with (S)-3,3'-bis(3,5-bis(perfluoropropan-2-yl)phenyl)-2,2'-bis(methoxymethoxy)-1,1'-binaphthalene ($0.35 \mathrm{~g}, 0.29 \mathrm{mmol}$) in MeOH (6 mL) and THF (6 mL) was added Amberlyst® 15 ion-exchange resin $(0.70 \mathrm{~g})$ at room temperature. The reaction mixture was then refluxed at $80^{\circ} \mathrm{C}$ for 24 h . The residue was purified by column chromatography on silica gel ($R_{\mathrm{f}} 0.42$, hexanes $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20: 1$) to give (S)-3,3'-Bis(3,5-bis(perfluoropropan-2-yl)phenyl)-[1,1'-binaphthalene]-2,2'-diol (S3c, $0.30 \mathrm{~g}, 0.27 \mathrm{mmol}, 93 \%$) as a colorless solid.
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.22(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 4 \mathrm{H}), 8.10(\mathrm{~s}, 2 \mathrm{H}), 8.04-7.99(\mathrm{~m}, 2 \mathrm{H})$, 7.87 (s, 2H), 7.49 (ddd, $J=8.1,6.8,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.43$ (ddd, $J=8.3,6.8,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.24 (ddt, $J=8.4,1.4,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.38(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.0,139.74,139.72,139.70,133.4,132.6,129.9,129.8$, 129.6, 129.1, 128.8, 128.3, 128.2, 128.12, 128.10, 128.0, 125.4, 124.2, 123.5, 123.3, 122.3, $122.23,122.15,121.6,121.4,119.7,119.5,117.8,117.6,112.0,92.5,92.3,92.0,91.8,91.6$, $91.1,90.9,90.7,90.5,90.2 ; \delta 139.72(\mathrm{t}, J=2.3 \mathrm{~Hz}), 129.87(\mathrm{~d}, J=10.2 \mathrm{~Hz}), 128.18(\mathrm{dd}, J=$ $20.7,2.3 \mathrm{~Hz}), 122.23(\mathrm{t}, J=12.0 \mathrm{~Hz}), 120.73(\mathrm{qd}, J=287.0,28.0 \mathrm{~Hz}), 91.36(\mathrm{dhept}, J=204.0$, 33.0 Hz).
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-75.43,-75.44,-181.96,-181.97,-181.99,-182.00$, -182.02, -182.04, -182.05.

HRMS (ESI-) (m / z): calculated for $\mathrm{C}_{44} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~F}_{28}[\mathrm{M}-\mathrm{H}]^{-}$: 1109.0787; found: 1109.0790.
$[\alpha]_{D}^{25}:-27.8\left(c=0.26, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
((Perfluoroethyl)sulfonyl)phosphorimidoyl trichloride (S4)

In a flame-dried flask under argon equipped with a magnetic stirring bar, which was connected to a gas wash bottle containing a NaOH solution ($10 \mathrm{wt} \%$, aq.), a cooling trap, and a vacuum pump in sequence, a mixture of $1,1,2,2,2-$ pentafluoroethane-1-sulfonamide ($10.1 \mathrm{~g}, 51.0 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{PCl}_{5}(11.2$ $\mathrm{g}, 54.0 \mathrm{mmol}, 1.06$ equiv) was heated to $100^{\circ} \mathrm{C}$ under air pressure for 1 h . The reaction was monitored by ${ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}$, and ${ }^{31} \mathrm{P}$ NMR to ensure full consumption of sulfonamide. Pumping off the excess amount of PCl_{5} under reduced pressure to give the title compound $\mathbf{S 4}(15.2 \mathrm{~g}, 45.5$ $\mathrm{mmol}, 90 \%)$ as colorless oil.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 121.2,121.0,120.8,119.0,118.7,118.4,116.7,116.44$, $116.42,116.2,114.4,114.1,113.9,113.5,112.1,111.8,111.5,111.2,109.8,109.5,109.2$, 108.8.
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-78.8(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 3 \mathrm{~F}),-116.6(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 2 \mathrm{~F})$.
${ }^{31} \mathbf{P}$ NMR (203 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 15.7$.

HRMS (ESI+) (m / z): calculated for $\mathrm{C}_{2} \mathrm{H}_{1} \mathrm{~N}_{1} \mathrm{O}_{2} \mathrm{Cl}_{3} \mathrm{~F}_{5} \mathrm{P}_{1} \mathrm{~S}_{1}[\mathrm{M}+\mathrm{H}]^{+}: 333.8451$; found: 333.8452 .

$N, N^{\prime}-\left((11 b S, 11 b ' S)\right.$-Azanediylbis(2,6-bis(3,5-bis(pentafluoro- λ^{6}-sulfanyl)phenyl)-4 λ^{5} -dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-yl-4-ylidene))bis(1,1,1trifluoromethanesulfonamide) (4c)

4C
 $\mathrm{R}^{\prime}=\mathrm{CF}_{3}$

In a flame-dried flask under argon, diol S3a ($0.1 \mathrm{~g}, 0.1 \mathrm{mmol}, 2.1$ equiv) was dissolved in toluene (1.4 mL). Subsequently, $\quad N, N-$ diisopropylethylamine (DIPEA, 0.14
$\mathrm{mL}, 0.80 \mathrm{mmol}, 16.0$ equiv), followed by trifluoromethylsulfonyl trichlorophosphazene $\left(\mathrm{P}(\mathrm{NTf}) \mathrm{Cl}_{3}, 30.4 \mathrm{mg}, 0.1 \mathrm{mmol}, 2.1\right.$ equiv) were added and the solution was stirred at room temperature for 5 min . 1,1,1,3,3,3-hexamethyldisilazane (HMDS, $10.4 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ equiv) was added to the reaction mixture, which was stirred at stirred at $120^{\circ} \mathrm{C}$ for 12 h . The reaction mixture was cooled to room temperature and the solvent was removed under reduced pressure. The residue was purified by column chromatography on silica gel using 20-40\% ethyl acetate/hexanes as the eluent affording a colorless solid. The solid was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(25 \mathrm{~mL})$ and stirred with $\mathrm{HCl}(6.0 \mathrm{M}$, aq., 25 mL) for 30 min . The organic layer was separated, washed with $\mathrm{HCl}(6.0 \mathrm{M}$, aq., 25 mL), and concentrated under reduced pressure to provide compound $\mathbf{4 c}$ as a colorless solid ($90 \mathrm{mg}, 0.04 \mathrm{mmol}, 80 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 8.20(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 8.18(\mathrm{t}, J=1.75 \mathrm{~Hz}, 2 \mathrm{H}), 8.16-8.15(\mathrm{~m}, 2 \mathrm{H})$, 8.13 (br s, 2H), 7.97-7.94 (m, 2H), 7.92-7.91 (m, 2H), 7.87 (d, $J=1.60 \mathrm{~Hz}, 4 \mathrm{H}), 7.80-7.75$ (m, 4H), 7.66 (t, $J=7.30 \mathrm{~Hz}, 2 \mathrm{H}), 7.48(\mathrm{br} \mathrm{s}, 4 \mathrm{H}), 7.40-7.37$ (m, 2H), 7.36 (s, 2H), 7.07 (d, J $=8.60 \mathrm{~Hz}, 2 \mathrm{H}), 6.58(\mathrm{~s}, 2 \mathrm{H}), 4.93(\mathrm{br} \mathrm{s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 154.0,153.9,153.8,153.6,144.0,141.4,138.6,138.2,134.0$, $133.0,132.6,132.4,132.3,131.5,130.84,130.78,130.1,129.9,129.61,129.56,128.7,128.6$, 127.9, 127.8, 127.14, 127.11, 124.5, 124.1, 123.9, 121.7, 120.3, 117.7.
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 80.8$ ($\mathrm{sext}, J=152.0 \mathrm{~Hz}, 8 \mathrm{~F}$), $63.1(\mathrm{~d}, J=150.6 \mathrm{~Hz}, 16 \mathrm{~F})$, 62.3 (d, $J=150.0 \mathrm{~Hz}, 16 \mathrm{~F}),-79.5(\mathrm{~s}, 6 \mathrm{~F})$.
${ }^{31} \mathbf{P}$ NMR (202 MHz, $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta-15.3$.

HRMS (ESI-) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{66} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~F}_{46} \mathrm{P}_{2} \mathrm{~S}_{10}$ [M-H] : 2249.8143; found: 2249.8128.

$N, N^{\prime}-\left(\left(11 b S, 11 b^{\prime} S\right)\right.$-Azanediylbis(2,6-bis(3,5-bis(perfluoropropyl)phenyl)-4 ${ }^{5}{ }^{5}$ -dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-yl-4-ylidene))bis(1,1,1trifluoromethanesulfonamide) (4d)

In a flame-dried flask under argon, diol S3b ($0.60 \mathrm{~g}, 0.54 \mathrm{mmol}, 2.1$ equiv) was dissolved in toluene ($5.0 \mathrm{~mL}, 0.1 \mathrm{M}$). Subsequently, $\mathrm{P}(\mathrm{NTf}) \mathrm{Cl}_{3}(0.15 \mathrm{~g}, 0.54 \mathrm{mmol}, 2.1$
equiv), followed by DIPEA ($0.53 \mathrm{~g}, 4.1 \mathrm{mmol}, 16.0$ equiv) were added and the solution was stirred at room temperature for 15 min . HMDS ($42 \mathrm{mg}, 0.26 \mathrm{mmol}, 1.0$ equiv) was added to the reaction mixture, which was stirred at room temperature for 10 min , and heated to $130{ }^{\circ} \mathrm{C}$ for 3 days. The reaction mixture was cooled to room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL), and stirred with $\mathrm{HCl}(6.0 \mathrm{M}$, aq., 3 mL$)$ for 30 min . The organic phase was then separated, dried with MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel ($R_{\mathrm{f}} 0.58$, hexanes/EtOAc, 5:1) to afford a colorless solid, which was then acidified in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ with $\mathrm{HCl}(6.0 \mathrm{M}$, aq., 6 mL$)$ by stirring at room temperature for 30 min . The organic layer was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(14 \mathrm{~mL})$, washed with $\mathrm{HCl}(6.0 \mathrm{M}$, aq., $2 \times 20 \mathrm{~mL}$), followed by drying under reduced pressure to provide compound $\mathbf{4 d}$ as a colorless solid $(0.60 \mathrm{~g}, 0.23 \mathrm{mmol}, 90 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.12-8.05(\mathrm{~m}, 4 \mathrm{H}), 7.93-7.86(\mathrm{~m}, 4 \mathrm{H}), 7.77-7.64(\mathrm{~m}, 13 \mathrm{H})$, 7.61 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~s}, 4 \mathrm{H}), 7.13(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~s}$, $2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.0,141.8,138.2,138.0,133.7,132.3,132.0,132.0,131.9$, $131.6,131.2,130.9,130.7,130.4,130.21,130.15,130.11,130.0,129.9,129.7,129.2,128.7$, $128.0,127.2,127.1,126.8,125.3,123.67,123.66,123.65,122.73,121.72,121.52,121.45$, $121.42,121.24,121.18,120.9,120.2,119.4,119.22,119.17,119.0,118.9,118.7,117.6,117.2$, $116.94,116.88,116.8,116.71,116.67,116.61,116.55,116.47,116.4,116.31,116.30,116.2$, $115.1,114.9,114.8,114.67,114.66,114.6,114.5,114.42,114.39,114.33,114.26,114.2$, 114.1, 112.7, 112.6, 112.5, 112.4, 112.2, 112.1, 111.6, 111.30, 111.29, 110.99, 110.98, 110.68, $110.68,110.39,110.38,110.07,110.07,109.8,109.5,109.19,109.18,108.89,108.88,108.58$, 108.58, 108.28, 108.27, 107.97, 107.96, 107.7, 107.4, 107.09, 107.08, 106.78, 106.78, 106.48, 106.47, 106.17, 106.16, 105.86, 105.86, 105.58; $\delta 130.15$ ($\mathrm{t}, J=25.0 \mathrm{~Hz}$), $129.90(\mathrm{t}, J=25.0$ $H z), 118.91(\mathrm{q}, ~ J=319.9 \mathrm{~Hz}), 118.02(\mathrm{qt}, J=287.0,34.0 \mathrm{~Hz}), 117.82(\mathrm{qt}, J=287.0,34.0 \mathrm{~Hz})$,
$114.51(\mathrm{tt}, J=256.9,30.9 \mathrm{~Hz}), 114.42(\mathrm{tt}, J=256.6,30.8 \mathrm{~Hz}), 108.73(\mathrm{th}, J=264.2,38.0 \mathrm{~Hz})$, 108.43 (th, $J=264.2,38.0 \mathrm{~Hz}$).
${ }^{19}$ F NMR (470 MHz, CDCl_{3}): $\delta-78.94(\mathrm{~s}),-80.04(\mathrm{t}, J=9.3 \mathrm{~Hz}),-80.20(\mathrm{t}, J=9.6 \mathrm{~Hz})$, $-112.20(\mathrm{~d}, J=276.8 \mathrm{~Hz}),-112.55(\mathrm{~s}),-113.78(\mathrm{~d}, J=276.8 \mathrm{~Hz}),-126.05(\mathrm{~d}, J=291.0 \mathrm{~Hz})$, $-126.11(\mathrm{~s}),-126.47(\mathrm{~d}, J=291.0 \mathrm{~Hz})$.
${ }^{31} \mathbf{P}$ NMR (202 MHz, CDCl_{3}): $\delta-13.92$.
HRMS (ESI-) (m / z): calculated for $\mathrm{C}_{90} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~F}_{62} \mathrm{P}_{2} \mathrm{~S}_{2} \quad[\mathrm{M}-\mathrm{H}]^{-}$: 2586.0122; found: 2586.0086.
$[\boldsymbol{\alpha}]_{D}^{\mathbf{2 5}}:+208.4\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
$N, N^{\prime}-\left(\left(11 b S, 11 b^{\prime} S\right)\right.$-Azanediylbis(2,6-bis(3,5-bis(pentafluoro- λ^{6}-sulfanyl)phenyl)-4 λ^{5} -dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-yl-4-ylidene))bis(1,1,2,2,2-pentafluoroethane-1-sulfonamide) (4e)

In a flame-dried flask under argon, diol S3a ($0.11 \mathrm{~g}, 0.12 \mathrm{mmol}, 2.1$ equiv) was dissolved in toluene ($1.0 \mathrm{~mL}, 0.12 \mathrm{M}$).
Subsequently, ((perfluoroethyl)sulfonyl)phosphorimidoyl trichloride, $\mathrm{P}\left(\mathrm{NSO}_{2} \mathrm{C}_{2} \mathrm{~F}_{5}\right) \mathrm{Cl}_{3}(\mathbf{S 4}, 39 \mathrm{mg}, 0.12 \mathrm{mmol}, 2.1$ equiv), followed by DIPEA $(0.11 \mathrm{~g}, 0.89 \mathrm{mmol}$, 16.0 equiv) were added and the solution was stirred at room temperature for 15 min . HMDS $(9.0 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.0$ equiv) was added to the reaction mixture, which was stirred at room temperature for 10 min , and heated to $130^{\circ} \mathrm{C}$ for 3 days. The reaction mixture was cooled to room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, and stirred with $\mathrm{HCl}(6.0 \mathrm{M}$, aq., 1 mL$)$ for 30 min. The organic phase was then separated, dried with MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (R_{f} 0.28 , hexanes/EtOAc, 2:1) to give a colorless solid, which was then acidified in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ with $\mathrm{HCl}(6.0 \mathrm{M}$, aq., 2 mL) by stirring at room temperature for 30 min . The organic layer was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$, washed with $\mathrm{HCl}(6.0 \mathrm{M}$, aq., $2 \times 10 \mathrm{~mL}$), followed by drying under reduced pressure to provide compound $\mathbf{4 e}$ as a colorless solid ($93 \mathrm{mg}, 0.04 \mathrm{mmol}, 71 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 8.17-8.07(\mathrm{~m}, 8 \mathrm{H}), 7.93-7.85(\mathrm{~m}, 4 \mathrm{H}), 7.83(\mathrm{~s}, 4 \mathrm{H}), 7.78(\mathrm{~d}, J$ $=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{ddd}, J=8.2,6.3,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.47-7.35(\mathrm{~m}$, $6 \mathrm{H}), 7.06(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}): $\delta 143.8,141.5,138.4,137.7,133.8,132.5,132.3,132.1,131.9$, $131.0,130.4,130.23,130.15,129.4,129.0,128.3,127.4,127.3,127.2,126.7,124.2,123.9$, 121.5.
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 81.14(\mathrm{p}, J=151.0 \mathrm{~Hz}), 80.97(\mathrm{p}, J=151.0 \mathrm{~Hz}), 63.32(\mathrm{~d}, J=$ $151.0 \mathrm{~Hz}), 62.51(\mathrm{~d}, J=151.0 \mathrm{~Hz}),-79.01,-117.08$.
${ }^{31} \mathbf{P}$ NMR (202 MHz, CDCl_{3}): $\delta-14.39$.
HRMS (ESI-) (m / z): calculated for $\mathrm{C}_{68} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~F}_{50} \mathrm{P}_{2} \mathrm{~S}_{10}$ [M-H]: 2349.8079; found: 2349.8069.
$[\alpha]_{D}^{25}:+201.3\left(c=0.15, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
$N, N^{\prime}-\left((11 \mathrm{bS}, 11 \mathrm{~b} ' S)\right.$-Azanediylbis(2,6-bis(3,5-bis(perfluoropropan-2-yl)phenyl)-4 λ^{5} -dinaphtho[2,1-d:1',2'-f][1,3,2]dioxaphosphepine-4-yl-4-ylidene))bis(1,1,1trifluoromethanesulfonamide) (4f)

In a flame-dried flask under argon, diol S3c ($0.15 \mathrm{~g}, 0.14 \mathrm{mmol}, 2.1$ equiv) was dissolved in toluene ($1.0 \mathrm{~mL}, 0.14$
M). Subsequently, $\mathrm{P}(\mathrm{NTf}) \mathrm{Cl}_{3}$ (38 mg , $0.14 \mathrm{mmol}, 2.1$ equiv), followed by
DIPEA ($0.13 \mathrm{~g}, 0.98 \mathrm{mmol}, 16.0$ equiv) were added and the solution was stirred at room temperature for 15 min . HMDS ($10 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.0$ equiv) was added to the reaction mixture, which was stirred at room temperature for 10 min , and heated to $170{ }^{\circ} \mathrm{C}$ for 4 d . The reaction mixture was cooled to room temperature, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 mL), and stirred with $\mathrm{HCl}(6.0 \mathrm{M}$, aq., 1 mL$)$ for 30 min . The organic phase was then separated, dried with MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified by column chromatography on silica gel ($R_{\mathrm{f}} 0.20$, hexanes/EtOAc, 4:1) to give a colorless solid, which was then acidified in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ with $\mathrm{HCl}(6.0 \mathrm{M}$, aq., 2 mL$)$ by stirring at room temperature for 30 min . The organic layer was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$, washed with HCl
($6.0 \mathrm{M}, \mathrm{aq} ., 2 \times 10 \mathrm{~mL}$), followed by drying under reduced pressure to provide compound $\mathbf{4 f}$ as a colorless solid ($84 \mathrm{mg}, 0.03 \mathrm{mmol}, 53 \%$).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 8.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~s}, 2 \mathrm{H}), 7.90(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 7.87 (dd, $J=8.0,6.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.82 ($\mathrm{s}, 4 \mathrm{H}$), 7.77 (s, 2H), 7.72 (s, 2H), 7.65 (dd, $J=8.7,6.9$ $\mathrm{Hz}, 3 \mathrm{H}), 7.63(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 3 \mathrm{H}), 7.58(\mathrm{dd}, J=8.2,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.42(\mathrm{~s}, 4 \mathrm{H}), 7.29(\mathrm{dd}, J=$ $8.7,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, \mathrm{~J}=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.63(\mathrm{~s}, 2 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 144.3,141.7,138.8,138.7,134.7,132.9,132.3,132.2,131.9$, 131.04, 130.98, 130.4, 130.2, 130.1, 129.7, 129.30, 129.25, 129.0, 128.6, 128.5, 128.3, 127.9, $127.5,127.11,127.06,126.8,123.7,123.35,123.29,123.2,123.11,123.08,122.9,122.8$, $121.8,121.6,121.45,121.39,121.3,121.20,121.19,121.0,119.7,119.55,119.50,119.4$, $119.31,119.29,119.1,117.9,117.7,117.62,117.61,117.5,117.42,117.40,117.2,115.5,92.3$, $92.1,91.8,91.6,91.4,90.9,90.7,90.5,90.3,90.0 ; \delta 120.41(\mathrm{qd}, J=287.0,27.0 \mathrm{~Hz}), 120.35$ (qd, $J=287.0,27.0 \mathrm{~Hz}), 120.15(\mathrm{qd}, J=287.0,28.0 \mathrm{~Hz}), 118.67(\mathrm{q}, ~ J=318.0 \mathrm{~Hz}), 91.16$ (dhept, $J=205.0,33.0 \mathrm{~Hz}$).
${ }^{19}$ F NMR ($470 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta-74.79,-75.30,-75.92,-76.11,-79.29,-181.21,-182.75$.
${ }^{31} \mathbf{P}$ NMR (202 MHz, CDCl_{3}): $\delta-14.31$.

HRMS (ESI-) (m / z): calculated for $\mathrm{C}_{90} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~F}_{62} \mathrm{P}_{2} \mathrm{~S}_{2}$ [M-H] : 2586.0122; found: 2586.0108.
$[\alpha]_{D}^{25}:+235.8\left(c=0.44, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Optimization of Reaction Conditions

Table S1. Comparison of different chiral Brønsted acids ${ }^{\text {a }}$.

phosphoric acid
S5

disulfonimide
S6

N-triflylphosphoramide S7

imidodiphosphate (IDP)
S8: $R=3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$

imidodiphosphorimidate (IDPi)
4a: $R=\mathrm{C}_{6} \mathrm{H}_{5}$
4b: $R=3,5-\left(\mathrm{CF}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$

entry	catalyst $^{\mathrm{b}}$	$\mathrm{HX}^{*}(\mathrm{~mol} \%)$	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{t}(\mathrm{h})$	solvent	${\text { conv. }(\%)^{\mathrm{c}}}^{\text {e.r. }{ }^{\mathrm{d}}}$	
1	$\mathbf{S 5}$	5	22	24	CyH	n.r.	-
2	S 6	5	22	24	CyH	n.r.	-
3	$\mathbf{S 7}$	5	22	24	CyH	11	$64: 36$
4	$\mathbf{S 8}$	5	22	24	CyH	n.r.	-
5	4a	5	22	24	CyH	<10	$59: 41$
6	4b	5	22	24	CyH	>95	$79: 21$

${ }^{a}$ Unless otherwise indicated, reactions were performed with benzaldehyde ($\mathbf{1 a}, 0.02 \mathrm{mmol}$), 2,3-dimethyl-1,3-butadiene ($\mathbf{2 a}, 0.1 \mathrm{mmol}$), and a catalyst ($5 \mathrm{~mol} \%$) in cyclohexane ($\mathrm{CyH}, 0.2$ $\mathrm{mL})$ at room temperature for 24 h and no side product was observed. ${ }^{\text {b }}$ Catalysts were prepared according to the known procedures: $\mathbf{S 5}^{15}, \mathbf{S 6}^{16}, \mathbf{S} 7^{18}, \mathbf{S 8}{ }^{28}, \mathbf{4 a}$ and $\mathbf{4 b}^{19}$. ${ }^{\mathrm{c}}$ Conversion ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis by comparison to $1,2,4,5$-tetramethylbenzene as an internal standard after addition of TEA. ${ }^{\text {d }}$ The enantiomeric ratio was measured by HPLC analysis on a chiral stationary phase.

Table S2. Screening IDPis 4b-4c and optimization ${ }^{\text {a }}$.

entry	catalyst	$\mathrm{HX}^{*}(\mathrm{~mol} \%)$	$\mathrm{MeCy}(\mu \mathrm{L})$	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	${\text { conv. }(\%)^{\mathrm{b}}}$ e.r. $^{\mathrm{c}}$	
1	4c	5	200	22	>95	$90: 10$
2	4b	5	200	-20	<10	$85: 15$
3	4c	1	200	-20	>95	$98: 2$
$4^{\text {d }}$	4c	1	67	-20	>95	$98: 2$
5	4c	0.2	67	-20	>95	$98: 2$

${ }^{\text {a }}$ Unless otherwise indicated, reactions were performed with aldehyde $\mathbf{1 a}(0.02 \mathrm{mmol})$, diene 2a (0.1 mmol), a catalyst, and $5 \AA$ molecular sieves ($70 \mathrm{mg} / \mathrm{mL}$) in methylcyclohexane (MeCy) for 24 h and no side product was observed. ${ }^{\mathrm{b}}$ Conversion ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis by comparison to $1,2,4,5$-tetramethylbenzene as an internal standard after quenching reactions by addition of TEA. ${ }^{\text {c }}$ The enantiomeric ratio was measured by HPLC analysis on a chiral stationary phase. ${ }^{\mathrm{d}}$ The reaction was completed within 4 h .

Table S3. Optimization of the ratio of substrates ${ }^{\mathrm{a}}$.

entry	1a (mmol)	2a (mmol)	conv. (\%) ${ }^{\text {b }}$	e.r. ${ }^{\text {c }}$
1	0.1	0.5	>95	$98: 2$
2	0.1	0.2	>95	$98: 2$
3	0.1	0.12	>95	$98: 2$
4	0.12	0.1	>95	$98: 2$

${ }^{a}$ Unless otherwise indicated, reactions were performed with aldehyde 1a, diene 2a, catalyst $\mathbf{4 c}$, and $5 \AA$ molecular sieves $(21 \mathrm{mg})$ in $\mathrm{MeCy}(0.3 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$ for 24 h and no side product was observed. ${ }^{\mathrm{b}}$ Conversion ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis by comparison to $1,2,4,5$-tetramethylbenzene as an internal standard after quenching reactions by addition of TEA. ${ }^{\text {c }}$ The enantiomeric ratio was measured by HPLC analysis on a chiral stationary phase.

The role of molecular sieves

In the absence of $5 \AA$ molecular sieves, the reaction proceeded slightly slower (Table S4, entry 2). However, the enantioselectivity remained essential the same, suggesting a pure Brønsted acid-catalysis, not a Lewis acid catalysis potentially introduced by the metal species in $5 \AA$ molecular sieves with a formula of $0.7 \mathrm{CaO} \cdot 0.30 \mathrm{Na}_{2} \mathrm{O} \cdot \mathrm{Al}_{2} \mathrm{O}_{3} \cdot 2.0 \mathrm{SiO}_{2} \cdot 4.5 \mathrm{H}_{2} \mathrm{O}$.

Table S4. Effect of molecular sieves ${ }^{\text {a }}$.

entry	$5 \AA M S$	conv. (\%) ${ }^{\text {b }}$	${\text { e.r. }{ }^{\text {c }}}^{c}$
1	21 mg	>95	$98: 2$
2	-	92	$97.5: 2.5$

${ }^{a}$ Unless otherwise indicated, reactions were performed with aldehyde $\mathbf{1 a}(0.1 \mathrm{mmol})$, diene $\mathbf{2 a}$ (0.5 mmol), catalyst $\mathbf{4 c}(5 \mathrm{~mol} \%)$, and $5 \AA$ molecular sieves (21 mg) in $\mathrm{MeCy}(0.3 \mathrm{~mL})$ at $-20{ }^{\circ} \mathrm{C}$ for 24 h and no side product was observed. ${ }^{\mathrm{b}}$ Conversion ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis by comparison to $1,2,4,5$-tetramethylbenzene as an internal standard after quenching reactions by addition of TEA. ${ }^{\text {c }}$ The enantiomeric ratio was measured by HPLC analysis on a chiral stationary phase.

Table S5. Optimization of the reaction between aldehyde $\mathbf{1 i}$ and diene $\mathbf{2 a} \mathbf{a}^{a}$.

${ }^{\text {a }}$ Reactions were performed on a 0.03 mmol scale of aldehyde $\mathbf{1 i}$ in MeCy $(0.1 \mathrm{~mL}) .{ }^{\text {b }}$ Yields and conversion ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis by comparison to triphenylmethane as an internal standard after addition of TEA. ${ }^{\text {c }}$ The enantiomeric ratio was measured by GC analysis on a chiral stationary phase.

Table S6. Optimization of the reaction between aldehyde $\mathbf{1 k}$ and diene $\mathbf{2 a}{ }^{\mathrm{a}}$.

Ph entry		catalyst 4d MeCy, 5 A MS 48 h					
	HX* (mol\%)	2a (equiv)	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	conv. (\%) ${ }^{\text {b }}$	3k (\%) ${ }^{\text {b }}$	trimer (\%) ${ }^{\text {b }}$	e.r. ${ }^{\text {c }}$
1	1	10	-20	99	7	92	97:3
2	1	20	-20	100	20	80	96:4
3	2	10	-20	99	25	74	95:5
4	1	10	-10	100	76	0	95.5:4.5
5	1	10	-5	97	65	0	94:6
6	1	10	23	100	55	0	92:8

${ }^{\text {a }}$ Reactions were performed on a 0.03 mmol scale of aldehyde $\mathbf{1 k}$ in $\mathrm{MeCy}(0.1 \mathrm{~mL})$. ${ }^{\mathrm{b}}$ Yields and conversion ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis by comparison to triphenylmethane as an internal standard after addition of TEA. ${ }^{\text {c }}$ The enantiomeric ratio was measured by GC analysis on a chiral stationary phase.

Table S7. Optimization of the reaction between aldehyde $\mathbf{1 o}$ and diene $\mathbf{2 a}{ }^{a}$.

$n-\mathrm{C}_{9} \mathrm{H}$			cataly MeCy, 5 -20	MS				
entry	catalyst	HX^{*} (mol\%)	2a (equiv)	$t(h)$	conv. (\%) ${ }^{\text {b }}$	$30(\%)^{\text {b }}$	S9 (\%) ${ }^{\text {b }}$	e.r. ${ }^{\text {c }}$
1	4c	1	10	20	94	4.5	89	-
2	4c	1	10	57	97	17	79.5	-
3	4d	1	10	12	97	34	63	97:3
4	4d	1	10	24	97	57	40	97:3
5	4d	1	10	48	100	94	trace	97:3
6	4d	0.5	10	48	100	94	trace	97:3
7	4d	1	5	48	99	54	45	97:3
8	4d	3	10	12	95	30.5	65	97:3
9	4d	5	10	12	96.5	31	66	97:3

${ }^{a}$ Reactions were performed on a 0.03 mmol scale of aldehyde 10 in $\mathrm{MeCy}(0.1 \mathrm{~mL}) .{ }^{\mathrm{b}}$ Yields and conversion ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis by comparison to triphenylmethane as an internal standard after addition of TEA. ${ }^{\text {c }}$ The enantiomeric ratio was measured by GC analysis on a chiral stationary phase.

Figure S2. Kinetic experiments of the HDA reaction of aldehyde $\mathbf{1 0}$ and diene $\mathbf{2 a}{ }^{\text {a }}$.
${ }^{\text {a }}$ Reactions were performed with aldehyde $\mathbf{1 0}(0.15 \mathrm{mmol})$, diene $\mathbf{2 a}(1.5 \mathrm{mmol})$, and $1 \mathrm{~mol} \%$ of catalyst $\mathbf{4 c}(\mathbf{A})$ or $\mathbf{4 d}(\mathbf{B})$ in $\mathrm{MeCy}(0.5 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. Yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis and the enantiomeric ratio was measured by GC analysis on a chiral stationary phase.

The hetero-Diels-Alder reaction of $\mathbf{1 o}$ and $\mathbf{2 a}$ was investigated using $\mathbf{4 c}$ and $\mathbf{4 d}$ as the catalyst (Fig. S2). In the case of $\mathbf{4 c}$ as the catalyst, the rate of trimerization exceeded the rate of cycloaddition (Fig. S2, A). In contrast, in the presence of catalyst $\mathbf{4 d}$, the rapidly generated trimer (S9) was constantly consumed, furnishing the cycloadduct (3o) over time (Fig. S2, B). Trimer $\mathbf{S 9}$ was not afforded in the absence of the catalyst. It was also possible to use trimer $\mathbf{S 9}$ as the starting material for the cycloaddition, producing $\mathbf{3 o}$ in 96% yield with $96: 4$ e.r. ($1 \mathrm{~mol} \%$ $\mathbf{4 d},-20{ }^{\circ} \mathrm{C}, 48 \mathrm{~h}$). In all cases, the monomer aldehyde (10) was detected by ${ }^{1} \mathrm{H}$ NMR spectroscopy throughout the reaction, indicating a dynamic equilibrium between aldehyde $\mathbf{1 0}$ and trimer $\mathbf{S 9}$.

Figure S3. Kinetic experiments of hetero-Diels-Alder reaction of aldehyde $\mathbf{1 1}$ and diene $\mathbf{2 a}{ }^{\mathrm{a}}$.
${ }^{\text {a }}$ Reactions were performed with aldehyde $\mathbf{1 1}(0.15 \mathrm{mmol})$, diene $\mathbf{2 a}(1.5 \mathrm{mmol})$, and $1 \mathrm{~mol} \%$ of catalyst $\mathbf{4 d}$ in $\mathrm{MeCy}(0.5 \mathrm{~mL})$ at $-20^{\circ} \mathrm{C}$. Yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis.

Despite the improved efficiency of the cycloaddition reaction using catalyst $4 \mathbf{d}$ for most aliphatic aldehydes, the acid catalyzed trimerization of the alpha-branched aldehyde (11) was found to be irreversible and a competitive process to the desired cycloaddition. Consequently, low yields of cycloadducts $\mathbf{3 1}, \mathbf{3 m}$, and $\mathbf{3 n}$ were observed (Fig. S3).

Table S8. Optimization of the reaction between aldehyde $\mathbf{1 u}$ and diene $\mathbf{2 b}{ }^{\text {a }}$.

${ }^{\text {a }}$ Reactions were performed on a 0.10 mmol scale of aldehyde $\mathbf{1 u}$ (or $33 \mu \mathrm{~mol}$ of paraldehyde) and 1.5 mmol of diene $\mathbf{2 b}$ in $\mathrm{MeCy}(0.33 \mathrm{~mL}) .{ }^{\mathrm{b}}$ Yields and conversion ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis by comparison to triphenylmethane as an internal standard after addition of TEA. ${ }^{\text {c }}$ The enantiomeric ratio was measured by GC analysis on a chiral stationary phase. ${ }^{\mathrm{d}}$ The reaction was performed for 4 d at $-20^{\circ} \mathrm{C}$ followed by 1 d at room temperature. ${ }^{\mathrm{e}} 0.16 \mathrm{~mL}$ of MeCy was used.

Table S9. Effects of acetic acid ${ }^{\text {a }}$.

entry	1	additive	t (h)	conv. (\%) ${ }^{\text {b }}$	3 (\%) ${ }^{\text {b }}$	trimer (\%) ${ }^{\text {b }}$	e.r. ${ }^{\text {c }}$
1		$15 \mathrm{~mol} \%$ acetic acid	48	99	13	85	96:4
2		-	48	99	7	91	96:4
3		$15 \mathrm{~mol} \%$ acetic acid	48	96	10	86	97:3
4	10	-	48	100	94	trace	97:3
5		$15 \mathrm{~mol} \%$ acetic acid	24	20	6	14	$\begin{aligned} & \text { syn: anti >20:1 } \\ & \text { e.r. } r_{\text {syn }}>99.5: 0.5 \end{aligned}$
6		-	24	72	36	36	$\begin{aligned} & \text { syn: } \text { :anti >20:1 } \\ & \text { e.r. } \text { syn }>99.5: 0.5 \end{aligned}$
7		$15 \mathrm{~mol} \%$ acetic acid	24	44	22	21	$\begin{aligned} & \text { anti:syn }>20: 1 \\ & \text { e.r. } \text { anti }>99.5: 0.5 \end{aligned}$
8		-	24	85	44	41	$\begin{aligned} & \text { anti:syn >20:1 } \\ & \text { e.r. anti }>99.5: 0.5 \end{aligned}$

${ }^{\text {a }}$ Reactions were performed on a 0.03 mmol scale of aldehydes and 0.3 mmol of diene $\mathbf{2 a}$ in $\mathrm{MeCy}(0.1 \mathrm{~mL}) .{ }^{\mathrm{b}}$ Yields and conversion ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis by comparison to triphenylmethane as an internal standard after addition of TEA. ${ }^{c}$ The enantiomeric ratio was measured by GC analysis on a chiral stationary phase.

The hetero-Diels-Alder reaction of acetaldehyde $\mathbf{1 u}$ and diene $\mathbf{2 a}$ was investigated (Table S8). Initially, it was found that reactions using different commercial batches of acetaldehyde, which contained varying amounts of acetaldehyde, acetic acid, and paraldehyde, irreproducibly generated cycloadduct $\mathbf{3 u}$ (Table S8, entries 1 and 2). However, reactions using distilled acetaldehyde (prepared as a stock solution in MeCy) or paraldehyde proved to be inactive under the reaction conditions, even at elevated temperature (entries 3,4 , and 19). Interestingly, the addition of acetic acid indeed triggered the cycloaddition reaction, and the catalytic amount of acetic acid could improve the yield without diminishing the enantioselectivity (Table S8, entries 5-8 vs. 9-11). Other IDPis ($\mathbf{4 c}, \mathbf{4 e}$, and $\mathbf{4 f}$) proved to be less reactive and/or less stereoselective (Table S8, entries 6 vs. 12-14). Higher loadings of
catalyst $\mathbf{4 d}$ and prolonged reaction times increased the yield while a higher concentration decreased the yield and enantioselectivity (Table S8, entries 15-17). In contrast, the assistive effect of acetic acid was not effective for other aliphatic aldehydes (Table S9). In most cases, the desired cycloaddition reactions showed a reduced rate of the conversion and/or yield, plausibly caused by the predominant generation of their corresponding trimers.

Table S10. Optimization of the reaction for aldehyde $\mathbf{1 i}$ and diene $\mathbf{2 b}^{\mathrm{a}}$.

 entry	2b	catalyst 4d				
	HX^{*} (mol\%)	2b (equiv)	conv. (\%) ${ }^{\text {b }}$		trimer (\%) ${ }^{\text {b }}$	e.r. ${ }^{\text {c }}$
1	0.5	10	88	39	48	93:7
2	1	10	96	20	76	89:11
3	1	15	100	87	0	94:6
4	1	20	93	76	17	93:7

${ }^{\text {a }}$ Reactions were performed on a 0.03 mmol scale of aldehyde $\mathbf{1 i}$ in MeCy (0.1 mL). ${ }^{\text {b }}$ Yields and conversion ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis by comparison to triphenylmethane as an internal standard after addition of TEA. ${ }^{\text {c }}$ The enantiomeric ratio was measured by GC analysis on a chiral stationary phase.

Table S11. Optimization of the reaction for aldehyde 1a and diene $\mathbf{2 f}{ }^{\text {a }}$.

entry	catalyst	HX* (mol\%)	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	t (d)	conv. (\%) ${ }^{\text {b }}$	trans:cis ${ }^{\text {b }}$	e.r.trans ${ }^{\text {c }}$
1	4d	2	-30	3	18	10:1	98:2
2	4 e	2	-30	3	>95	12:1	>99.5:0.5
3	4 e	0.5	-30	3	>95	32:1	>99.5:0.5

${ }^{a}$ Unless otherwise indicated, reactions were performed with aldehyde $\mathbf{1 a}(0.03 \mathrm{mmol})$, diene $2 f(0.3 \mathrm{mmol})$, a catalyst, and $5 \AA$ molecular sieves (7 mg) in $\mathrm{MeCy}(0.1 \mathrm{~mL}) .{ }^{\mathrm{b}}$ Conversion ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis by comparison to $1,2,4,5$-tetramethylbenzene as an internal standard after quenching reactions by addition of TEA. ${ }^{\mathrm{c}}$ The enantiomeric ratio was measured by HPLC analysis on a chiral stationary phase.

Table S12. Optimization of the reaction for aldehyde 1a and diene $\mathbf{2 h}^{\mathrm{a}}$.

entry	catalyst	$\mathrm{HX}^{*}(\mathrm{~mol} \%)$	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{t}(\mathrm{h})$	conv. $(\%)^{\mathrm{b}}$	cis.trans $^{\mathrm{b}}$	e.r. cis $^{\mathrm{c}}$
1	$\mathbf{4 c}$	1	-60	24	>95	$1.4: 1$	N.D.
2	$\mathbf{4 d}$	1	-60	24	>95	$7: 1$	$95: 5$
3	$\mathbf{4 f}$	1	-60	24	<10	$10: 1$	$90: 10$

${ }^{\text {a }}$ Unless otherwise indicated, reactions were performed with aldehyde $\mathbf{1 a}(0.02 \mathrm{mmol})$, diene $2 \mathrm{~h}(0.1 \mathrm{mmol})$, a catalyst, and $5 \AA$ molecular sieves (14 mg) in $\mathrm{MeCy}(0.2 \mathrm{~mL}) .{ }^{\mathrm{b}}$ Conversion ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis by comparison to $1,2,4,5$-tetramethylbenzene as an internal standard after quenching reactions by addition of TEA. ${ }^{c}$ The enantiomeric ratio was measured by HPLC analysis on a chiral stationary phase.

Table S13. Optimization of the reaction for aldehyde $\mathbf{1 a}$ and diene $\mathbf{2 i}^{\mathbf{a}}$.

entry	catalyst	$\mathrm{HX}^{*}(\mathrm{~mol} \%)$	$\mathrm{T}\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{t}(\mathrm{h})$	${\text { conv. }(\%)^{\mathrm{b}}}^{c}$ cis:trans $^{\mathrm{b}}$	e.r. cis $^{\mathrm{c}}$	
$\mathbf{1}$	$\mathbf{4 d}$	1	-60	48	>95	$2.5: 1$	$97.5: 2.5$
2	$\mathbf{4 d}$	1	-30	24	>95	$3: 1$	$96: 2$
3	$\mathbf{4 f}$	1	-30	24	>95	$10: 1$	$94.2: 5.8$

${ }^{\text {a }}$ Unless otherwise indicated, reactions were performed with aldehyde $\mathbf{1 a}(0.03 \mathrm{mmol})$, diene $2 \mathbf{i}(0.15 \mathrm{mmol})$, a catalyst, and $5 \AA$ molecular sieves (21 mg) in MeCy (0.3 mL). ${ }^{\mathrm{b}}$ Conversion ratios were determined by ${ }^{1} \mathrm{H}$ NMR analysis by comparison to $1,2,4,5$-tetramethylbenzene as an internal standard after quenching reactions by addition of TEA. ${ }^{c}$ The enantiomeric ratio was measured by HPLC analysis on a chiral stationary phase.

Substrate Synthesis and Characterization

Substrates (R) - $\mathbf{1 1},(S) \mathbf{- 1 \mathbf { 1 }}, \mathbf{1 p}, \mathbf{1 q}, \mathbf{2 f}, \mathbf{2 g}$, and $\mathbf{2 i}$ have been previously reported ${ }^{19,}{ }^{29-32}$. Aldehydes (R) - $\mathbf{1 1}$ and $(S)-\mathbf{1 l}$ were synthesized from the corresponding alcohols via a DessMartin oxidation and the optical purities of products were determined using reported methods ${ }^{19,}{ }^{29}$. Aldehydes $\mathbf{1 p}$ and $\mathbf{1 q}$ were prepared from the corresponding alcohols via a Jones oxidation ${ }^{30}$. Dienes $\mathbf{2 f}$ and $\mathbf{2 g}$ were prepared from the corresponding aldehydes via a Wittig reaction ${ }^{31}$. Diene $2 \mathbf{i}$ was prepared from the corresponding ketone via Wittig reaction ${ }^{32}$.

1) TEA, DMAP, benzene

Figure S4. Synthesis of dihydrocholesterol-derivatized aldehyde 1s.
(3S,5S,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-17-((R)-5-methylhexan-2-
yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl 10-oxodecanoate (1s)

To a round-bottom flask were added dihydrocholesterol (S10, $1.2 \mathrm{~g}, 3.0 \mathrm{mmol}$, 1.0 equiv), 4-(dimethylamino)-pyridine (DMAP, $18.3 \mathrm{mg}, 0.15 \mathrm{mmol}, 0.05$ equiv),
benzene (18.0 mL), trimethylamine (TEA, $0.46 \mathrm{~mL}, 3.3 \mathrm{mmol}, 1.1$ equiv), and followed by the addition of 10 -undecenoyl chloride ($1.0 \mathrm{~mL}, 4.5 \mathrm{mmol}, 1.5$ equiv). The reaction mixture was stirred at room temperature for 12 h . The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel using 5-10\% ethyl acetate/hexanes as the eluent giving the corresponding alkene as a colorless solid $(0.98 \mathrm{~g}, 1.8$ $\mathrm{mmol}, 59 \%)$. To a round bottom flask were added the obtained alkene ($0.55 \mathrm{~g}, 1.0 \mathrm{mmol}, 1.0$ equiv), triphenylphosphine $\left(\mathrm{Ph}_{3} \mathrm{P}, 0.80 \mathrm{~g}, 3.0 \mathrm{mmol}, 3.0\right.$ equiv), and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$, followed by the bubbling of the ozone at $-40{ }^{\circ} \mathrm{C}$ until the starting material was fully consumed. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel using 5-10\% ethyl acetate/hexanes as eluents to give $\mathbf{1 s}$ as a colorless solid ($0.38 \mathrm{~g}, 0.69 \mathrm{mmol}, 69 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 9.72(\mathrm{~s}, 1 \mathrm{H}), 4.66$ (hept, $\left.J=4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.39(\mathrm{dt}, J=7.4$, $1.6 \mathrm{~Hz}, 2 \mathrm{H}$), 2.23 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $1.97(\mathrm{td}, J=12.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.71(\mathrm{~m}, 3 \mathrm{H})$, $1.67-1.43(\mathrm{~m}, 10.6 \mathrm{H}), 1.38-0.95(\mathrm{~m}, 28 \mathrm{H}), 0.91(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{dd}, J=6.6,1.9 \mathrm{~Hz}$, $6 \mathrm{H}), 0.82(\mathrm{~s}, 3 \mathrm{H}), 0.69-0.63(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 203.1,173.5,73.7,56.9,56.7,54.7,45.1,44.3,43.0,40.5$, $39.9,37.2,36.6,36.3,35.92,35.87,35.0,34.5,32.5,29.6,29.50,29.48,29.4,29.1,28.6,28.4$, $28.0,25.4,24.6,24.2,23.0,22.7,22.5,21.6,18.9,12.4,12.2$.

HRMS (ESI+) (m / z) : calculated for $\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{O}_{3} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$: 579.4748; found: 579.4756.

Figure S5. Synthesis of diene 2k.

(E)-(((5-methylhexa-3,5-dien-1-yl)oxy)methyl)benzene (2k)

To a round-bottom flask were added the starting alcohol (S11, 300

2k
$\mathrm{mg}, 2.67 \mathrm{mmol}$), Benzyl bromide ($0.64 \mathrm{~mL}, 5.35 \mathrm{mmol}$), and THF (2 mL), followed by the addition of NaH (60% dispersion in Mineral oil, $214 \mathrm{mg}, 5.35 \mathrm{mmol}$). The reaction mixture was stirred at room temperature for 12 h . The reaction mixture was then quenched with 20 mL saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution, and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$. The combined organic layer was dried over anhydrous MgSO_{4}. The solvent was removed under reduced pressure and the residue was purified by column chromatography on silica gel using 1-3\% ethyl acetate/hexanes as the eluent to give $\mathbf{2 k}$ as a colorless oil ($514 \mathrm{mg}, 2.54 \mathrm{mmol}, 95 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.39-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.68(\mathrm{td}, J=15.7,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 4.53(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.54(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.44(\mathrm{q}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 142.1,138.6,134.7,128.6,128.5,127.9,127.83,127.78$, 127.71, 126.9, 115.0, 73.1, 70.0, 33.4, 18.8.

HRMS (ESI+) (m / z): calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$: 225.1250; found: 225.1249.

General Procedure for the Asymmetric [4+2]-Cycloaddition

Unless specified otherwise, in a flame-dried flask under argon, catalyst $4(0.2-3 \mathrm{~mol} \%)$ and 5 A molecular sieves ($70 \mathrm{mg} / \mathrm{mL}$) were dissolved in $\mathrm{MeCy}(0.3-10.0 \mathrm{~mL}$). Subsequently, aldehyde $1(0.1-0.3 \mathrm{mmol})$ and diene $2(0.2-3.0 \mathrm{mmol})$ were added. Purification was performed by column chromatography or preparative thin layer chromatography on silica gel using $2-6 \%$ diethyl ether/pentane as the eluent. The corresponding racemic samples were prepared according to the reported method. ${ }^{13 a}$

Characterization of Cycloadducts

(R)-4,5-dimethyl-2-phenyl-3,6-dihydro-2H-pyran (3a)

Aldehyde 1a ($10.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and diene 2a ($16.4 \mathrm{mg}, 0.2$ mmol, 2.0 equiv) were added to a mixture of catalyst $\mathbf{4 c}(1 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (21 mg) in $\mathrm{MeCy}(0.3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 24 h . 3a was obtained as a colorless oil $(18.2 \mathrm{mg}, 0.097$ mmol, 97%).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.39-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.28(\mathrm{tt}, J=7.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J$ $=10.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{pd}, J=15.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.24(\mathrm{~m}$, $1 \mathrm{H}), 2.10(\mathrm{dd}, J=16.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.72(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.62-1.616(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 143.5,128.6,127.6,126.2,125.0,124.2,76.5,70.6,39.0$, 18.5, 14.0.

HRMS (ESI+) (m / z): calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$: 211.1093; found: 211.1092.
$[\alpha]_{D}^{20}:+224.0\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
GC: The enantiomeric ratio was measured by GC analysis on a chiral column (Hydrodex-gamma-TBDAc column: 25.0 m ; i.D. 0.25 mm); FID; Temperature: $220^{\circ} \mathrm{C}$ (injector), $350^{\circ} \mathrm{C}$
(detector), $100{ }^{\circ} \mathrm{C}$ (108 min, iso); Gas: $\mathrm{H}_{2}(0.50 \mathrm{bar}) ; \mathrm{t}_{\mathrm{R}}=88.43 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R}}=92.67$ \min (minor), e.r. $=98: 2$.

(R)-2-(2-fluorophenyl)-4,5-dimethyl-3,6-dihydro-2H-pyran (3b)

Aldehyde 1b ($12.4 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 a}(16.4 \mathrm{mg}, 0.2$ mmol, 2.0 equiv) were added to a mixture of catalyst $\mathbf{4 c}(1 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (21 mg) in $\mathrm{MeCy}(0.3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ for $72 \mathrm{~h} . \mathbf{3 b}$ was obtained as a colorless oil $(16.6 \mathrm{mg}, 0.081$ mmol, 81\%).
${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.51(\mathrm{dt}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{dt}, J=$ $7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{ddd}, J=10.2,8.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{dd}, J=10.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}$, $J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.28-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H})$, 1.69 (br s, 3 H), 1.60 (br s, 3 H).
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}): $\delta 160.7$, 158.7, 130.0, 129.9, 129.6, 128.8, 128.7, 128.4, 127.24, 127.20, 126.4, 124.48, 124.45, 124.0, 115.3, 115.1, 70.4, 70.35, 70.33, 37.7, 18.4, 14.0.

HRMS (ESI+) (m/z): calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{1} \mathrm{~F}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$: 229.0999; found: 229.1000. $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{20}:+178.4\left(c=0.50, \mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric ratio was measured by HPLC analysis using Chiralpak IA-3, i.D. 4.6 mm . Heptane $/ /^{i} \operatorname{PrOH}=99.5: 0.5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=4.10 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R}}=4.50 \mathrm{~min}($ minor $)$, e.r. $=92: 8$.

(R)-2-(3-fluorophenyl)-4,5-dimethyl-3,6-dihydro-2H-pyran (3c)

Aldehyde 1c ($12.4 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and diene 2a ($16.4 \mathrm{mg}, 0.2$ mmol, 2.0 equiv) were added to a mixture of catalyst $\mathbf{4 c}(1 \mathrm{~mol} \%)$ and 5 \AA molecular sieves (21 mg) in $\mathrm{MeCy}(0.3 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 24 h .3 c was obtained as a colorless oil (19.5 mg , $0.0945 \mathrm{mmol}, 94.5 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.30(\mathrm{dt}, J=7.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.09(\mathrm{~m}, 2 \mathrm{H}), 6.95(\mathrm{ddt}, J$ $=8.9,2.5,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=10.6,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{td}, J=15.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}$,
$J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.59(\mathrm{br} \mathrm{s}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 164.0,162.1,145.54,145.49,129.96,129.90,124.7,123.7$, $121.46,121.45,114.4,114.2,113.0,112.8,75.71,75.70,70.4,38.6,18.5,14.0$.

HRMS (ESI+) (m/z): calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{1} \mathrm{~F}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$: 229.0999; found: 229.1001.
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{20}:+184.0\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
HPLC: The enantiomeric ratio was measured by HPLC analysis using Chiralpak IA-3, i.D. 4.6 mm . Heptane $/ /^{i} \operatorname{PrOH}=99.5: 0.5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=4.52 \mathrm{~min}$ (major) and $t_{R}=4.92 \mathrm{~min}($ minor $)$, e.r. $=98: 2$.

(R)-2-(4-fluorophenyl)-4,5-dimethyl-3,6-dihydro-2H-pyran (3d)

Aldehyde 1d ($12.4 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and diene 2a ($16.4 \mathrm{mg}, 0.2$ mmol, 2.0 equiv) were added to a mixture of catalyst $\mathbf{4 c}(1 \mathrm{~mol} \%)$ and 5 3d \AA molecular sieves (21 mg) in $\mathrm{MeCy}(0.3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 24 h . $\mathbf{3 d}$ was obtained as a colorless oil (16 mg , $0.089 \mathrm{mmol}, 89 \%)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.34(\mathrm{dt}, J=5.6,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{tt}, J=6.8,2.9 \mathrm{~Hz}, 2 \mathrm{H})$, $4.52(\mathrm{dd}, J=10.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{td}, J=15.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.30-2.24 (m, 1H), 2.07 (d, $J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.69$ (br s, 3H), 1.59 (br s, 3H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 163.2,161.3,138.63,138.60,127.7,127.6,124.7,123.8$, 115.4, 115.2, 75.8, 70.4, 38.7, 18.5, 14.0.

HRMS (ESI+) (m / z) : calculated for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{O}_{1} \mathrm{~F}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}: 229.0999$; found: 229.1001.
$[\alpha]_{\boldsymbol{D}}^{20}:+164.0\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
HPLC: The enantiomeric ratio was measured by HPLC analysis using Chiralpak IA-3, i.D. 4.6 mm . Heptane $/ /^{i} \mathrm{PrOH}=99.5: 0.5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=4.95 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R}}=5.46 \mathrm{~min}(\mathrm{minor})$, e.r. $=97: 3$.

(R)-4,5-dimethyl-2-(p-tolyl)-3,6-dihydro-2H-pyran (3e)

Aldehyde $\mathbf{1 e}(12.0 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 a}(41 \mathrm{mg}, 0.5$ mmol, 5.0 equiv) were added to a mixture of catalyst $\mathbf{4 c}(3 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (21 mg) in $\mathrm{MeCy}(0.3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-60^{\circ} \mathrm{C}$ for 6 days. 3e was obtained as a colorless oil ($18.9 \mathrm{mg}, 0.093$ mmol, 93%).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.23(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.48(\mathrm{dd}, J$ $=10.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.26-$ $2.21(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.69(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.59(\mathrm{br} \mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 140.4,137.3,129.2,126.1,124.9,124.2,76.4,70.6,38.9$, 21.2, 18.5, 13.9.

HRMS (ESI+) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$: 225.1250; found: 225.1250.
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{2 0}}:+184.0\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
HPLC: The enantiomeric ratio was measured by HPLC analysis using Chiralpak IA-3, i.D. 4.6 mm . Heptane $/^{i} \operatorname{PrOH}=99.5: 0.5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=5.37 \mathrm{~min}$ (major) and $t_{R}=6.16 \mathrm{~min}($ minor $)$, e.r. $=95: 5$.

(R)-2-(4-bromophenyl)-4,5-dimethyl-3,6-dihydro-2H-pyran (3f)

Aldehyde $\mathbf{1 f}$ ($18.5 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 a}(82 \mathrm{mg}, 1.0$ mmol, 10.0 equiv) were added to a mixture of catalyst $\mathbf{4 c}(3 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (21 mg) in $\mathrm{MeCy}(0.3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-60^{\circ} \mathrm{C}$ for 6 days. 3f was obtained as a colorless oil $(9.6 \mathrm{mg}$, $0.036 \mathrm{mmol}, 36 \%)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.47(\mathrm{dt}, J=8.5,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{dt}, J=8.4,1.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.50(\mathrm{dd}, J=10.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{td}, J=15.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H})$, 2.26-2.20 (m, 1H), 2.07 (d, $J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.68$ (br s, 3H), 1.59 (br s, 3H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 141.9,131.6,127.7,124.7,123.7,121.2,75.7,70.4,38.6$, 18.5, 14.0.

HRMS (ESI+) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{1} \mathrm{Br}_{1}[\mathrm{M}+\mathrm{H}]^{+}: 267.0379$; found: 267.0380.
$[\alpha]_{\boldsymbol{D}}^{20}:+154.0\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
HPLC: The enantiomeric ratio was measured by HPLC analysis using Chiralpak IA-3, i.D. 4.6 mm . Heptane $/^{i} \operatorname{PrOH}=99.5: 0.5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=5.57 \mathrm{~min}$ (major) and $t_{R}=6.17 \mathrm{~min}($ minor $), ~ e . r . ~=95: 5 . ~$

(R)-4,5-dimethyl-2-(thiophen-2-yl)-3,6-dihydro-2H-pyran (3g)

Aldehyde $\mathbf{1 g}$ ($11.2 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 a}(16.4 \mathrm{mg}, 0.2$ mmol, 2.0 equiv) were added to a mixture of catalyst $\mathbf{4 c}(1 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (21 mg) in $\mathrm{MeCy}(0.3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for $72 \mathrm{~h} . \mathbf{3 g}$ was obtained as a colorless oil $(9.3 \mathrm{mg}, 0.048 \mathrm{mmol}$, $48 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.25(\mathrm{dd}, J=4.5,1 . \mathrm{Hz}, 1 \mathrm{H}), 6.98-6.96(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{dd}, J$ $=10.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.36(\mathrm{~m}, 1 \mathrm{H})$, $2.21(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.70(\mathrm{br} \mathrm{s}, 3 \mathrm{H}), 1.57(\mathrm{br} \mathrm{s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 146.6,126.8,124.9,124.8,124.0,123.6,72.4,70.2,38.6$, 18.4, 13.9.

HRMS (ESI+) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{O}_{1} \mathrm{~S}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$: 217.0658 ; found: 217.0659.
$[\alpha]_{\boldsymbol{D}}^{\mathbf{2 0}}:+64.0\left(c=0.50, \mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric ratio was measured by HPLC analysis using Chiralpak IA-3, i.D. 4.6 mm . Heptane $/{ }^{i} \operatorname{PrOH}=99.5: 0.5$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=5.52 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R}}=5.96 \mathrm{~min}(\mathrm{minor})$, e.r. $=99.7: 0.3$.

(R)-2-isopropyl-4,5-dimethyl-3,6-dihydro-2H-pyran (3h)

Aldehyde $\mathbf{1 h}$ ($22 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 a}(0.25 \mathrm{~g}, 3.0 \mathrm{mmol}, 10.0$ equiv) were added to a mixture of catalyst $\mathbf{4 d}(1 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (70 mg) in $\mathrm{MeCy}(1.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, then the reaction mixture was
stirred at $-10^{\circ} \mathrm{C}$ for 70 h . 3h was obtained as a colorless oil ($38 \mathrm{mg}, 0.25 \mathrm{mmol}, 83 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 3.92-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.03(\mathrm{ddd}, J=10.4,6.8,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $1.90-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.69(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.44(\mathrm{dt}, J=2.3,1.2 \mathrm{~Hz}$, $3 \mathrm{H}), 0.83(\mathrm{dd}, J=26.5,6.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 124.4,123.5,79.3,70.0,33.7,32.9,18.4,18.1,17.9,13.5$.
HRMS (ESI +) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{O}_{1}[\mathrm{M}+\mathrm{H}]^{+}: 155.1430$; found: 155.1432 .
$[\alpha]_{D}^{\mathbf{2 5}}:+163.2\left(c=0.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
GC: The enantiomeric ratio was measured by GC analysis on a chiral column (Hydrodex-gamma-TBDAc column: 25.0 m ; i.D. 0.25 mm); FID; Temperature: $220^{\circ} \mathrm{C}$ (injector), $350^{\circ} \mathrm{C}$ (detector), $65{ }^{\circ} \mathrm{C}\left(25 \mathrm{~min}\right.$, iso) to $220{ }^{\circ} \mathrm{C}\left(8^{\circ} \mathrm{C} / \mathrm{min}, 5 \mathrm{~min}\right.$ iso); Gas: $\mathrm{H}_{2}(0.50 \mathrm{bar}) ; \mathrm{t}_{\mathrm{R}}=21.81$ $\min ($ minor $)$ and $t_{R}=23.46 \mathrm{~min}($ major $)$, e.r. $=97: 3$.

(S)-2-isobutyl-4,5-dimethyl-3,6-dihydro-2H-pyran (3i)

3i

Aldehyde $\mathbf{1 i}$ ($26 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 a}(0.25 \mathrm{~g}, 3.0 \mathrm{mmol}$, 10.0 equiv) were added to a mixture of catalyst $\mathbf{4 d}(1 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (70 mg) in $\mathrm{MeCy}(1.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 70 h .3 i was obtained as a colorless oil ($46 \mathrm{mg}, 0.27 \mathrm{mmol}$, $91 \%)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 3.91-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{dddd}, J=10.1,8.2,4.8,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.37$ (ddd, $J=14.1,8.2$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.14$ (ddd, $J=13.7,7.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{dd}, J=6.7,2.0 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 124.6,123.7,72.5,69.7,45.2,37.3,24.6,23.1,22.4,18.2$, 13.7.

HRMS (EI) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{1}[\mathrm{M}]: 168.1509$; found: 168.1510.
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{25}:+64.4\left(c=0.30, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
GC: The enantiomeric ratio was measured by GC analysis on a chiral column (CyclodextrinH column: 25.0 m ; i.D. 0.25 mm); FID; Temperature: $220{ }^{\circ} \mathrm{C}$ (injector), $350{ }^{\circ} \mathrm{C}$ (detector), $75^{\circ} \mathrm{C}$ (iso); Gas: $\mathrm{H}_{2}(0.40 \mathrm{bar}) ; \mathrm{t}_{\mathrm{R}}=20.68 \mathrm{~min}($ minor $)$ and $\mathrm{t}_{\mathrm{R}}=21.55 \mathrm{~min}($ major $)$, e.r. $=94: 6$.

3j

Aldehyde $\mathbf{1 j}$ ($26 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 a}(0.25 \mathrm{~g}, 3.0 \mathrm{mmol}$, 10.0 equiv) were added to a mixture of catalyst $\mathbf{4 d}(1 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (70 mg) in $\mathrm{MeCy}(1.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for $48 \mathrm{~h} . \mathbf{3 j}$ was obtained as a colorless oil ($44 \mathrm{mg}, 0.26 \mathrm{mmol}$, $87 \%)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 3.91-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.33$ (dddd, $J=10.4,7.4,5.0,3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.38-1.17$ (m, $6 \mathrm{H}), 0.82(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 124.4,123.4,74.2,69.6,36.7,35.6,27.7,22.8,18.0,13.8$, 13.5.

HRMS (EI) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{1}[\mathrm{M}]: 168.1509$; found: 168.1508 .
$[\boldsymbol{\alpha}]_{D}^{25}:+66.1\left(c=0.36, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
GC: The enantiomeric ratio was measured by GC analysis on a chiral column (CyclodextrinH column: 25.0 m ; i.D. 0.25 mm); FID; Temperature: $230{ }^{\circ} \mathrm{C}$ (injector), $350{ }^{\circ} \mathrm{C}$ (detector), $115{ }^{\circ} \mathrm{C}$ (10 min , iso) to $170^{\circ} \mathrm{C}\left(8^{\circ} \mathrm{C} / \mathrm{min}, 3 \mathrm{~min}\right.$ iso); Gas: $\mathrm{H}_{2}(0.50 \mathrm{bar}) ; \mathrm{t}_{\mathrm{R}}=4.21 \mathrm{~min}$ (minor) and $t_{R}=4.35 \mathrm{~min}$ (major), e.r. $=97: 3$.

(S)-4,5-dimethyl-2-phenethyl-3,6-dihydro-2H-pyran (3k)

3k

Aldehyde $\mathbf{1 k}$ ($40 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 a}(0.25 \mathrm{~g}, 3.0 \mathrm{mmol}$, 10.0 equiv) were added to a mixture of catalyst $\mathbf{4 d}(1 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (70 mg) in $\mathrm{MeCy}(1.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-10^{\circ} \mathrm{C}$ for 48 h . $\mathbf{3 k}$ was obtained as a colorless oil $(47 \mathrm{mg}, 0.22 \mathrm{mmol}$, $73 \%)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.23-7.03(\mathrm{~m}, 5 \mathrm{H}), 3.94-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.34$ (dddd, $J=10.3$, $8.0,4.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.68(\mathrm{ddd}, J=13.7,9.8,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{ddd}, J=13.7,9.6,6.9 \mathrm{~Hz}$, $1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 142.5,128.4,128.2,125.6,124.4,123.4,73.2,69.6,37.5$, 36.6, 31.7, 18.0, 13.5 .

HRMS (EI) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{1}[\mathrm{M}]: 216.1509$; found: 216.1511.
$[\alpha]_{D}^{25}:+80.2\left(c=0.34, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

GC: The enantiomeric ratio was measured by GC analysis on a chiral column (CyclodextrinH column: 25.0 m ; i.D. 0.25 mm); FID; Temperature: $230{ }^{\circ} \mathrm{C}$ (injector), $350{ }^{\circ} \mathrm{C}$ (detector), $125{ }^{\circ} \mathrm{C}$ (45 min , iso) to $170{ }^{\circ} \mathrm{C}\left(8{ }^{\circ} \mathrm{C} / \mathrm{min}, 3 \mathrm{~min}\right.$ iso); Gas: $\mathrm{H}_{2}(0.60 \mathrm{bar}) ; \mathrm{t}_{\mathrm{R}}=37.79 \mathrm{~min}$ $($ minor $)$ and $\mathrm{t}_{\mathrm{R}}=38.98 \mathrm{~min}($ major $)$, e.r. $=96: 4$.

(R)-4,5-dimethyl-2-((R)-1-phenylethyl)-3,6-dihydro-2H-pyran (31)

31

Aldehyde (R)-11 ($13 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 a}(82 \mathrm{mg}, 1.0 \mathrm{mmol}$, 10.0 equiv) were added to a mixture of catalyst $\mathbf{4 d}(1 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (23 mg) in $\mathrm{MeCy}(0.33 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 48 h .31 was obtained as a colorless oil $(9 \mathrm{mg}, 43 \mu \mathrm{~mol}$, $43 \%)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.32-7.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{HlO}), 7.23-7.16(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Hl} 1, \mathrm{H} 9), 4.02$ (br d, $J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, H 5 e q$), 3.95 (d, $J=15.1 \mathrm{~Hz}, 1 \mathrm{H}, H 5 a x$), 3.51 (ddd, $J=10.5,8.1,3.3$ $\mathrm{Hz}, 1 \mathrm{H}, H 1), 2.72(\mathrm{p}, J=8.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}, H 6), 1.84(\mathrm{dd}, J=17.5,10.5 \mathrm{~Hz}, 1 \mathrm{H}, H 2 a x), 1.54-$ 1.50 (m, 6H, H12, H13), 1.45 (d, $J=17.5 \mathrm{~Hz}, 1 \mathrm{H}, H 2 e q$), 1.33 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}, H 7$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 145.0$ (C8), 128.6 (C10), 128.3 (C9), 126.6 (Cl1), 124.6 (C3), 124.0 (C4), 79.1 (C1), 70.4 (C5), 45.8 (C6), 35.3 (C2), 18.5 (C7), 18.4 (C12), 13.9 (C13).

HRMS (EI) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{1}[\mathrm{M}]: 216.1509$; found: 216.1509.
$[\alpha]_{D}^{25}:+46.6\left(c=0.10, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

GC: The enantiomeric ratio was measured by GC analysis on a chiral column (BGB 176 column: 30.0 m ; i.D. 0.25 mm); FID; Temperature: $220{ }^{\circ} \mathrm{C}$ (injector), $220{ }^{\circ} \mathrm{C}$ (detector), $150{ }^{\circ} \mathrm{C}\left(10 \mathrm{~min}\right.$, iso) to $220{ }^{\circ} \mathrm{C}\left(4^{\circ} \mathrm{C} / \mathrm{min}, 3 \mathrm{~min}\right.$ iso $)$; Gas: $\mathrm{H}_{2}(1.00 \mathrm{bar})$; $\mathrm{t}_{\mathrm{R}}=12.54 \mathrm{~min}$ (major), 13.81 min (minor), d.r. syn: $_{\text {:anti }}=29: 1$, e.r. ${ }_{\text {syn }}=>99.5: 0.5$.

(R)-4,5-dimethyl-2-((S)-1-phenylethyl)-3,6-dihydro-2H-pyran (3m)

Aldehyde (S)-11 ($13 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 a}(82 \mathrm{mg}, 1.0 \mathrm{mmol}$, 10.0 equiv) were added to a mixture of catalyst $\mathbf{4 d}(1 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (23 mg) in $\mathrm{MeCy}(0.33 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for $48 \mathrm{~h} . \mathbf{3 m}$ was obtained as a colorless oil ($10 \mathrm{mg}, 48 \mu \mathrm{~mol}$, $48 \%)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 10), 7.25-7.21(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H} 9), 7.21-7.16$ (m, 1H, H11), 3.89 (dm, $J=15.5,2.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}, H 5 a x), 3.82(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}, H 5 e q)$, 3.61 (ddd, $J=10.6,7.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}, H 1), 2.80(\mathrm{p}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}, H 6), 1.97(\mathrm{t}, J=16.8,10.6$ $\mathrm{Hz}, 1 \mathrm{H}, H 2 a x), 1.84(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}, H 2 e q), 1.62(\mathrm{dh}, J=2.1,0.9 \mathrm{~Hz}, 3 \mathrm{H}, H 12), 1.50(\mathrm{~h}$, $J=2.3,1.1 \mathrm{~Hz}, 3 \mathrm{H}, H 13), 1.24(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}, H 7)$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 145.4$ (C8), 128.42 (C10), 128.35 (C9), 126.4 (Cl1), 124.8 (C3), 123.8 (C4), 78.6 (C1), 70.4 (C5), 45.3 (C6), 34.7 (C2), 18.5 (C7), 18.0 (C12), 13.9 (C13).

HRMS (EI) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{1}[\mathrm{M}]: 216.1509$; found: 216.1509.
$[\alpha]_{D}^{25}:+67.2\left(c=0.13, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

GC: The enantiomeric ratio was measured by GC analysis on a chiral column (BGB 176 column: 30.0 m ; i.D. 0.25 mm); FID; Temperature: $220{ }^{\circ} \mathrm{C}$ (injector), $220{ }^{\circ} \mathrm{C}$ (detector), $150{ }^{\circ} \mathrm{C}$ (10 min , iso) to $220{ }^{\circ} \mathrm{C}\left(4^{\circ} \mathrm{C} / \mathrm{min}, 3 \mathrm{~min}\right.$ iso $)$; Gas: H_{2} (1.00 bar); $\mathrm{t}_{\mathrm{R}}=12.54 \mathrm{~min}$ $($ minor1 $), 12.87 \mathrm{~min}($ minor2 $)$ and $\mathrm{t}_{\mathrm{R}}=13.56 \mathrm{~min}($ major $)$, d.r. $\mathrm{r}_{\text {syn:anti }}=1: 31$, e. $\mathrm{r}_{\text {anti }}=>99.5: 0.5$.

(2R)-4,5-dimethyl-2-(1-phenylethyl)-3,6-dihydro-2H-pyran (3n)

Aldehyde rac-11 ($40 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 a}(0.25 \mathrm{~g}, 3.0 \mathrm{mmol}$, 10.0 equiv) were added to a mixture of catalyst $\mathbf{4 d}(1 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (70 mg) in $\mathrm{MeCy}(1.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 48 h . $\mathbf{3 n}$ was obtained as a colorless oil $(29 \mathrm{mg}, 0.14 \mathrm{mmol}$, $45 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.23-7.07(\mathrm{~m}, 10 \mathrm{H}), 3.97-3.71(\mathrm{~m}, 4 \mathrm{H}), 3.52(\mathrm{ddd}, J=10.6$, $7.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{ddd}, J=10.5,8.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.60(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.83(\mathrm{~m}, 2 \mathrm{H})$,
$1.80-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.33(\mathrm{~m}, 10 \mathrm{H}), 1.24(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 145.0,144.6,128.2,128.0,127.94,127.90,126.2,126.0$, $124.4,124.2,123.5,123.4,78.7,78.2,70.0,45.4,44.9,34.9,34.2,18.12,18.10,18.0,17.9$, 17.6, 13.5, 13.4 .

HRMS (EI) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{1}[\mathrm{M}]: 216.1509$; found: 216.1508 .
GC: The enantiomeric ratio was measured by GC analysis on a chiral column (BGB 176 column: 30.0 m ; i.D. 0.25 mm); FID; Temperature: $220{ }^{\circ} \mathrm{C}$ (injector), $220{ }^{\circ} \mathrm{C}$ (detector), $150{ }^{\circ} \mathrm{C}$ (10 min , iso) to $220{ }^{\circ} \mathrm{C}\left(4^{\circ} \mathrm{C} / \mathrm{min}, 3 \mathrm{~min}\right.$ iso $)$; Gas: $\mathrm{H}_{2}(1.00 \mathrm{bar})$; $\mathrm{t}_{\mathrm{R}}=12.54 \mathrm{~min}$ (major 1), $12.88 \mathrm{~min}(\operatorname{minor} 1)$ and $\mathrm{t}_{\mathrm{R}}=13.56 \mathrm{~min}$ (major 2), $13.80 \mathrm{~min}($ minor 2), d.r.syn:anti $=1: 1.2$, e.r. syn $=98: 2$, e.r. $\mathrm{r}_{\text {anti }}=96: 4$.

(S)-4,5-dimethyl-2-nonyl-3,6-dihydro-2H-pyran (3o)

30

Aldehyde $\mathbf{1 0}$ ($47 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 a}(0.25 \mathrm{~g}, 3.0 \mathrm{mmol}$, 10.0 equiv) were added to a mixture of catalyst $\mathbf{4 d}(1 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (70 mg) in $\mathrm{MeCy}(1.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 48 h . $\mathbf{3 o}$ was obtained as a colorless oil $(67 \mathrm{mg}, 0.28 \mathrm{mmol}$, 94\%).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 3.91-3.75(\mathrm{~m}, 2 \mathrm{H}), 3.33$ (dddd, $J=10.4,7.2,4.9,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.86-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.45-1.39(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.29$ $(\mathrm{m}, 2 \mathrm{H}), 1.24-1.16(\mathrm{~m}, 13 \mathrm{H}), 0.80(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 126.3,125.4,76.1,71.5,38.6,37.8,33.8,31.63,31.55,31.5$, 31.2, 27.4, 24.6, 20.0, 15.8, 15.4.

HRMS (EI) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{16} \mathrm{H}_{30} \mathrm{O}_{1}[\mathrm{M}]: 238.2291$; found: 238.2288.
$[\alpha]_{D}^{25}:+118.0\left(c=0.36, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
GC: The enantiomeric ratio was measured by GC analysis on a chiral column (CyclodextrinH column: 25.0 m ; i.D. 0.25 mm); FID; Temperature: $220{ }^{\circ} \mathrm{C}$ (injector), $350{ }^{\circ} \mathrm{C}$ (detector), $130{ }^{\circ} \mathrm{C}$ (40 min , iso); Gas: $\mathrm{H}_{2}(0.50 \mathrm{bar})$; $\mathrm{t}_{\mathrm{R}}=34.49 \mathrm{~min}$ (minor) and $\mathrm{t}_{\mathrm{R}}=35.43 \mathrm{~min}$ (major), e.r. $=97: 3$.

S9

A colorless solid.

$$
\boldsymbol{R}_{\mathbf{f}} 0.40 \text { (n-pentane/ } \mathrm{CH}_{2} \mathrm{Cl}_{2}, 4: 1 \text {). }
$$

${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 4.83(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.35(\mathrm{~m}$, $2 \mathrm{H}), 1.33-1.22(\mathrm{~m}, 12 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl_{3}): $\delta 101.7,34.4,31.9,29.52,29.50,29.4,29.3,23.6,22.7,14.1$.
HRMS (ESI+) (m / z) : calculated for $\mathrm{C}_{30} \mathrm{H}_{60} \mathrm{O}_{3} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$: 491.4435; found: 491.4438.

(S)-2-(6-bromohexyl)-4,5-dimethyl-3,6-dihydro-2H-pyran (3p)

Aldehyde $\mathbf{1 p}$ ($58 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 a}(0.25 \mathrm{~g}, 3.0 \mathrm{mmol}$, 10.0 equiv) were added to a mixture of catalyst $\mathbf{4 d}(1 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (70 mg) in $\mathrm{MeCy}(1.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for $48 \mathrm{~h} . \mathbf{3 p}$ was obtained as a colorless oil ($66 \mathrm{mg}, 0.24 \mathrm{mmol}$, $80 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 3.88(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-$ $3.23(\mathrm{~m}, 3 \mathrm{H}), 1.85-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.46-1.38(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.31(\mathrm{~m}, 4 \mathrm{H}), 1.29-$ $1.21(\mathrm{~m}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 126.3,125.3,76.0,71.6,38.6,37.6,36.1,34.7,30.7,30.0$, 27.2, 20.0, 15.4 .

HRMS (EI) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{1} \mathrm{Br}_{1}$ [M]: 274.0927; found: 274.0929.
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{25}:+85.8\left(c=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
GC: The enantiomeric ratio was measured by GC analysis on a chiral column (CyclodextrinH column: 25.0 m ; i.D. 0.25 mm); FID; Temperature: $220{ }^{\circ} \mathrm{C}$ (injector), $350{ }^{\circ} \mathrm{C}$ (detector), $120{ }^{\circ} \mathrm{C}\left(120 \mathrm{~min}\right.$, iso); Gas: $\mathrm{H}_{2}(0.50 \mathrm{bar}) ; \mathrm{t}_{\mathrm{R}}=102.41 \mathrm{~min}($ minor $)$ and $\mathrm{t}_{\mathrm{R}}=104.94 \mathrm{~min}$ (major), e.r. $=96: 4$.

Aldehyde $\mathbf{1 q}(70 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 a}(0.25 \mathrm{~g}, 3.0 \mathrm{mmol}$, 10.0 equiv) were added to a mixture of catalyst $\mathbf{4 d}(1 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (70 mg) in $\mathrm{MeCy}(1.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for $48 \mathrm{~h} . \mathbf{3 q}$ was obtained as a colorless oil $(79 \mathrm{mg}, 0.25 \mathrm{mmol}$, $83 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.29-7.12(\mathrm{~m}, 5 \mathrm{H}), 4.37(\mathrm{~s}, 2 \mathrm{H}), 3.93-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.36(\mathrm{t}$, $J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.31$ (dddd, $J=10.5,7.3,3.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.73-1.66(\mathrm{~m}$, $1 \mathrm{H}), 1.53(\mathrm{td}, J=2.0,1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{dt}, J=8.1,6.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{dt}, J=2.5,1.2 \mathrm{~Hz}$, 4H), 1.33-1.17 (m, 9H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): δ 139.1, 128.2, 127.5, 127.3, 125.4, 124.4, 123.5, 74.2, 72.7, $70.5,69.6,36.7,35.9,30.1,29.8,29.7,29.4,26.2,25.5,18.0,13.5$.

HRMS (ESI+) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{2} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$: 339.2294; found: 339.2296.
$[\alpha]_{D}^{25}:+69.9\left(c=0.50, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
HPLC: The enantiomeric ratio was measured by HPLC analysis using Chiralpak IA-3, i.D. 4.6 mm . Heptane $/{ }^{i} \operatorname{PrOH}=98: 2$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=4.86 \mathrm{~min}$ (minor) and $t_{R}=5.63 \mathrm{~min}$ (major). e.r. $=95: 5$.
(S)-2-(dec-9-en-1-yl)-4,5-dimethyl-3,6-dihydro-2H-pyran (3r)

Aldehyde $\mathbf{1 r}$ ($52 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 a}(0.25 \mathrm{~g}, 3.0 \mathrm{mmol}$, 10.0 equiv) were added to a mixture of catalyst $\mathbf{4 d}(1 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (70 mg) in $\mathrm{MeCy}(1.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 48 h . $\mathbf{3 r}$ was obtained as a colorless oil $(68 \mathrm{mg}, 0.27 \mathrm{mmol}$, $89 \%)$.
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 5.74(\mathrm{ddt}, J=16.9,10.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-4.76(\mathrm{~m}, 2 \mathrm{H})$, 3.94-3.72 (m, 2H), 3.33 (dddd, $J=10.3,7.2,4.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.87-1.76$ $(\mathrm{m}, 1 \mathrm{H}), 1.71(\mathrm{~d}, J=16.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.58-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 4 \mathrm{H}), 1.36-1.25(\mathrm{~m}, 4 \mathrm{H}), 1.25-$ $1.16(\mathrm{~m}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 139.3,124.4,123.5,113.8,74.2,69.6,36.7,35.9,33.8,29.7$, 29.6, 29.4, 29.1, 29.0, 25.5, 18.0, 13.5.

HRMS (ESI+) (m / z): calculated for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{O}_{1}[\mathrm{M}+\mathrm{H}]^{+}$: 251.2369; found: 251.2373.
$[\alpha]_{D}^{25}:+59.5\left(c=0.26, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
GC: The enantiomeric ratio was measured by GC analysis on a chiral column (CyclodextrinH column: 25.0 m ; i.D. 0.25 mm); FID; Temperature: $220{ }^{\circ} \mathrm{C}$ (injector), $350{ }^{\circ} \mathrm{C}$ (detector), $130{ }^{\circ} \mathrm{C}$ (60 min , iso); Gas: $\mathrm{H}_{2}(0.50 \mathrm{bar}) ; \mathrm{t}_{\mathrm{R}}=52.26 \mathrm{~min}$ (minor) and $\mathrm{t}_{\mathrm{R}}=53.72 \mathrm{~min}$ (major), e.r. $=97: 3$.
(3S,5S,8R,9S,10S,13R,14S,17R)-10,13-dimethyl-17-((R)-5-methylhexan-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-3-yl 9-((S)-4,5-dimethyl-3,6-dihydro-2H-pyran-2-yl)nonanoate (3s)

Aldehyde 1s ($55.7 \mathrm{mg}, 0.1 \mathrm{mmol}$, 1.0 equiv) and diene $\mathbf{2 a}$ (82 mg , $1.0 \mathrm{mmol}, 10.0$ equiv) were added to a mixture of catalyst
$\mathbf{4 d}(1 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves $(21 \mathrm{mg})$ in $\mathrm{MeCy}(0.3 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-10{ }^{\circ} \mathrm{C}$ for 72 h .3 s was obtained as a colorless solid $(52 \mathrm{mg}, 0.081$ mmol, 81\%).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 4.66$ (hept, $\left.J=5.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.96(\mathrm{td}, J=15.4,0.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.87(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.38(\mathrm{~m}, 1 \mathrm{H}), 2.23(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{td}, J=12.6,3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.92-1.60(\mathrm{~m}, 10 \mathrm{H}), 1.60-1.46(\mathrm{~m}, 10.8 \mathrm{H}), 1.44-0.96(\mathrm{~m}, 30.9 \mathrm{H}), 0.91(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}), 0.86(\mathrm{dd}, J=6.6,2.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.83(\mathrm{~s}, 3 \mathrm{H}), 0.69-0.61(\mathrm{~m}, 4 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 173.5,124.8,123.9,74.6,73.7,70.1,56.9,56.8,54.7,45.1$, $43.0,40.5,39.9,37.21,37.19,36.6,36.32,36.26,35.93,35.88,35.1,34.5,32.5,30.1,29.9$, 29.7, 29.5, 29.1, 28.6, 28.5, 28.0, 25.9, 25.5, 24.6, 24.3, 23.0, 22.7, 21.6, 18.9, 18.5, 14.0, 12.4, 12.3.

HRMS (ESI+) (m / z) : calculated for $\mathrm{C}_{43} \mathrm{H}_{74} \mathrm{O}_{3} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$: 661.5530; found: 661.5540.
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{2 0}}:+32.0\left(c=0.50, \mathrm{CHCl}_{3}\right)$.

HPLC: The diastereomeric ratio was measured by Heart-Cut-HPLC analysis using Chiralpak OD-3, i.D. 4.6 mm . Heptane $/$ $\operatorname{PrOH}=99: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=204 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=3.96$ \min (major) and $\mathrm{t}_{\mathrm{R}}=4.66 \mathrm{~min}($ minor $)$, d.r. $=19: 1$.

(R)-4-methyl-2-phenyl-3,6-dihydro-2H-pyran (3t)

Aldehyde 1a ($10.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 b}(13.6 \mathrm{mg}, 0.2$ mmol, 2.0 equiv) were added to a mixture of catalyst $\mathbf{4 c}(1 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (21 mg) in $\mathrm{MeCy}(0.3 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for 24 h .3 t was obtained as a colorless oil $(17 \mathrm{mg}, 0.097 \mathrm{mmol}$, 97\%).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.38-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{tt}, J=8.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{br} \mathrm{s}$, $1 \mathrm{H}), 4.51(\mathrm{dd}, J=10.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.28(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~d}, J=16.8$ Hz, 1H), 1.75 (br s, 3H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 143.4,132.5,128.6,127.7,126.2,120.2,76.1,66.8,38.1$, 23.0.

HRMS (ESI+) (m / z) : calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}: 197.0937$; found: 197.0937.

$$
[\alpha]_{D}^{20}:+161.0\left(c=0.50, \mathrm{CHCl}_{3}\right) .
$$

GC: The enantiomeric ratio was measured by GC analysis on a chiral column (Hydrodex-gamma-TBDAc column: 25.0 m ; i.D. 0.25 mm); FID; Temperature: $220^{\circ} \mathrm{C}$ (injector), $350^{\circ} \mathrm{C}$ (detector), $115{ }^{\circ} \mathrm{C}$ (35 min , iso); Gas: H_{2} (0.53 bar); $\mathrm{t}_{\mathrm{R}}=18.86 \mathrm{~min}$ (major) and $\mathrm{t}_{\mathrm{R}}=19.87 \mathrm{~min}$ $($ minor $)$, e.r. $=98: 2$.

(S)-2,4,5-trimethyl-3,6-dihydro-2H-pyran (3u)

3u

Acetic acid ($0.05 \mathrm{mmol}, 0.2 \mathrm{M}$ in MeCy), aldehyde $\mathbf{1 u}(0.1 \mathrm{mmol}, 1.3 \mathrm{M}$ in $\mathrm{MeCy})$, and diene $\mathbf{2 b}(0.1 \mathrm{~g}, 1.5 \mathrm{mmol})$ were added to a mixture of catalyst $\mathbf{4 d}$ (2 $\mathrm{mol} \%$) and $5 \AA$ molecular sieves (23 mg) at $-78^{\circ} \mathrm{C}$. The reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for $72 \mathrm{~h} .3 \mathbf{u}$ was obtained in 45% yield, determined by ${ }^{1} \mathrm{H}$ NMR analysis using internal standard because of the low boiling point of the compound ${ }^{33}$.

HRMS (EI) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{O}_{1}[\mathrm{M}]$: 112.0883; found: 112.0885.

GC: The enantiomeric ratio was measured by GC analysis on a chiral column (Ivadex-1 column: 25.0 m ; i.D. 0.25 mm); FID; Temperature: $220^{\circ} \mathrm{C}$ (injector), $220^{\circ} \mathrm{C}$ (detector), $50^{\circ} \mathrm{C}$ (20 min , iso); Gas: $\mathrm{He}(1.35 \mathrm{bar}) ; \mathrm{t}_{\mathrm{R}}=4.29 \mathrm{~min}($ major $)$ and $\mathrm{t}_{\mathrm{R}}=4.74 \mathrm{~min}($ minor $)$, e.r. $=$ 90:10.

(S)-2-isobutyl-4-methyl-3,6-dihydro-2H-pyran (3v)

$3 v$

Aldehyde $\mathbf{1 i}$ ($26 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 b}(0.31 \mathrm{~g}, 4.5 \mathrm{mmol}, 15$ equiv) were added to a mixture of catalyst $\mathbf{4 d}(1 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (70 mg) in $\mathrm{MeCy}(1.0 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for $70 \mathrm{~h} . \mathbf{3 v}$ was obtained as a colorless oil ($37 \mathrm{mg}, 0.24 \mathrm{mmol}, 81 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 5.34-5.29(\mathrm{~m}, 1 \mathrm{H}), 4.02-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{dddd}, J=9.9$, $8.3,4.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.76(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.39$ (ddd, $J=14.3$, $8.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.15$ (ddd, $J=13.7,8.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.82(\mathrm{dd}, J=6.7,2.8 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$) $\delta 132.0,119.7,71.9,65.7,45.1,36.3,24.4,22.9,22.7,22.2$.
HRMS (EI) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{1}[\mathrm{M}]: 154.1352$; found: 154.1351.
$[\boldsymbol{\alpha}]_{D}^{25}:+31.3\left(c=0.33, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

GC: The enantiomeric ratio was measured by GC analysis on a chiral column (CyclodextrinH column: 25.0 m ; i.D. 0.25 mm); FID; Temperature: $230{ }^{\circ} \mathrm{C}$ (injector), $350{ }^{\circ} \mathrm{C}$ (detector), $90^{\circ} \mathrm{C}\left(15 \mathrm{~min}\right.$, iso) to $170^{\circ} \mathrm{C}\left(8^{\circ} \mathrm{C} / \mathrm{min}, 3 \mathrm{~min}\right.$ iso) ; Gas: H_{2} (0.40 bar); $\mathrm{t}_{\mathrm{R}}=6.06 \mathrm{~min}$ (minor) and $\mathrm{t}_{\mathrm{R}}=7.22 \mathrm{~min}$ (major), e.r. $=94: 6$.

(R)-4,6,6-trimethyl-2-phenyl-3,6-dihydro-2H-pyran (3w)

Aldehyde $\mathbf{1 a}$ ($10.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 c}(41 \mathrm{mg}$, $0.3 \mathrm{mmol}, 3.0$ equiv) were added to a mixture of catalyst $\mathbf{4 c}(2$ $\mathrm{mol} \%$) and $5 \AA$ molecular sieves (21 mg) in $\mathrm{MeCy}(0.3 \mathrm{~mL})$ at $78{ }^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-40^{\circ} \mathrm{C}$ for 4 days. 3 w was obtained as a colorless oil ($8.7 \mathrm{mg}, 0.036 \mathrm{mmol}, 36 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.38-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.27(\mathrm{tt}, J=6.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.51(\mathrm{q}, J=$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{ddt}, J=8.2,2.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=10.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{p}, J=$ $1.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.11(\mathrm{~m}, 3 \mathrm{H}), 2.07-2.04(\mathrm{~m}, 2 \mathrm{H}), 1.69(\mathrm{~d}, J=0.9 \mathrm{~Hz}$, 3 H), 1.62 (br s, 3H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 143.5,136.2,132.1,128.7,128.6,127.6,126.2,124.3,119.9$, 76.1, 66.8, 37.3, 36.7, 26.4, 25.8, 17.8.

HRMS (ESI+) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$: 265.1563; found: 265.1562.
$[\alpha]_{D}^{20}:+36.0\left(c=0.45, \mathrm{CHCl}_{3}\right)$.
GC: The enantiomeric ratio was measured by GC analysis on a chiral column (Hydrodex-gamma-TBDAc column: 25.0 m ; i.D. 0.25 mm); FID; Temperature: $220{ }^{\circ} \mathrm{C}$ (injector), $350{ }^{\circ} \mathrm{C}$ (detector), $130{ }^{\circ} \mathrm{C}\left(140 \mathrm{~min}\right.$, iso); Gas: $\mathrm{H}_{2}(0.50 \mathrm{bar})$; $\mathrm{t}_{\mathrm{R}}=114.52 \mathrm{~min}($ major $)$ and $\mathrm{t}_{\mathrm{R}}=117.41$ \min (minor), e.r. = 96:4.

(R)-4,6,6-trimethyl-2-phenyl-3,6-dihydro-2H-pyran (3x)

Aldehyde 1a ($10.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 d}(48 \mathrm{mg}, 0.5 \mathrm{mmol}$, 5.0 equiv) were added to a mixture of catalyst $\mathbf{4 d}(2 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (700 mg) in $\mathrm{MeCy}(10.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-45^{\circ} \mathrm{C}$ for $48 \mathrm{~h} . \mathbf{3 x}$ was obtained as a colorless oil ($16.5 \mathrm{mg}, 0.082 \mathrm{mmol}, 82 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.40-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{dt}, J=7.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{tt}, J$ $=6.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{t}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{dd}, J=10.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.18-2.11(\mathrm{~m}$, $1 \mathrm{H}), 2.01(\mathrm{dd}, J=16.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.72$ (br s, 3 H$), 1.29(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 143.9,130.6,129.1,128.6,127.5,126.5,73.7,71.1,37.8$, 30.1, 26.2, 23.1.

HRMS (ESI+) (m / z) : calculated for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$: 225.1250; found: 225.1248.
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{20}:+80.0\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
GC: The enantiomeric ratio was measured by GC analysis on a chiral column (Cyclodextrin-H column: 25.0 m ; i.D. 0.25 mm); FID; Temperature: $220^{\circ} \mathrm{C}$ (injector), $350{ }^{\circ} \mathrm{C}$ (detector), $90^{\circ} \mathrm{C}$
(60 min , iso); Gas: $\mathrm{H}_{2}(0.50 \mathrm{bar}) ; \mathrm{t}_{\mathrm{R}}=41.98 \mathrm{~min}($ minor $)$ and $\mathrm{t}_{\mathrm{R}}=45.20 \mathrm{~min}($ major $)$, e.r. $=$ 96:4.
(R)-2-(4-bromophenyl)-4,6,6-trimethyl-3,6-dihydro-2H-pyran (3y)

Aldehyde $\mathbf{1 f}(18.5 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 d}(48 \mathrm{mg}, 0.5$ $\mathrm{mmol}, 5.0$ equiv) were added to a mixture of catalyst $\mathbf{4 d}(2 \mathrm{~mol} \%)$ and 5 \AA molecular sieves (700 mg) in $\mathrm{MeCy}(10.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-45{ }^{\circ} \mathrm{C}$ for 4 days. The titled compound 3y was obtained as a colorless oil ($23.4 \mathrm{mg}, 0.083 \mathrm{mmol}, 83 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.47(\mathrm{td}, J=8.5,2.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{td}, J=8.3,2.2 \mathrm{~Hz}, 2 \mathrm{H})$, $5.41(\mathrm{p}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=10.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.11-2.05(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{dd}, J=$ $16.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.71$ (br s, 3 H), 1.28 (d, $J=2.0 \mathrm{~Hz}, 6 \mathrm{H}$).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 143.1,131.6,130.3,129.1,128.3,121.1,73.9,70.5,37.8$, 30.0, 26.2, 23.1.

HRMS (ESI+) (m / z): calculated for $\mathrm{C}_{14} \mathrm{H}_{17} \mathrm{O}_{1} \mathrm{Br}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}: 303.0355$; found: 303.0356.
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{2 0}}:+79.0\left(c=0.90, \mathrm{CHCl}_{3}\right)$.
GC: The enantiomeric ratio was measured by GC analysis analysis on a chiral column (BGB176 column: 30.0 m); FID; Temperature: $230^{\circ} \mathrm{C}$ (injector), $350^{\circ} \mathrm{C}$ (detector), $160^{\circ} \mathrm{C}(55 \mathrm{~min}$, 8 min , iso); $220{ }^{\circ} \mathrm{C}$ (3 min , iso); Gas: $\mathrm{H}_{2}(0.50 \mathrm{bar}) ; \mathrm{t}_{\mathrm{R}}=31.01 \mathrm{~min}($ minor $)$ and $\mathrm{t}_{\mathrm{R}}=31.97$ \min (major), e.r. $=95: 5$.

(2R,6S)-6-methyl-2-phenyl-3,6-dihydro-2H-pyran (3z)

Aldehyde 1a ($21.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 e}(136 \mathrm{mg}, 2.0 \mathrm{mmol}$, 10.0 equiv) were added to a mixture of catalyst $\mathbf{4 d}(2 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (42 mg) in $\mathrm{MeCy}(0.6 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-20^{\circ} \mathrm{C}$ for $72 \mathrm{~h} . \mathbf{3 z}$ was obtained as a colorless oil $(7.0$ $\mathrm{mg}, 0.04 \mathrm{mmol}, 20 \%)$.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.38-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.26(\mathrm{tt}, J=7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.93-5.88$ $(\mathrm{m}, 1 \mathrm{H}), 5.78(\mathrm{qd}, J=12.2,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.41(\mathrm{~m}, 1 \mathrm{H}), 2.26-$ $2.23(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 143.4,131.6,128.6,127.6,126.6,124.1,69.9,69.7,32.6$, 20.2.

HRMS (EI) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{1}[\mathrm{M}]: 174.1045$; found: 174.1042.
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{20}:+124.0\left(c=0.15, \mathrm{CHCl}_{3}\right)$.
GC: The enantiomeric ratio was measured by GC analysis on a chiral column (Hydrodex-gamma-TBDAc column: 25.0 m ; i.D. 0.25 mm); FID; Temperature: $220{ }^{\circ} \mathrm{C}$ (injector), $350{ }^{\circ} \mathrm{C}$ (detector), $110{ }^{\circ} \mathrm{C}$ (30 min , iso); $230{ }^{\circ} \mathrm{C}(8 \mathrm{~min})$; Gas: $\mathrm{H}_{2}(0.50 \mathrm{bar})$; $\mathrm{t}_{\mathrm{R}}=22.14 \mathrm{~min}$ (minor) and $\mathrm{t}_{\mathrm{R}}=23.39 \mathrm{~min}$ (major), e.r. $=99: 1$.

6-methyl-3,6-dihydro-2H-pyran (S12)

Paraformaldehyde ($3 \mathrm{mg}, 0.1 \mathrm{mmol}$), and diene $\mathbf{2 e}(68 \mathrm{mg}, 1.0 \mathrm{mmol})$ were added to a mixture of catalyst $\mathbf{4 c}(1 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (21 mg) in MeCy (0.3 mL) at $22{ }^{\circ} \mathrm{C}$. The reaction mixture was stirred at $22{ }^{\circ} \mathrm{C}$ for 48 h . $\mathbf{S 1 2}$ was obtained in 18% yield, determined by ${ }^{1} \mathrm{H}$ NMR analysis using internal standard because of the low boiling point of the compound ${ }^{34}$. Preliminary characterization:

HRMS (EI) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{O}_{1}[\mathrm{M}+\mathrm{H}]^{+}$: 99.0804; found: 99.0805.
GC: The enantiomeric ratio was measured by GC analysis on a chiral column (Lipodex-A column: 30.0 m ; i.D. 0.25 mm); FID; Temperature: $200^{\circ} \mathrm{C}$ (injector), $350{ }^{\circ} \mathrm{C}$ (detector), $35^{\circ} \mathrm{C}$ (10 min, iso); Gas: $\mathrm{H}_{2}(0.4 \mathrm{bar}) ; \mathrm{t}_{\mathrm{R}}=4.05 \mathrm{~min}($ major $)$ and $\mathrm{t}_{\mathrm{R}}=4.25 \mathrm{~min}($ minor $)$, e.r. $=50: 50$.

(2R,6S)-6-hexyl-2-phenyl-3,6-dihydro-2H-pyran (3aa)

Aldehyde 1a ($10.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 f}$ (138 mg , $1.0 \mathrm{mmol}, 10.0$ equiv) were added to a mixture of catalyst $\mathbf{4 e}(0.5$ $\mathrm{mol} \%$) and $5 \AA$ molecular sieves (21 mg) in $\mathrm{MeCy}(0.6 \mathrm{~mL}$) at $78{ }^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-30^{\circ} \mathrm{C}$ for 48 h . 3aa
was obtained as a colorless oil ($17.5 \mathrm{mg}, 0.0716 \mathrm{mmol}, 72 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.38(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{tt}, J=$ $7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.93-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.81(\mathrm{qd}, J=10.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.23-4.20 (m, 1H), 2.28-2.25 (m, 2H), 1.76-1.69 (m, 1H), 1.57-1.44 (m, 3H), 1.39-1.29 (m, $8 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 143.5,130.7,128.6,127.6,126.6,124.2,74.0,69.6,34.4$, 32.5, 32.2, 29.7, 26.5, 23.1, 14.3 .

HRMS (ESI+) (m / z): calculated for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$: 267.1719; found: 267.1720.
$[\alpha]_{D}^{\mathbf{2 5}}:+142.0\left(c=0.71, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
HPLC: The enantiomeric ratio was measured by HPLC analysis using 150 mm 3 -AmyCoat RP, i.D. 4.6 mm . Acetonitrile $/ \mathrm{H}_{2} \mathrm{O}=50: 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=39.28$ \min (minor) and $t_{R}=47.05 \mathrm{~min}$ (major), e.r. $=99.8: 0.2$.

(R)-6-cyclohexyl-2-phenyl-3,6-dihydro-2H-pyran (3ab)

Aldehyde $\mathbf{1 a}$ ($10.6 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 g}$ ($136 \mathrm{mg}, 1.0 \mathrm{mmol}$, 10.0 equiv) were added to a mixture of catalyst $4 \mathbf{e}(0.5 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (21 mg) in $\mathrm{MeCy}(0.6 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-30^{\circ} \mathrm{C}$ for 72 h . 3ab was obtained as a colorless oil (trans-diastereomer: $13.1 \mathrm{mg}, 0.0541 \mathrm{mmol}, 54.1 \%$; cis-diastereomer: 3.0 mg , $0.0124 \mathrm{mmol}, 12.4 \%)$.

trans-diastereomer:

${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.39-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{dt}, J=7.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{tt}, J$ $=6.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.97-5.91(\mathrm{~m}, 2 \mathrm{H}), 4.70(\mathrm{q}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=8.1,1.1 \mathrm{~Hz}, 1 \mathrm{H})$, 2.33-2.21 (m, 2H), 2.01-1.94 (m, 1H), 1.78-1.63 (m, 6H), 1.30-0.97 (m, 6H).
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 143.5,129.1,128.6,127.5,126.6,124.7,78.2,70.4,42.5$, 32.3, 30.1, 29.8, 26.9, 26.6, 26.5.

HRMS (EI) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{1}[\mathrm{M}]: 242.1665$; found: 242.1667.
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{2 5}}:+161.0\left(c=0.49, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

HPLC: The enantiomeric ratio was measured by HPLC analysis using 150 mm 3-AmyCoat RP, i.D. 4.6 mm . Acetonitrile $/ \mathrm{H}_{2} \mathrm{O}=50: 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=31.65$ $\min ($ minor $)$ and $t_{R}=33.78 \mathrm{~min}($ major $)$, e.r. $=99.8: 0.2$.
cis-diastereomer:
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.38-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.33(\mathrm{dt}, J=7.4,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{tt}, J$ $=6.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.94-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.78-5.74(\mathrm{~m}, 1 \mathrm{H}), 4.57(\mathrm{q}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.10$ $(\mathrm{m}, 1 \mathrm{H}), 2.26-2.12(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.32-1.14(\mathrm{~m}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 144.0,129.5,128.5,127.5,126.1,125.5,79.9,75.7,43.4$, 33.9, 29.2, 28.3, 27.1, 26.87, 26.86.

HRMS (ESI+) (m / z) : calculated for $\mathrm{C}_{17} \mathrm{H}_{22} \mathrm{O}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}: 265.1563$; found: 265.1565.
$[\alpha]_{D}^{25}:+39.0\left(c=0.11, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
HPLC: The enantiomeric ratio was measured by HPLC analysis using 150 mm 3 -AmyCoat RP , i.D. 4.6 mm . Acetonitrile $/ \mathrm{H}_{2} \mathrm{O}=50: 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=40.46$ $\min ($ minor $)$ and $t_{R}=42.39 \mathrm{~min}($ major $)$, e.r. $=97: 3$.

(2R,6R)-4,6-dimethyl-2-phenyl-3,6-dihydro-2H-pyran (3ac)

Aldehyde 1a ($21.2 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 h}(82 \mathrm{mg}, 1.0$ mmol, 5.0 equiv) were added to a mixture of catalyst $\mathbf{4 d}(1 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (140 mg) in $\mathrm{MeCy}(2.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-60^{\circ} \mathrm{C}$ for 24 h . 3ac was obtained as a colorless oil ($30.5 \mathrm{mg}, 0.162 \mathrm{mmol}, 81 \%)^{21}$.
${ }^{1} \mathbf{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.40-7.23(\mathrm{~m}, 5 \mathrm{H}), 5.42-5.40(\mathrm{~m}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=10.5$, $3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.39-4.30(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{td}, J=16.8,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.73$ $(\mathrm{m}, 3 \mathrm{H}), 1.25(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 143.6,132.5,128.6,127.6,126.3,125.6,76.4,72.0,38.1$, 22.9, 21.8.

HRMS (EI) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{1}[\mathrm{M}]: 188.1196$; found: 188.1195.
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{2 0}}:+81.0\left(c=0.39, \mathrm{CHCl}_{3}\right)$.

GC: The enantiomeric ratio was measured by GC analysis on a chiral column (Hydrodex-gamma-TBDAc column: 25.0 m); FID; Temperature: $230{ }^{\circ} \mathrm{C}$ (injector), $350{ }^{\circ} \mathrm{C}$ (detector), $100{ }^{\circ} \mathrm{C}$ (50 min , iso, 8 min); $220^{\circ} \mathrm{C}(3 \mathrm{~min})$; Gas: $\mathrm{H}_{2}(0.60 \mathrm{bar}) ; \mathrm{t}_{\mathrm{R}}=38.19 \mathrm{~min}($ minor $)$ and $t_{R}=39.59 \mathrm{~min}$ (major), e.r. $=96: 4$.
(2R,8aR)-4-methyl-2-phenyl-3,5,6,7,8,8a-hexahydro-2H-chromene (3ad)

Aldehyde 1a ($10.6 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 i}(61 \mathrm{mg}, 0.50$ mmol, 5.0 equiv) were added to a mixture of catalyst $\mathbf{4 f}(1 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (70 mg) in $\mathrm{MeCy}(1.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-60^{\circ} \mathrm{C}$ for 24 h . 3ad was obtained as a colorless oil ($19.4 \mathrm{mg}, 0.085 \mathrm{mmol}, 85 \%$).
${ }^{1} \mathbf{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 7.38-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.26(\mathrm{tt}, J=7.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J$ $=10.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{qd}, J=14.2,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.26(\mathrm{~m}$, $1 \mathrm{H}), 2.13-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{qd}, J=16.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.73(\mathrm{~m}$, $1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{tq}, J=13.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.32(\mathrm{dq}, J=11.7$, $3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{tq}, J=13.0,3.8 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 143.7,132.4,128.6,127.5,126.3,122.3,77.2,75.3,39.7$, 35.0, 27.4, 27.2, 25.0, 18.3.

HRMS (EI) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{1}[\mathrm{M}]: 228.1509$; found: 228.1510 .
$[\alpha]_{D}^{25}:+144.0\left(c=0.86, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.
HPLC: The enantiomeric ratio was measured by HPLC analysis using 150 mm 3-AmyCoat RP, i.D. 4.6 mm . Acetonitrile $/ \mathrm{H}_{2} \mathrm{O}=50: 50$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=27.12$ $\min ($ minor $)$ and $\mathrm{t}_{\mathrm{R}}=29.22 \mathrm{~min}($ major $)$, e.r. $=$ 95:5.

(2R,6S)-4,6-di-tert-butyl-2-phenyl-3,6-dihydro-2H-pyran (3ae)

Aldehyde $\mathbf{1 a}$ ($10.6 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 j}$ ($83 \mathrm{mg}, 0.50$ mmol, 5.0 equiv) were added to a mixture of catalyst $\mathbf{4 d}(1 \mathrm{~mol} \%)$ and 5 \AA molecular sieves $(70 \mathrm{mg})$ in $\mathrm{MeCy}(1.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-60^{\circ} \mathrm{C}$ for 48 h . 3ae was obtained as a colorless oil ($20 \mathrm{mg}, 0.0735 \mathrm{mmol}, 73.5 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.41(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.56(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=10.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{p}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.26 (td, $J=16.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{ddt}, J=10.7,2.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 145.9,144.6,128.5,127.4,126.1,117.8,83.3,75.9,35.6$, 35.4, 33.7, 28.8, 26.1.

HRMS (EI) $(\mathrm{m} / \mathrm{z})$: calculated for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{O}_{1}[\mathrm{M}]: 272.2140$; found: 272.2140 .
$[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{2 0}}:+101.0\left(c=0.50, \mathrm{CHCl}_{3}\right)$.
GC: The enantiomeric ratio was measured by GC analysis on a chiral column (Cyclodextrin-H column: 25.0 m ; i.D. 0.25 mm); FID; Temperature: $230{ }^{\circ} \mathrm{C}$ (injector), $350{ }^{\circ} \mathrm{C}$ (detector), $100{ }^{\circ} \mathrm{C}(135 \mathrm{~min}$, iso, 8 min$) ; 170^{\circ} \mathrm{C}\left(3 \mathrm{~min}\right.$, iso); Gas: $\mathrm{H}_{2}(0.50 \mathrm{bar}) ; \mathrm{t}_{\mathrm{R}}=113.99 \mathrm{~min}$ (minor) and $t_{R}=119.57 \mathrm{~min}$ (major), e.r. $=95: 5$.

(2R,6R)-6-(2-(benzyloxy)ethyl)-4-methyl-2-phenyl-3,6-dihydro-2H-pyran (3af)

The aldehyde $\mathbf{1 a}$ ($10.6 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 k}$ ($101 \mathrm{mg}, 0.50 \mathrm{mmol}, 5.0$ equiv) were added to a mixture of catalyst $\mathbf{4 d}(1 \mathrm{~mol} \%)$ and $5 \AA$ molecular sieves (70 mg) in $\mathrm{MeCy}(1.0 \mathrm{~mL})$ at $-78^{\circ} \mathrm{C}$, then the reaction mixture was stirred at $-60^{\circ} \mathrm{C}$ for 48 h . 3af was obtained as a colorless solid ($26 \mathrm{mg}, 0.084 \mathrm{mmol}, 84 \%$).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.38-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 5.54(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.57$ $(\mathrm{dd}, J=10.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.42-4.37(\mathrm{~m}, 1 \mathrm{H}), 3.73-3.62(\mathrm{~m}, 2 \mathrm{H}), 2.21-2.16(\mathrm{~m}$, $1 \mathrm{H}), 2.10(\mathrm{td}, J=16.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.74$ (br s, 3H).
${ }^{13} \mathbf{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 143.6,139.4,133.0,128.6,127.9,127.7,127.6,126.1,124.3$, 76.0, 73.2, 73.1, 67.4, 38.2, 36.5, 23.0.

HRMS (ESI+) (m / z): calculated for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 309.1849$; found: 309.1849. $[\boldsymbol{\alpha}]_{\boldsymbol{D}}^{\mathbf{2 0}}:+62.4\left(c=0.50, \mathrm{CHCl}_{3}\right)$.

HPLC: The enantiomeric ratio was measured by HPLC analysis using Chiralpak OD-3, i.D. 4.6 mm . Heptane $/{ }^{i} \operatorname{PrOH}=99: 1$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{t}_{\mathrm{R}}=5.56 \mathrm{~min}$ (minor) and $t_{R}=6.49 \mathrm{~min}$ (major), e.r. $=95: 5$.

Gram Scale Reaction and Derivatization

Gram Scale Reaction

To a flame-dried Schlenk tube under argon were added $5 \AA$ molecular sieves (700 mg), catalyst IDPi 4c ($45 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.02$ equiv), and $\mathrm{MeCy}(10.0 \mathrm{~mL})$ at room temperature. Then aldehyde 1a ($1.06 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 a}(986 \mathrm{mg}, 12.0 \mathrm{mmol}, 1.2$ equiv) were added to the reaction mixture in sequence at $-78^{\circ} \mathrm{C}$. The reaction was stirred at $-20^{\circ} \mathrm{C}$ for 24 h . Purification of product 3a ($1.83 \mathrm{~g}, 9.7 \mathrm{mmol}, 97 \%$, $98: 2$ e.r.) was performed by column chromatography on silica gel using 2% diethyl ether/pentane as the eluent. The catalyst IDPi $4 \mathbf{c}$ could be recovered via the same column chromatography on silica gel using 50% hexanes/ethyl acetate as the eluent affording the salt state of IDPi $\mathbf{4 c}$. The salt was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ and stirred with $\mathrm{HCl}(6 \mathrm{M}$, aq., 10.0 mL$)$ for 30 min . The organic layer was separated, washed with $\mathrm{HCl}(6 \mathrm{M}$, aq., 10.0 mL$)$, and concentrated under reduced pressure affording the recovered catalyst IDPi $\mathbf{4 c}(43.7 \mathrm{mg}, 97 \%)$.

The recovered IDPi 4c was continually employed to catalyze the [4+2]-cycloaddition reaction of aldehyde $\mathbf{1 a}$ and diene $\mathbf{2 a}$ (Table S3, entry 3).

To a flame-dried Schlenk tube under argon were added $5 \AA$ molecular sieves (700 mg), catalyst IDPi 4c ($45 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.02$ equiv), and $\mathrm{MeCy}(10.0 \mathrm{~mL})$ at room temperature. Then aldehyde $\mathbf{1 a}$ ($1.06 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv) and diene $\mathbf{2 b}(817 \mathrm{mg}, 12.0 \mathrm{mmol}, 1.2$ equiv) were added to the reaction mixture in sequence at $-78^{\circ} \mathrm{C}$. The reaction was stirred at $-20^{\circ} \mathrm{C}$ for 48 h . Purification of product $3 \mathrm{t}(1.51 \mathrm{~g}, 8.7 \mathrm{mmol}, 87 \%$, $98: 2$ e.r.) was performed by column chromatography on silica gel using 2% diethyl ether/pentane as the eluent. The catalyst IDPi $4 \mathbf{c}$ was recovered via the same column chromatography.

To a flame-dried Schlenk tube under argon were added 5 Å molecular sieves (1.05 g), catalyst IDPi 4d ($105 \mathrm{mg}, 0.045 \mathrm{mmol}, 0.01$ equiv), and $\mathrm{MeCy}(15.0 \mathrm{~mL})$ at room temperature. Then diene 2a ($3.70 \mathrm{~g}, 45.0 \mathrm{mmol}, 10.0$ equiv) and aldehyde $\mathbf{1 o}$ ($703 \mathrm{mg}, 4.5 \mathrm{mmol}, 1.0$ equiv) were added to the reaction mixture in sequence at $-20^{\circ} \mathrm{C}$. The reaction was stirred at $-20^{\circ} \mathrm{C}$ for 48 h . Purification of product $\mathbf{3 o}(0.95 \mathrm{~g}, 4.0 \mathrm{mmol}, 89 \%$, $97: 3$ e.r.) was performed by column chromatography on silica gel using 2% diethyl ether/pentane as the eluent.

Derivatization

(2R,4S)-4-methyl-2-phenyltetrahydro-2H-pyran (5)

3t ($31.5 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.0$ equiv) was dissolved in ethanol $(1.0 \mathrm{~mL})$ at room temperature, followed by the addition of palladium (10\%) on charcoal (10.4 mg). An atmosphere of hydrogen was introduced and the resulting suspension was stirred at $-20^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was warmed up to room temperature and stirred for 12 h . The reaction mixture was filtered over Celite and the residue was purified by column chromatography on silica gel using 5% diethyl ether/pentane as the eluent affording Doremox 5 as colorless oil. ($31.0 \mathrm{mg}, 0.18 \mathrm{mmol}, 98 \%$, cis:trans $=8.5: 1$, 98:2 e.r.cis, $94.5: 5.5$ e.r.trans).
${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}\right): \delta 7.34-7.30(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 1 \mathrm{H}), 4.64$ (trans isomer, $\mathrm{dd}, \mathrm{J}=9.9,3.0 \mathrm{~Hz}, 0.12 \mathrm{H}$), 4.29 (cis isomer, $\mathrm{dd}, \mathrm{J}=11.3,2.2 \mathrm{~Hz}, 0.95 \mathrm{H}$), 4.10 (cis isomer, ddd, $\mathrm{J}=11.5,4.7,1.6 \mathrm{~Hz}, 0.97 \mathrm{H}$), 3.81-3.79 (trans isomer, $\mathrm{m}, 0.24 \mathrm{H}$), 3.57 (cis isomer, ddd, $\mathrm{J}=12.4,11.4,2.2 \mathrm{~Hz}, 0.99 \mathrm{H}$), 2.12-2.07 (trans isomer, m, 0.12 H), 1.92-1.73 (m, 2.22H), $1.63-1.58(\mathrm{~m}, 1.13 \mathrm{H}), 1.35-1.26(\mathrm{~m}, 1.22 \mathrm{H}), 1.20-1.14(\mathrm{~m}, 1.37 \mathrm{H}), 0.97(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 3.0 \mathrm{H})$, (spectra were complicated due to the presence of two diastereomers).
${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta 144.1$ (cis isomer), 143.8 (trans isomer), 128.54 (trans isomer), 128.52 (cis isomer), 127.5 (cis isomer), 127.3 (trans isomer), 126.4 (trans isomer),
126.2 (cis isomer), 80.0 (cis isomer), 74.2 (trans isomer), 68.8 (cis isomer), 63.3 (trans isomer), 43.3 (cis isomer), 39.6 (trans isomer), 34.9 (cis isomer), 32.4 (trans isomer), 31.2 (cis isomer), 25.9 (trans isomer), 22.5 (cis isomer), 18.5 (trans isomer), (spectra were complicated due to the presence of two diastereomers).

HRMS (ESI+) (m / z) calculated for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{1} \mathrm{Na}_{1}[\mathrm{M}+\mathrm{Na}]^{+}$: 199.1093; found: 199.1094.

GC: The enantiomeric ratio was measured by GC analysis on a chiral column (Hydrodex-gamma-TBDAc column: 25.0 m ; i.D. 0.25 mm); FID; Temperature: $220^{\circ} \mathrm{C}$ (injector), $350^{\circ} \mathrm{C}$ (detector), $120{ }^{\circ} \mathrm{C}\left(30 \mathrm{~min}\right.$, iso); Gas: $\mathrm{H}_{2}(0.50 \mathrm{bar})$; $\mathrm{t}_{\mathrm{R}}($ cis $)=17.04 \mathrm{~min}$ (minor) and $\mathrm{t}_{\mathrm{R}}($ cis $)=$ $17.76 \mathrm{~min}($ major $)$, e.r. $=98: 2 ; \mathrm{t}_{\mathrm{R}}($ trans $)=19.45 \mathrm{~min}($ major $)$ and $\mathrm{t}_{\mathrm{R}}($ trans $)=21.17 \mathrm{~min}$ (minor), e.r. $=94.5: 5.5$.

Kinetic Isotope Effect (KIE) Studies

The relative ${ }^{13} \mathrm{C}$ compositions of $\mathbf{3 a}$ at C 3 and C 4 were respectively assigned to be 1.000 in this intramolecular KIE measurement. The relative ${ }^{13} \mathrm{C}$ composition at C 1 was calculated from the integration at C 1 versus C 4 . The intramolecular KIE of C 1 was the reciprocal of the average of relative ${ }^{13} \mathrm{C}$ compositions at C 1 . Similarly, the relative ${ }^{13} \mathrm{C}$ composition at C 2 was calculated from the integration at C2 versus C3. The intramolecular KIE of C2 was the reciprocal of the average of relative ${ }^{13} \mathrm{C}$ compositions at C 2 . The standard deviations in the parentheses were calculated in a standard way ${ }^{22,23}$.

a. ${ }^{13} \mathrm{C}$ relative compositions

b. Intramolecular ${ }^{13} \mathrm{C}$ KIEs

Figure S6. Intramolecular KIEs. (The values in blue were measured at $15 \pm 0.6 \%$ completion of $\mathbf{2 a}$ and the values in purple were measured at $16 \pm 0.8 \%$ completion of 2a.)

Excess amount of diene reaction:

In a flame-dried Schlenk tube under argon, catalyst $\mathbf{4 c}(27 \mathrm{mg}, 12 \mu \mathrm{~mol}, 0.05$ equiv), $5 \AA$ molecular sieves (210 mg), MeCy (3.0 mL) were added. Subsequently, benzaldehyde (1a) ($250 \mathrm{mg}, 2.36 \mathrm{mmol}, 1.0$ equiv), followed by 2,3-dimethyl-1,3-butadiene (2a) ($800 \mathrm{mg}, 9.74$ mmol, 4.1 equiv) were added in at $-78^{\circ} \mathrm{C}$. The reaction mixture was then stirred at $-20^{\circ} \mathrm{C}$ for 30 min and quenched by the addition of trimethylamine (1 drop). The solution was warmed to room temperature and 1,2,4,5-tetramethylbenzene ($134 \mathrm{mg}, 1.0 \mathrm{mmol}$) was added as an internal standard. Analysis of the crude reaction mixture by ${ }^{1} \mathrm{H}$ NMR showed that the reaction was quenched at $15 \pm 0.6 \%$ completion of 2a (relative to starting diene 2a). Purification of 3a was performed by column chromatography on silica gel using diethyl 2-6\% ether/pentane as the eluent ($198 \mathrm{mg}, 1.05 \mathrm{mmol}$). Under argon, the obtained 3a was transferred to a NMR tube (50 mg of $\mathbf{3 a}$ in $0.5 \mathrm{~mL} \mathrm{CD}_{2} \mathrm{Cl}_{2}$), and the NMR tube was then sealed by melting. Two samples were identically prepared for the following NMR analysis.

The reaction was carefully repeated and $\mathbf{3 a}(210 \mathrm{mg}, 1.12 \mathrm{mmol})$ was obtained at $16 \pm 0.8 \%$ completion of 2a (relative to starting diene 2a). Another two identical NMR samples were prepared.

${ }^{13} \mathrm{C}$ spectra measurement:

The ${ }^{13} \mathrm{C}$ spectra were measured at 150.93 MHz on an Avance 600 MHz NMR spectrometer equipped with a cryogenically-cooled TXI $\left({ }^{1} \mathrm{H} /{ }^{13} \mathrm{C} /{ }^{15} \mathrm{~N}\right)$ probe head, using a single pulse calibrated at 40° followed by inverse-gated decoupling. A 40-s delay was used between pulses, the longest T_{1} for the ${ }^{13} \mathrm{C}$ of interest being about $6 \mathrm{~s}(\mathrm{C} 3)$. To obtain digital resolution of at least 5 points at the peak linewidth at half-height, an instrumental maximum of 128 K points were collected over a sweep-width of 155 ppm centered at 46 ppm , followed by zero-filling to 256 K points before Fourier transformation. Integrations were determined numerically using a $\pm 7.5 \mathrm{~Hz}$ region for each peak. In general, an automatic polynomial baseline correction of order of at least 3 was applied. Integrals were simply calculated by summing the signal intensities over the peak regions.

Table S14. Values shown are raw ${ }^{13} \mathrm{C}$ integrals of $\mathbf{3 a}$ at $15 \pm 0.6 \%$ completion of 2a.

Sample	C_{1}	C_{2}	C_{3}	C_{4}
1	85901	91898	91307	88351
1	85960	92516	91861	87659
1	86779	92491	92002	88020
1	86069	92518	93114	87888
1	95521	102349	101247	97308
1	95284	101747	101450	97669
1	95647	101314	101403	97199
1	86724	92809	93180	88907
2	350900	373893	373560	360129
2	355073	377562	376117	362694
2	354592	377015	377226	362330
2	355307	378537	378589	363559
2	356656	379971	379377	365966
2	358969	382854	381606	366213
2	357178	379629	380955	364419
2	357657	381297	380861	365602

Table S15. Values shown are raw ${ }^{13} \mathrm{C}$ integrals of 3a at $16 \pm 0.8 \%$ completion of 2a.

Sample	C_{1}	C_{2}	C_{3}	C_{4}
1	88077	93934	94519	89963
1	88941	93702	94374	90204
1	88368	94464	95318	91427
1	88895	94891	94633	91014
1	85510	91436	90853	88089
1	85932	92064	91378	88353
1	86267	91589	91263	88107
1	85986	91887	91145	87680
2	86474	91458	91995	87824
2	86153	91650	91278	88730
2	86674	91770	92088	89318
2	87694	92747	92224	89682
2	86601	93065	92773	89684
2	87276	93685	93009	89642
2	87239	93314	92793	88873
2	87527	93076	93567	89466

Single-Crystal X-ray Diffraction Analysis

Determination of the absolute configuration of 3f by X-ray diffraction

Figure S7. The molecular structure of $\mathbf{3 f}$. H atoms have been omitted for clarity.
Crystal data and structure refinement

Identification code
Empirical formula
Color
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
θ range for data collection
Index ranges
Reflections collected
Independent reflections
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$
Completeness to $\theta=25.242^{\circ}$
Absorption correction
Max. and min. transmission
$3 f$ (10450)
$\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{BrO}$
colourless
$267.16 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
100(2) K
$0.71073 \AA$
orthorhombic
P2 2 2 2 , (no. 19)
$a=6.836(2) \AA \quad \alpha=90^{\circ}$.
$b=11.5511(9) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=15.3107(9) \AA \quad \gamma=90^{\circ}$.
1208.9(4) \AA^{3}

4
$1.468 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
$3.372 \mathrm{~mm}^{-1}$
544 e
$0.23 \times 0.15 \times 0.09 \mathrm{~mm}^{3}$
3.528 to 33.119°.
$-10 \leq \mathrm{h} \leq 10,-17 \leq \mathrm{k} \leq 17,-23 \leq 1 \leq 23$
65284
$4595\left[\mathrm{R}_{\text {int }}=0.0406\right]$
4427
99.1 \%

Gaussian
0.75447 and 0.51719

Refinement method
Data / restraints / parameters
Goodness-of-fit on F^{2}
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})$]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole

Full-matrix least-squares on F^{2} 4595 / 0 / 138
1.109
$\mathrm{R}_{1}=0.0203 \quad \mathrm{wR}^{2}=0.0521$
$\mathrm{R}_{1}=0.0220$
$w^{2}=0.0530$
-0.006(3)
0
0.463 and $-0.355 \mathrm{e} \cdot \AA^{-3}$

Atomic coordinates and equivalent isotropic displacement parameters ($\AA^{\mathbf{2}}$).
U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	x					z		U eq
$\mathrm{C}(1)$	$0.2649(2)$	$0.3189(2)$	$0.5884(1)$	$0.018(1)$				
$\mathrm{C}(2)$	$0.0983(2)$	$0.3329(2)$	$0.6540(1)$	$0.020(1)$				
$\mathrm{C}(3)$	$0.0412(2)$	$0.4578(2)$	$0.6672(1)$	$0.021(1)$				
$\mathrm{C}(4)$	$0.1547(2)$	$0.5432(2)$	$0.6371(1)$	$0.021(1)$				
$\mathrm{C}(5)$	$0.3487(2)$	$0.5167(2)$	$0.5945(1)$	$0.023(1)$				
$\mathrm{C}(6)$	$-0.1475(3)$	$0.4750(2)$	$0.7163(2)$	$0.032(1)$				
$\mathrm{C}(7)$	$0.1107(3)$	$0.6705(2)$	$0.6422(1)$	$0.028(1)$				
$\mathrm{C}(8)$	$0.3544(2)$	$0.1997(1)$	$0.5929(1)$	$0.017(1)$				
$\mathrm{C}(9)$	$0.5089(2)$	$0.1772(2)$	$0.6500(1)$	$0.020(1)$				
$\mathrm{C}(10)$	$0.5871(2)$	$0.0659(2)$	$0.6570(1)$	$0.022(1)$				
$\mathrm{C}(11)$	$0.5082(2)$	$-0.0221(1)$	$0.6060(1)$	$0.020(1)$				
$\mathrm{C}(12)$	$0.3551(3)$	$-0.0018(1)$	$0.5486(1)$	$0.022(1)$				
$\mathrm{C}(13)$	$0.2789(2)$	$0.1097(2)$	$0.5422(1)$	$0.021(1)$				
$\mathrm{Br}(1)$	$0.6150(1)$	$-0.1736(1)$	$0.6157(1)$	$0.029(1)$				
$\mathrm{O}(1)$	$0.4148(2)$	$0.4013(1)$	$0.6078(1)$	$0.021(1)$				

Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$.

$\mathrm{C}(1)-\mathrm{O}(1)$	$1.430(2)$	$\mathrm{C}(1)-\mathrm{C}(8)$	$1.508(2)$
$\mathrm{C}(1)-\mathrm{C}(2)$	$1.528(2)$	$\mathrm{C}(2)-\mathrm{C}(3)$	$1.507(2)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.337(3)$	$\mathrm{C}(3)-\mathrm{C}(6)$	$1.506(2)$
$\mathrm{C}(4)-\mathrm{C}(7)$	$1.502(2)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.509(2)$
$\mathrm{C}(5)-\mathrm{O}(1)$	$1.422(2)$	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.396(2)$
$\mathrm{C}(8)-\mathrm{C}(13)$	$1.397(2)$	$\mathrm{C}(9)-\mathrm{C}(10)$	$1.397(2)$

$\mathrm{C}(10)-\mathrm{C}(11)$	$1.390(2)$
$\mathrm{C}(11)-\mathrm{Br}(1)$	$1.9020(16)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(8)$	$107.89(12)$
$\mathrm{C}(8)-\mathrm{C}(1)-\mathrm{C}(2)$	$111.72(13)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(6)$	$124.83(17)$
$\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(2)$	$114.48(16)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	$120.57(15)$
$\mathrm{O}(1)-\mathrm{C}(5)-\mathrm{C}(4)$	$114.07(14)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(1)$	$120.38(14)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	$120.58(15)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	$121.68(15)$
$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{Br}(1)$	$118.70(12)$
$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(8)$	$120.74(15)$

$\mathrm{C}(11)-\mathrm{C}(12)$	$1.387(2)$
$\mathrm{C}(12)-\mathrm{C}(13)$	$1.393(2)$
$\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$	$109.09(13)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	$112.47(14)$
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	$120.68(14)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)$	$126.01(15)$
$\mathrm{C}(7)-\mathrm{C}(4)-\mathrm{C}(5)$	$113.41(15)$
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	$119.29(15)$
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{C}(1)$	$120.29(14)$
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	$118.82(14)$
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{Br}(1)$	$119.63(13)$
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	$118.89(15)$
$\mathrm{C}(5)-\mathrm{O}(1)-\mathrm{C}(1)$	$111.52(12)$

Anisotropic displacement parameters ($\AA^{\mathbf{2}}$).
The anisotropic displacement factor exponent takes the form:

$$
-2 \pi^{2}\left[\mathrm{~h}^{2} \mathrm{a}^{*}{ }^{2} \mathrm{U}_{11}+\ldots+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U}_{12}\right]
$$

	U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}
$\mathrm{C}(1)$	$0.016(1)$	$0.021(1)$	$0.016(1)$	$0.000(1)$	$0.000(1)$	$0.003(1)$
$\mathrm{C}(2)$	$0.015(1)$	$0.024(1)$	$0.021(1)$	$-0.002(1)$	$0.003(1)$	$0.001(1)$
$\mathrm{C}(3)$	$0.015(1)$	$0.027(1)$	$0.019(1)$	$-0.005(1)$	$0.000(1)$	$0.002(1)$
$\mathrm{C}(4)$	$0.019(1)$	$0.024(1)$	$0.019(1)$	$-0.004(1)$	$-0.002(1)$	$0.005(1)$
$\mathrm{C}(5)$	$0.023(1)$	$0.020(1)$	$0.027(1)$	$0.004(1)$	$0.006(1)$	$0.004(1)$
$\mathrm{C}(6)$	$0.019(1)$	$0.036(1)$	$0.041(1)$	$-0.011(1)$	$0.008(1)$	$0.003(1)$
$\mathrm{C}(7)$	$0.029(1)$	$0.025(1)$	$0.030(1)$	$-0.003(1)$	$-0.001(1)$	$0.008(1)$
$\mathrm{C}(8)$	$0.016(1)$	$0.021(1)$	$0.015(1)$	$0.000(1)$	$0.001(1)$	$0.002(1)$
$\mathrm{C}(9)$	$0.020(1)$	$0.022(1)$	$0.017(1)$	$-0.002(1)$	$-0.004(1)$	$0.002(1)$
$\mathrm{C}(10)$	$0.022(1)$	$0.024(1)$	$0.019(1)$	$0.001(1)$	$-0.004(1)$	$0.004(1)$
$\mathrm{C}(11)$	$0.022(1)$	$0.020(1)$	$0.018(1)$	$0.002(1)$	$0.001(1)$	$0.003(1)$
$\mathrm{C}(12)$	$0.023(1)$	$0.022(1)$	$0.021(1)$	$-0.002(1)$	$-0.002(1)$	$0.000(1)$
$\mathrm{C}(13)$	$0.019(1)$	$0.024(1)$	$0.019(1)$	$-0.001(1)$	$-0.003(1)$	$0.002(1)$
$\mathrm{Br}(1)$	$0.037(1)$	$0.021(1)$	$0.029(1)$	$0.004(1)$	$-0.001(1)$	$0.007(1)$
$\mathrm{O}(1)$	$0.015(1)$	$0.020(1)$	$0.027(1)$	$0.002(1)$	$0.003(1)$	$0.002(1)$

Hydrogen coordinates and isotropic displacement parameters $\left(\AA^{2}\right)$.

	x	y	z	$\mathrm{U}_{\text {eq }}$
H(1)	0.2141	0.3330	0.5281	0.021
H(2A)	-0.0170	0.2890	0.6333	0.024
H(2B)	0.1388	0.2996	0.7108	0.024
H(5A)	0.3372	0.5309	0.5309	0.028
H(5B)	0.4484	0.5707	0.6177	0.028
H(6A)	-0.1378	0.4383	0.7738	0.048
H(6B)	-0.2553	0.4399	0.6834	0.048
H(6C)	-0.1722	0.5580	0.7235	0.048
H(7A)	-0.0276	0.6816	0.6568	0.042
H(7B)	0.1386	0.7068	0.5857	0.042
H(7C)	0.1924	0.7061	0.6874	0.042
H(9)	0.5614	0.2382	0.6845	0.024
H(10)	0.6922	0.0506	0.6959	0.026
H(12)	0.3031	-0.0630	0.5142	0.026
H(13)	0.1743	0.1246	0.5029	0.025

The structure of $\mathbf{3 f}$ was solved by direct methods and refined by full-matrix least-squares against F^{2} to $R_{l}=0.0203[I>2 \sigma(I)], w R_{2}=0.0530,138$ parameters. H atoms were refined using a riding model with $\mathrm{C}-\mathrm{H}$ distances of $0.98 \AA$ and $\mathrm{U}_{\mathrm{H}}=1.5 \times \mathrm{U}_{\mathrm{C}}\left(\mathrm{CH}_{3}\right), 0.99 \AA$ and U_{H} $=1.2 \times \mathrm{U}_{\mathrm{C}}\left(\mathrm{CH}_{2}\right), 1.0 \AA$ and $\mathrm{U}_{\mathrm{H}}=1.2 \times \mathrm{U}_{\mathrm{C}}(\mathrm{CH})$ and $0.95 \AA$ and $\mathrm{U}_{\mathrm{H}}=1.2 \times \mathrm{U}_{\mathrm{C}}\left(\mathrm{CH}_{\text {aromatic }}\right) . S$ $=1.109$, residual electron density $0.46\left(1.09 \AA\right.$ from H5A)/ -0.36 (0.60 from Br1) e \AA^{-3}. Three independent crystals from the sample $\mathbf{3 f}$ were investigated and their absolute configurations determined. The respective Flack parameters (Parsons' method: Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259) are -0.006(3) [1850 quotients] (this crystal), -0.007(7) [1328 quotients] (crystal 2, Mo- $\mathrm{K}_{\alpha} X$-radiation, $R_{1}=0.0364, S=1.005$, data completeness 99.7%), and -0.011(9) [867 quotients] (crystal 3, $\mathrm{Cu}-\mathrm{K}_{\alpha} X$-radiation, $R_{1}=0.0258, S=1.096$, data completeness 98.4%). CCDC 1559570.

Crystal structure analysis of the imidodiphosphorimidate (IDPI) 4c

Figure S8. Left: The structure of the asymmetric unit in the crystal of $\mathbf{4 c}$, with crystal solvent (hexane and dichloromethane). H atoms have been omitted for clarity. Right: The molecular structure of $\mathbf{4 c}$, without crystal solvent.

Crystal data and structure refinement

Identification code	4c (10698)
Empirical formula	$\mathrm{C}_{83.20} \mathrm{H}_{33} \mathrm{Cl}_{3.80} \mathrm{~F}_{44.80} \mathrm{~N}_{3} \mathrm{O}_{7.20} \mathrm{P}_{2} \mathrm{~S}_{10}$
Color	colourless
Formula weight	$2558.17 \mathrm{~g} \cdot \mathrm{~mol}^{-1}$
Temperature	100(2) K
Wavelength	1.54178 Å
Crystal system	orthorhombic
Space group	P 21212 , (no. 18)
Unit cell dimensions	$\mathrm{a}=18.7656(13) \AA$ ¢ $\quad \alpha=90^{\circ}$.
	$\mathrm{b}=41.726(3) \AA \quad \beta=90^{\circ}$.
	$\mathrm{c}=14.4668(10) \AA \AA^{\circ} \quad \gamma=90^{\circ}$.
Volume	11327.8(14) \AA^{3}
Z	4
Density (calculated)	$1.500 \mathrm{Mg} \cdot \mathrm{m}^{-3}$
Absorption coefficient	$4.015 \mathrm{~mm}^{-1}$
F(000)	5074 e
Crystal size	$0.300 \times 0.189 \times 0.030 \mathrm{~mm}^{3}$
θ range for data collection	4.831 to 63.596°.
Index ranges	$-21 \leq \mathrm{h} \leq 21,-47 \leq \mathrm{k} \leq 48,-14 \leq 1 \leq 16$
Reflections collected	165258

Independent reflections	$18356\left[\mathrm{R}_{\text {int }}=0.0717\right]$	
Reflections with $\mathrm{I}>2 \sigma(\mathrm{I})$	16034	
Completeness to $\theta=63.596^{\circ}$	99.1%	
Absorption correction	Gaussian	
Max. and min. transmission	0.90830 and 0.51138	
Refinement method	Full-matrix least-squares on F^{2}	
Data / restraints / parameters	$18356 / 46 / 1405$	
Goodness-of-fit on F^{2}	1.513	$\mathrm{RR}^{2}=0.1847$
Final R indices $[\mathrm{I}>2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0674$	$\mathrm{wR}^{2}=0.0785$
R indices (all data)	$0.031(4)$	
Absolute structure parameter	0	
Extinction coefficient	0.905 and $-0.805 \mathrm{e} \cdot \AA^{-3}$	
Largest diff. peak and hole		

Atomic coordinates and equivalent isotropic displacement parameters ($\AA^{\mathbf{2}}$).

U_{eq} is defined as one third of the trace of the orthogonalized U_{ij} tensor.

	y		z	
x				
$\mathrm{C}(1)$	$-0.0927(7)$	$0.3431(4)$	$0.5747(8)$	$0.068(4)$
$\mathrm{C}(2)$	$0.1322(13)$	$0.4636(6)$	$0.3201(18)$	$0.203(16)$
$\mathrm{C}(3)$	$-0.1190(4)$	$0.3272(2)$	$0.2149(5)$	$0.027(2)$
$\mathrm{C}(4)$	$-0.1132(4)$	$0.2951(2)$	$0.1997(4)$	$0.025(1)$
$\mathrm{C}(5)$	$-0.1765(3)$	$0.2761(2)$	$0.1881(5)$	$0.026(2)$
$\mathrm{C}(6)$	$-0.1755(4)$	$0.2426(2)$	$0.1802(5)$	$0.031(2)$
$\mathrm{C}(7)$	$-0.2386(4)$	$0.2255(2)$	$0.1698(5)$	$0.033(2)$
$\mathrm{C}(8)$	$-0.3053(4)$	$0.2416(2)$	$0.1692(5)$	$0.037(2)$
$\mathrm{C}(9)$	$-0.3075(4)$	$0.2742(2)$	$0.1772(5)$	$0.030(2)$
$\mathrm{C}(10)$	$-0.2437(3)$	$0.2927(2)$	$0.1873(5)$	$0.027(2)$
$\mathrm{C}(11)$	$-0.2458(3)$	$0.3257(2)$	$0.1999(5)$	$0.028(2)$
$\mathrm{C}(12)$	$-0.1853(4)$	$0.3440(2)$	$0.2145(5)$	$0.030(2)$
$\mathrm{C}(13)$	$-0.1913(4)$	$0.3790(2)$	$0.2275(5)$	$0.031(2)$
$\mathrm{C}(14)$	$-0.2424(4)$	$0.3916(2)$	$0.2894(6)$	$0.039(2)$
$\mathrm{C}(15)$	$-0.2506(4)$	$0.4242(2)$	$0.2958(6)$	$0.043(2)$
$\mathrm{C}(16)$	$-0.2105(5)$	$0.4456(2)$	$0.2446(7)$	$0.052(2)$
$\mathrm{C}(17)$	$-0.1597(5)$	$0.4330(2)$	$0.1841(7)$	$0.048(2)$
$\mathrm{C}(18)$	$-0.1497(4)$	$0.4002(2)$	$0.1766(6)$	$0.041(2)$
$\mathrm{C}(19)$	$-0.0018(3)$	$0.2821(2)$	$0.2825(4)$	$0.024(1)$

C(20)	-0.0423(3)	0.2793(2)	0.2040(5)	0.026(2)
C (21)	-0.0156(4)	0.2594(2)	$0.1311(5)$	0.027 (2)
C(22)	-0.0490(4)	0.2573(2)	0.0444(5)	0.030(2)
C(23)	-0.0231(4)	0.2377(2)	-0.0240(5)	0.037(2)
C(24)	0.0378(4)	0.2190(2)	-0.0065(5)	0.037(2)
C(25)	0.0720(4)	0.2203(2)	0.0755(5)	0.032(2)
C(26)	0.0476(4)	0.2411(2)	0.1460 (5)	0.028(2)
C(27)	0.0834(4)	0.2433(2)	0.2328 (5)	0.028(2)
C(28)	0.0595(3)	0.2632(2)	0.3005(4)	0.025(1)
C(29)	0.0913(4)	0.2616(2)	0.3962(5)	0.029(2)
C(30)	0.1641(4)	0.2630(2)	0.4099(5)	0.029(2)
C(31)	0.1922(4)	0.2579(2)	0.4975 (5)	0.029(2)
C(32)	0.1477(4)	0.2506(2)	0.5721 (5)	0.033(2)
C(33)	0.0748(4)	0.2482(2)	0.5559(5)	0.031(2)
C(34)	0.0474(4)	0.2539(2)	0.4701(5)	0.028(2)
C(35)	0.2607(4)	0.3532(2)	0.3578(5)	0.030(2)
C(36)	0.2917(4)	0.3416(2)	0.2776 (5)	0.030(2)
C(37)	0.3657(4)	0.3473(2)	$0.2622(5)$	0.036(2)
C(38)	0.3991 (4)	0.3406(2)	0.1758(5)	0.036(2)
C(39)	0.4693(4)	0.3488(2)	0.1631(6)	0.043(2)
C(40)	$0.5094(5)$	0.3617(2)	$0.2346(7)$	0.050(2)
C(41)	0.4793(4)	0.3686(2)	0.3167(6)	0.043(2)
C(42)	0.4060(4)	0.3623(2)	0.3334(6)	0.036(2)
C(43)	0.3726(4)	0.3715(2)	0.4160(6)	0.039(2)
C(44)	0.2996 (4)	0.3677(2)	0.4293(5)	0.034(2)
C(45)	0.2668(4)	0.3808(2)	0.5138(5)	0.036(2)
C(46)	0.2838(6)	0.4109(3)	0.5440 (7)	0.063(3)
C(47)	0.2534(6)	0.4231(3)	0.6257(7)	0.068(3)
C(48)	0.2061(6)	0.4044(2)	0.6782(7)	0.061(3)
C(49)	0.1888(4)	0.3742(2)	0.6464(5)	0.038(2)
C(50)	0.2180(4)	0.3615(2)	0.5661(5)	0.034(2)
C(51)	0.1884(4)	0.3429(2)	0.1702(5)	0.029(2)
C(52)	0.2461 (4)	0.3263(2)	0.2059(5)	0.029(2)
C(53)	0.2586 (3)	0.2949(2)	0.1730(5)	0.029(2)
C(54)	0.3097(4)	0.2745(2)	0.2155(5)	0.033(2)
C(55)	0.3197(4)	0.2431(2)	0.1826 (5)	0.039(2)
C(56)	0.2816(4)	0.2325(2)	0.1048(5)	0.036(2)
C(57)	0.2323(4)	0.2515(2)	0.0623(5)	0.031(2)
C(58)	0.2180(4)	0.2830(2)	0.0962(5)	0.029(2)

C(59)	0.1651(4)	0.3033(2)	0.0572(5)	0.032(2)
C(60)	0.1499(4)	0.3326(2)	0.0912(5)	0.026(2)
C(61)	0.0998(4)	0.3548(2)	0.0421(5)	0.028(2)
C(62)	0.1227(4)	0.3859(2)	0.0221(5)	0.031(2)
C(63)	0.0815(4)	0.4055(2)	-0.0332(5)	0.028(2)
C(64)	0.0164(4)	0.3957(2)	-0.0689(5)	0.035(2)
C(65)	-0.0058(4)	0.3648(2)	-0.0458(5)	0.031(2)
C(66)	0.0349(4)	0.3439(2)	0.0092(5)	0.032(2)
C(67)	-0.026(4)	0.5337(17)	0.623(5)	0.14(2)
C(68)	0.036(2)	0.5669(11)	0.660(3)	0.083(12)
C(69)	0.444(2)	0.3890 (11)	0.913(3)	0.051(11)
C(70)	0.3138(9)	0.3638(4)	0.9426(12)	0.107(5)
C(71)	0.3838(17)	0.3577(7)	0.902(2)	0.178(11)
C(72)	0.3852(12)	0.3514(5)	0.8029(16)	0.144(7)
C(73)	0.4503 (14)	0.3365(6)	0.7647(19)	0.117(7)
C(74)	0.6996 (17)	0.3420(8)	0.559(2)	0.123(9)
C(75)	0.529(5)	0.447(2)	0.782(7)	0.31(4)
C(76)	0.534(5)	0.434(2)	0.662(6)	0.30(4)
C(77)	0.352(3)	0.6380(12)	0.000(3)	0.077(12)
C(78)	0.4494(12)	0.3193(5)	0.6588(16)	0.142(7)
C(79)	0.437(2)	0.4626(10)	0.398(3)	0.262(17)
C(80)	0.591(3)	0.3843(12)	0.596(4)	0.188(17)
C(81)	0.6619(17)	0.3586(8)	0.602(2)	0.121(9)
C(82)	0.3048 (18)	0.4290(8)	0.151(2)	0.211(12)
C(83)	0.348(5)	$0.4560(17)$	0.217(5)	0.33(3)
C(84)	0.400(3)	0.4567(13)	0.322(5)	0.20(2)
C(85)	0.380(3)	0.4419(14)	0.161(4)	0.108(16)
C(86)	0.600(5)	0.389(3)	0.507(8)	0.13(3)
C(87)	0.566(8)	0.419(4)	0.691(10)	0.25(6)
C(88)	0.404(3)	0.4524(11)	0.234(4)	0.160(15)
C(89)	0.281(5)	0.4597(18)	0.243(6)	0.28(3)
C(90)	0.361(4)	0.4683(16)	0.056(5)	0.26(3)
C(91)	0.326(5)	0.541(2)	-0.091(7)	0.19(3)
C(92)	0.320(3)	$0.5505(16)$	0.019(4)	0.118(18)
C(93)	0.413(5)	0.549(2)	0.080(6)	0.18(3)
C(94)	0.324(3)	0.5206(16)	-0.022(5)	0.121(18)
C(95)	0.342(2)	0.5822(11)	-0.025(3)	0.079(11)
C(96)	0.399 (3)	$0.3417(14)$	0.669(4)	0.21(2)
C(97)	0.308(5)	0.588(2)	-0.102(7)	0.18(3)

C(98)
C(99)
N (1)
$\mathrm{N}(2 \mathrm{~A})$
N (2B)
N(3A)
N(3B)
$\mathrm{O}(1)$
$\mathrm{O}(2)$
$\mathrm{O}(3)$
$\mathrm{O}(4)$
$\mathrm{O}(5)$
O(6)
$\mathrm{O}(7)$
$\mathrm{O}(8)$
F(1)
F(2)
F(3)
F(4)
F(5)
F(6)
F(7)
F(8)
F(9)
F(10)
F(11)
F(12)
F(13)
F(14)
F(15)
F(16)
F(17)
F(18)
F(19)
F(20)
F(21)
F(22)
F(23)
F(24)

$0.359(7)$	$0.580(3)$	$0.044(9)$	$0.22(4)$
$0.701(5)$	$0.306(3)$	$0.537(7)$	$0.13(3)$
$0.0636(3)$	$0.3502(2)$	$0.3053(4)$	$0.036(2)$
$-0.0478(4)$	$0.3613(2)$	$0.4081(5)$	$0.048(2)$
$-0.0478(4)$	$0.3613(2)$	$0.4081(5)$	$0.048(2)$
$0.1359(5)$	$0.4043(2)$	$0.3498(6)$	$0.066(2)$
$0.1359(5)$	$0.4043(2)$	$0.3498(6)$	$0.066(2)$
$-0.0571(2)$	$0.3453(1)$	$0.2326(4)$	$0.032(1)$
$-0.0232(2)$	$0.3040(1)$	$0.3516(3)$	$0.028(1)$
$0.1863(2)$	$0.3488(1)$	$0.3700(3)$	$0.035(1)$
$0.1696(3)$	$0.3722(1)$	$0.2120(3)$	$0.031(1)$
$-0.1466(5)$	$0.3905(2)$	$0.4826(6)$	$0.063(2)$
$-0.1675(4)$	$0.3358(2)$	$0.4240(5)$	$0.048(2)$
$0.0153(8)$	$0.4304(3)$	$0.3361(9)$	$0.119(4)$
$0.1010(12)$	$0.4386(5)$	$0.4791(13)$	$0.186(7)$
$-0.1516(5)$	$0.3389(3)$	$0.6237(5)$	$0.107(4)$
$-0.0569(5)$	$0.3175(2)$	$0.5644(6)$	$0.090(3)$
$-0.0526(4)$	$0.3662(2)$	$0.6167(5)$	$0.083(3)$
$0.1332(19)$	$0.4545(8)$	$0.2377(19)$	$0.364(11)$
$0.0871(19)$	$0.4855(6)$	$0.332(2)$	$0.364(11)$
$0.1901(16)$	$0.4691(8)$	$0.353(2)$	$0.364(11)$
$-0.3746(4)$	$0.4542(2)$	$0.4431(5)$	$0.084(2)$
$-0.3467(3)$	$0.4643(1)$	$0.2980(5)$	$0.074(2)$
$-0.2647(4)$	$0.4668(2)$	$0.4098(5)$	$0.080(2)$
$-0.2924(4)$	$0.4173(2)$	$0.4545(4)$	$0.079(2)$
$-0.3743(3)$	$0.4148(1)$	$0.3427(5)$	$0.069(2)$
$-0.0636(5)$	$0.4838(2)$	$0.0563(7)$	$0.141(4)$
$-0.0395(4)$	$0.4385(2)$	$0.1259(7)$	$0.112(3)$
$-0.1259(6)$	$0.4420(2)$	$0.0260(5)$	$0.122(4)$
$-0.1731(4)$	$0.4836(1)$	$0.1025(5)$	$0.093(2)$
$-0.0849(4)$	$0.4798(2)$	$0.2040(6)$	$0.104(3)$
$0.3697(2)$	$0.2610(1)$	$0.5347(3)$	$0.045(1)$
$0.3022(2)$	$0.2373(1)$	$0.4315(3)$	$0.044(1)$
$0.2957(2)$	$0.2900(1)$	$0.4535(3)$	$0.040(1)$
$0.2773(2)$	$0.2823(1)$	$0.6041(3)$	$0.043(1)$
$0.2848(2)$	$0.2296(1)$	$0.5828(3)$	$0.046(1)$
$-0.0297(2)$	$0.2222(2)$	$0.7298(3)$	$0.058(2)$
$-0.0408(2)$	$0.2600(1)$	$0.6255(3)$	$0.047(1)$
$-0.0201(2)$	$0.2088(1)$	$0.5841(3)$	$0.047(1)$

F(25)	0.0747(2)	0.2079(1)	0.6785(3)	0.041(1)
$\mathrm{F}(26)$	0.0535(2)	0.2588(1)	0.7194(3)	0.045(1)
F(27)	0.2966(9)	0.4976(3)	0.6963(8)	0.234(9)
F(28)	0.1908(6)	0.4710(2)	0.6838(7)	0.133(4)
$\mathrm{F}(29)$	$0.2658(7)$	0.4768(2)	0.5627(7)	0.144(5)
F(30)	0.3572(7)	0.4570(3)	0.6434(7)	0.170(6)
F(31)	0.2857(8)	0.4506(3)	0.7654(7)	0.193(7)
F(32)	0.0732(3)	0.3289(1)	0.7669(4)	0.059(1)
F(33)	0.0735(3)	0.3790(1)	0.7210(4)	0.050(1)
F(34)	0.1630 (3)	0.3595(2)	0.8062(3)	0.064(2)
F(35)	0.1766(3)	0.3195(1)	0.7041(4)	0.058(1)
F(36)	0.0881(2)	0.3390(1)	0.6195(3)	0.047(1)
F(37)	0.1457(3)	0.4783(1)	-0.0944(4)	0.056(1)
F(38)	0.0959(3)	0.4390(1)	-0.1701(3)	0.047(1)
$\mathrm{F}(39)$	0.1926(2)	0.4305(1)	-0.0841(4)	0.049(1)
F(40)	0.1370(3)	0.4524(1)	0.0370(3)	0.047(1)
F(41)	0.0406(3)	0.4607(1)	-0.0502(4)	0.047(1)
$\mathrm{F}(42)$	-0.1634(2)	0.3399(1)	-0.1351(3)	0.049(1)
F(43)	-0.0573(2)	0.3176(1)	-0.1228(3)	0.043(1)
$\mathrm{F}(44)$	-0.0710(3)	0.3654(1)	-0.1918(3)	0.049(1)
$\mathrm{F}(45)$	-0.1280(2)	0.3835(1)	-0.0675(3)	0.047(1)
$\mathrm{F}(46)$	-0.1138(2)	0.3362(1)	0.0016(3)	0.041(1)
$\mathrm{P}(1)$	-0.0144(1)	0.3413(1)	0.3268(1)	0.029(1)
$\mathrm{P}(2)$	0.1328(1)	$0.3696(1)$	0.3114(1)	0.032(1)
$\mathrm{S}(1 \mathrm{~A})$	-0.1190(1)	0.3589(1)	0.4613(2)	0.036(1)
S(1B)	-0.0649(7)	0.3753(4)	$0.4756(10)$	0.069(4)
S(3)	-0.3172(1)	0.4402(1)	0.3746(2)	0.058(1)
S(2A)	0.0916(2)	0.4294(1)	0.3878(3)	0.068(1)
S(2B)	$0.1563(11)$	0.4310(4)	0.3799(12)	0.082(5)
S(4)	-0.1079(2)	0.4601(1)	0.1158(3)	0.087(1)
S(5)	0.2868(1)	0.2595(1)	0.5178(1)	0.033(1)
S(6)	0.0186(1)	0.2345(1)	0.6485(1)	0.039(1)
S(7)	0.2751(3)	0.4630(1)	0.6628(3)	0.145(2)
S(8)	0.1270(1)	0.3501(1)	0.7103(1)	0.040(1)
S(9)	$0.1155(1)$	0.4446(1)	-0.0650(1)	0.040(1)
S(10)	-0.0899(1)	0.3512(1)	-0.0941(1)	0.037(1)
$\mathrm{Cl}(1)$	$0.3225(15)$	0.6421(7)	-0.026(2)	0.180(10)
$\mathrm{Cl}(2)$	$0.336(3)$	0.6082(14)	0.027(3)	0.304(19)
$\mathrm{Cl}(3)$	0.1011(8)	0.5567(4)	0.4146(11)	0.122(4)

$0.0986(12)$	$0.5123(5)$	$0.5210(15)$	$0.113(6)$
$0.6299(6)$	$0.3380(3)$	$0.4771(8)$	$0.095(3)$
$0.6318(11)$	$0.3333(5)$	$0.5244(15)$	$0.175(7)$
$0.6658(7)$	$0.3332(3)$	$0.6724(9)$	$0.113(4)$
$0.6984(12)$	$0.3277(5)$	$0.6874(14)$	$0.137(6)$
$0.2268(11)$	$0.5852(5)$	$0.7243(15)$	$0.152(6)$
$0.0796(9)$	$0.5422(4)$	$0.7731(12)$	$0.117(4)$
$0.1244(9)$	$0.5479(4)$	$0.7886(11)$	$0.111(4)$
$0.1749(16)$	$0.5665(7)$	$0.680(2)$	$0.202(10)$

Bond lengths [\AA] and angles $\left[{ }^{\circ}\right]$.

			$1.325(15)$
$\mathrm{C}(1)-\mathrm{F}(2)$	$1.273(17)$	$\mathrm{C}(1)-\mathrm{F}(1)$	$1.836(13)$
$\mathrm{C}(1)-\mathrm{F}(3)$	$1.365(17)$	$\mathrm{C}(1)-\mathrm{S}(1 \mathrm{~A})$	$1.21(3)$
$\mathrm{C}(1)-\mathrm{S}(1 \mathrm{~B})$	$2.03(2)$	$\mathrm{C}(2)-\mathrm{F}(6)$	$1.26(3)$
$\mathrm{C}(2)-\mathrm{F}(4)$	$1.25(3)$	$\mathrm{C}(2)-\mathrm{F}(5)$	$1.89(3)$
$\mathrm{C}(2)-\mathrm{S}(2 \mathrm{~B})$	$1.68(3)$	$\mathrm{C}(2)-\mathrm{S}(2 \mathrm{~A})$	$1.410(8)$
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.359(10)$	$\mathrm{C}(3)-\mathrm{O}(1)$	$1.439(10)$
$\mathrm{C}(3)-\mathrm{C}(12)$	$1.430(10)$	$\mathrm{C}(4)-\mathrm{C}(5)$	$1.405(10)$
$\mathrm{C}(4)-\mathrm{C}(20)$	$1.488(10)$	$\mathrm{C}(5)-\mathrm{C}(6)$	$1.389(10)$
$\mathrm{C}(5)-\mathrm{C}(10)$	$1.437(10)$	$\mathrm{C}(6)-\mathrm{C}(7)$	$1.365(11)$
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.422(11)$	$\mathrm{C}(10)-\mathrm{C}(9)$	$1.388(10)$
$\mathrm{C}(9)-\mathrm{C}(10)$	$1.433(10)$	$\mathrm{C}(12)-\mathrm{C}(13)$	$1.474(10)$
$\mathrm{C}(11)-\mathrm{C}(12)$	$1.386(10)$	$\mathrm{C}(13)-\mathrm{C}(14)$	$1.415(11)$
$\mathrm{C}(13)-\mathrm{C}(18)$	$1.390(11)$	$\mathrm{C}(16)-\mathrm{C}(17)$	$1.382(12)$
$\mathrm{C}(14)-\mathrm{C}(15)$	$1.370(12)$	$\mathrm{C}(17)-\mathrm{S}(4)$	$1.396(13)$
$\mathrm{C}(15)-\mathrm{S}(3)$	$1.817(8)$	$\mathrm{C}(19)-\mathrm{O}(2)$	$1.788(9)$
$\mathrm{C}(17)-\mathrm{C}(18)$	$1.387(12)$	$\mathrm{C}(20)-\mathrm{C}(21)$	$1.413(8)$
$\mathrm{C}(19)-\mathrm{C}(20)$	$1.372(9)$	$\mathrm{C}(21)-\mathrm{C}(26)$	$1.432(10)$
$\mathrm{C}(19)-\mathrm{C}(28)$	$1.418(9)$	$\mathrm{C}(23)-\mathrm{C}(24)$	$1.427(10)$
$\mathrm{C}(21)-\mathrm{C}(22)$	$1.405(10)$	$\mathrm{C}(25)-\mathrm{C}(26)$	$1.414(10)$
$\mathrm{C}(22)-\mathrm{C}(23)$	$1.372(10)$	$\mathrm{C}(27)-\mathrm{C}(28)$	$1.361(10)$
$\mathrm{C}(24)-\mathrm{C}(25)$	$1.350(11)$	$\mathrm{C}(29)-\mathrm{C}(30)$	$1.383(10)$
$\mathrm{C}(26)-\mathrm{C}(27)$	$1.427(10)$	$\mathrm{C}(30)-\mathrm{C}(31)$	$1.389(10)$
$\mathrm{C}(28)-\mathrm{C}(29)$	$1.509(9)$		

$\mathrm{C}(31)-\mathrm{C}(32)$	1.397(10)	$\mathrm{C}(31)-\mathrm{S}(5)$	1.801(7)
$\mathrm{C}(32)-\mathrm{C}(33)$	1.390(10)	C(33)-C(34)	1.365(10)
C(33)-S(6)	1.798(7)	C(35)-C(36)	1.385(10)
$\mathrm{C}(35)-\mathrm{C}(44)$	1.403(10)	$\mathrm{C}(35)-\mathrm{O}(3)$	1.420 (8)
$\mathrm{C}(36)-\mathrm{C}(37)$	$1.425(10)$	$\mathrm{C}(36)-\mathrm{C}(52)$	$1.488(10)$
C(37)-C(42)	1.424(11)	C(37)-C(38)	$1.425(11)$
$\mathrm{C}(38)-\mathrm{C}(39)$	1.375(11)	C(39)-C(40)	1.388(12)
$\mathrm{C}(40)-\mathrm{C}(41)$	1.348(12)	$\mathrm{C}(41)-\mathrm{C}(42)$	1.420 (11)
$\mathrm{C}(42)-\mathrm{C}(43)$	1.404(12)	C(43)-C(44)	1.392(11)
$\mathrm{C}(44)-\mathrm{C}(45)$	1.473(11)	$\mathrm{C}(45)-\mathrm{C}(46)$	1.368(12)
$\mathrm{C}(45)-\mathrm{C}(50)$	1.432(11)	$\mathrm{C}(46)-\mathrm{C}(47)$	1.409(13)
$\mathrm{C}(47)-\mathrm{C}(48)$	1.406(14)	$\mathrm{C}(47)-\mathrm{S}(7)$	$1.795(10)$
$\mathrm{C}(48)$-C(49)	1.377(12)	$\mathrm{C}(49)-\mathrm{C}(50)$	1.390 (11)
$\mathrm{C}(49)$-S(8)	1.793(8)	C(51)-C(52)	1.385(10)
$\mathrm{C}(51)-\mathrm{O}(4)$	1.408(9)	C(51)-C(60)	1.420 (10)
$\mathrm{C}(52)-\mathrm{C}(53)$	1.414(11)	C(53)-C(54)	$1.425(10)$
C(53)-C(58)	1.435(10)	C(54)-C(55)	1.406(12)
C(55)-C(56)	1.404(11)	C(56)-C(57)	1.363(11)
$\mathrm{C}(57)-\mathrm{C}(58)$	1.431(10)	C(58)-C(59)	1.420 (10)
C(59)-C(60)	1.350(10)	C(60)-C(61)	1.500(10)
$\mathrm{C}(61)-\mathrm{C}(66)$	1.385(10)	C(61)-C(62)	1.394(10)
C(62)-C(63)	1.381(10)	C(63)-C(64)	1.386(11)
C(63)-S(9)	1.813(7)	C(64)-C(65)	1.398(10)
C(65)-C(66)	1.406(10)	C(65)-S(10)	1.817(7)
C(67)-C(68)	1.89(8)	$\mathrm{C}(68)-\mathrm{Cl}(10)$	2.10(5)
C (69)-C(71)	1.74(5)	C(70)-C(71)	1.46(3)
$\mathrm{C}(71)-\mathrm{C}(72)$	1.46(3)	C(72)-C(73)	1.48 (3)
C (72)-C(96)	2.00(6)	C(73)-C(78)	1.69(3)
C(73)-C(96)	1.70(6)	C(74)-C(81)	1.17(4)
$\mathrm{C}(74)-\mathrm{Cl}(6)$	1.42(3)	C(74)-C(99)	1.54(11)
$\mathrm{C}(74)-\mathrm{Cl}(5)$	1.78(3)	$\mathrm{C}(74)-\mathrm{Cl}(7)$	1.79(4)
$\mathrm{C}(74)-\mathrm{Cl}(8)$	1.95(4)	C(75)-C(76)	1.82(12)
C(75)-C(87)	1.89(16)	C(76)-C(87)	0.96(16)
$\mathrm{C}(77)-\mathrm{Cl}(1)$	0.68(5)	$\mathrm{C}(77)-\mathrm{Cl}(2)$	1.34(6)
$\mathrm{C}(78)-\mathrm{C}(96)$	1.34(5)	C(79)-C(84)	1.32(6)
C(80)-C(86)	1.32(10)	C(80)-C(81)	1.72(5)
$\mathrm{C}(81)-\mathrm{Cl}(7)$	1.47(3)	$\mathrm{C}(81)-\mathrm{Cl}(6)$	1.64(4)
$\mathrm{C}(81)-\mathrm{Cl}(8)$	1.91(4)	$\mathrm{C}(81)-\mathrm{Cl}(5)$	2.09(3)
C(82)-C(85)	1.52(7)	C(82)-C(83)	1.68(7)

C(82)-C(89)	1.90(9)	$\mathrm{C}(83)-\mathrm{C}(88)$	1.09(8)
C(83)-C(85)	1.17(9)	$\mathrm{C}(83)-\mathrm{C}(89)$	1.32(9)
C(83)-C(84)	1.81(9)	C(84)-C(88)	1.29(6)
C(85)-C(88)	1.23(7)	C(85)-C(90)	1.91(9)
C(86)-Cl(5)	2.26 (10)	$\mathrm{C}(91)-\mathrm{C}(94)$	1.32 (10)
C(91)-C(92)	1.64(11)	C(91)-C(97)	1.97(13)
C(91)-C(95)	1.97(11)	C(92)-C(94)	1.38(8)
C(92)-C(98)	1.47(13)	C(92)-C(95)	1.52(8)
C(92)-C(93)	1.95(11)	C(93)-C(98)	1.70(14)
C(95)-C(98)	1.06(12)	C(95)-C(97)	1.30(9)
C(95)-Cl(2)	1.33(6)	$\mathrm{C}(97)-\mathrm{Cl}(2)$	2.12 (10)
$\mathrm{C}(98)-\mathrm{Cl}(2)$	1.28(13)	$\mathrm{C}(99)-\mathrm{Cl}(6)$	1.74(10)
$\mathrm{C}(99)-\mathrm{Cl}(5)$	2.08(10)	$\mathrm{N}(1)-\mathrm{P}(2)$	1.531(6)
$\mathrm{N}(1)-\mathrm{P}(1)$	1.543(6)	$\mathrm{N}(2 \mathrm{~A})-\mathrm{S}(1 \mathrm{~A})$	1.545 (7)
$\mathrm{N}(2 \mathrm{~A})-\mathrm{P}(1)$	1.573(6)	$\mathrm{N}(2 \mathrm{~B})-\mathrm{S}(1 \mathrm{~B})$	1.183(15)
$\mathrm{N}(2 \mathrm{~B})-\mathrm{P}(1)$	1.573(6)	$\mathrm{N}(3 \mathrm{~A})-\mathrm{S}(2 \mathrm{~A})$	1.445 (9)
$\mathrm{N}(3 \mathrm{~A})-\mathrm{P}(2)$	1.553(8)	$\mathrm{N}(3 \mathrm{~B})-\mathrm{S}(2 \mathrm{~B})$	1.256(17)
$\mathrm{N}(3 \mathrm{~B})-\mathrm{P}(2)$	1.553(8)	$\mathrm{O}(1)-\mathrm{P}(1)$	$1.589(5)$
$\mathrm{O}(2)-\mathrm{P}(1)$	$1.604(5)$	$\mathrm{O}(3)-\mathrm{P}(2)$	$1.575(5)$
$\mathrm{O}(4)-\mathrm{P}(2)$	1.600(5)	$\mathrm{O}(5)-\mathrm{S}(1 \mathrm{~A})$	1.447 (8)
$\mathrm{O}(6)-\mathrm{S}(1 \mathrm{~A})$	1.434(7)	$\mathrm{O}(7)-\mathrm{S}(2 \mathrm{~A})$	1.615(16)
$\mathrm{O}(8)-\mathrm{S}(2 \mathrm{~A})$	1.386(18)	$\mathrm{F}(7)-\mathrm{S}(3)$	$1.576(6)$
$\mathrm{F}(8)-\mathrm{S}(3)$	1.596(7)	$\mathrm{F}(9)-\mathrm{S}(3)$	1.570(7)
$\mathrm{F}(10)-\mathrm{S}(3)$	1.568(7)	$\mathrm{F}(11)-\mathrm{S}(3)$	$1.577(6)$
$\mathrm{F}(12)-\mathrm{S}(4)$	1.553(7)	$\mathrm{F}(13)-\mathrm{S}(4)$	$1.575(8)$
$\mathrm{F}(14)-\mathrm{S}(4)$	1.539(10)	$F(15)-\mathrm{S}(4)$	1.580 (7)
$\mathrm{F}(16)-\mathrm{S}(4)$	1.578(9)	$\mathrm{F}(17)-\mathrm{S}(5)$	1.577(4)
$\mathrm{F}(18)-\mathrm{S}(5)$	1.583(5)	$\mathrm{F}(19)-\mathrm{S}(5)$	$1.584(5)$
$\mathrm{F}(20)-\mathrm{S}(5)$	$1.579(5)$	$\mathrm{F}(21)-\mathrm{S}(5)$	$1.564(5)$
$\mathrm{F}(22)$-S(6)	$1.570(5)$	$\mathrm{F}(23)-\mathrm{S}(6)$	$1.576(5)$
$\mathrm{F}(24)$-S(6)	$1.596(5)$	$\mathrm{F}(25)-\mathrm{S}(6)$	1.590 (5)
$\mathrm{F}(26)-\mathrm{S}(6)$	1.583(5)	F (27)-S(7)	1.578(8)
$\mathrm{F}(28)$-S(7)	1.645(12)	$\mathrm{F}(29)$-S(7)	1.570(12)
$\mathrm{F}(30)-\mathrm{S}(7)$	1.587(14)	$\mathrm{F}(31)-\mathrm{S}(7)$	1.583(14)
$\mathrm{F}(32)-\mathrm{S}(8)$	1.571(5)	$\mathrm{F}(33)-\mathrm{S}(8)$	1.577(5)
$\mathrm{F}(34)-\mathrm{S}(8)$	1.592(5)	$\mathrm{F}(35)-\mathrm{S}(8)$	1.583(5)
$\mathrm{F}(36)-\mathrm{S}(8)$	1.573(5)	F(37)-S(9)	$1.575(5)$
$\mathrm{F}(38)$-S(9)	1.581(5)	$\mathrm{F}(39)-\mathrm{S}(9)$	$1.587(5)$
F(40)-S(9)	$1.565(5)$	F(41)-S(9)	1.573(5)

$\mathrm{F}(42)-\mathrm{S}(10)$	1.574(5)	$\mathrm{F}(43)-\mathrm{S}(10)$	1.583(5)
$\mathrm{F}(44)-\mathrm{S}(10)$	$1.573(5)$	$\mathrm{F}(45)-\mathrm{S}(10)$	$1.576(5)$
F(46)-S(10)	1.584(5)	$\mathrm{Cl}(1)-\mathrm{Cl}(2)$	1.63(6)
$\mathrm{Cl}(3)-\mathrm{Cl}(4)$	2.41(3)	$\mathrm{Cl}(5)-\mathrm{Cl}(6)$	0.71(2)
$\mathrm{Cl}(6)-\mathrm{Cl}(7)$	2.24(3)	$\mathrm{Cl}(7)-\mathrm{Cl}(8)$	0.69(2)
$\mathrm{Cl}(9)-\mathrm{Cl}(12)$	1.41(3)	$\mathrm{Cl}(10)-\mathrm{Cl}(11)$	0.901(18)
$\mathrm{Cl}(10)-\mathrm{Cl}(12)$	2.46(3)	$\mathrm{Cl}(11)-\mathrm{Cl}(12)$	2.00 (3)
$\mathrm{F}(2)-\mathrm{C}(1)-\mathrm{F}(1)$	113.0(14)	$\mathrm{F}(2)-\mathrm{C}(1)-\mathrm{F}(3)$	110.8(12)
$\mathrm{F}(1)-\mathrm{C}(1)-\mathrm{F}(3)$	108.4(11)	$F(2)-C(1)-S(1 A)$	109.9(9)
$\mathrm{F}(1)-\mathrm{C}(1)-\mathrm{S}(1 \mathrm{~A})$	107.5(9)	$\mathrm{F}(3)-\mathrm{C}(1)-\mathrm{S}(1 \mathrm{~A})$	107.0(10)
$\mathrm{F}(6)-\mathrm{C}(2)-\mathrm{F}(4)$	115(2)	$\mathrm{F}(6)-\mathrm{C}(2)-\mathrm{F}(5)$	114(2)
$\mathrm{F}(4)-\mathrm{C}(2)-\mathrm{F}(5)$	111(2)	$\mathrm{F}(6)-\mathrm{C}(2)-\mathrm{S}(2 \mathrm{~A})$	107(2)
$\mathrm{F}(4)-\mathrm{C}(2)-\mathrm{S}(2 \mathrm{~A})$	106(2)	$F(5)-\mathrm{C}(2)-\mathrm{S}(2 \mathrm{~A})$	102(2)
$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{O}(1)$	119.5(6)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(12)$	123.6(7)
$\mathrm{O}(1)-\mathrm{C}(3)-\mathrm{C}(12)$	117.0(6)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	119.7(6)
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(20)$	120.2(6)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(20)$	119.9(6)
$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(10)$	119.4(6)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$	123.2(6)
$\mathrm{C}(10)-\mathrm{C}(5)-\mathrm{C}(4)$	117.3(6)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(5)$	120.6(7)
$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	120.6(7)	$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	119.8(7)
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	121.4(7)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	121.6(6)
$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(5)$	120.1(6)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(5)$	118.2(6)
$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(10)$	123.0(6)	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(3)$	116.2(7)
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	120.3(7)	$\mathrm{C}(3)-\mathrm{C}(12)-\mathrm{C}(13)$	123.5(6)
$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(14)$	118.5(7)	$\mathrm{C}(18)-\mathrm{C}(13)-\mathrm{C}(12)$	121.3(7)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	120.1(7)	$\mathrm{C}(15)-\mathrm{C}(14)-\mathrm{C}(13)$	119.3(8)
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	122.8(8)	$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{S}(3)$	118.9(7)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{S}(3)$	118.3(6)	$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	117.7(8)
$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	120.9(8)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{S}(4)$	120.4(7)
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{S}(4)$	118.7(7)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(13)$	120.7(8)
$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{O}(2)$	119.0(6)	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(28)$	123.6(6)
$\mathrm{O}(2)-\mathrm{C}(19)-\mathrm{C}(28)$	117.4(5)	$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(21)$	117.8(6)
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{C}(4)$	119.4(6)	$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(4)$	122.7(6)
$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(26)$	118.2(6)	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(20)$	122.5(6)
$\mathrm{C}(26)-\mathrm{C}(21)-\mathrm{C}(20)$	119.3(6)	$\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)$	121.5(7)
$\mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(24)$	119.3(7)	$\mathrm{C}(25)-\mathrm{C}(24)-\mathrm{C}(23)$	121.3(7)
$\mathrm{C}(24)-\mathrm{C}(25)-\mathrm{C}(26)$	120.4(7)	$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(27)$	121.5(6)
$\mathrm{C}(25)-\mathrm{C}(26)-\mathrm{C}(21)$	119.2(6)	$\mathrm{C}(27)-\mathrm{C}(26)-\mathrm{C}(21)$	119.3(6)
$\mathrm{C}(28)-\mathrm{C}(27)-\mathrm{C}(26)$	121.2(6)	$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(19)$	118.3(6)

$\mathrm{C}(27)-\mathrm{C}(28)-\mathrm{C}(29)$	120.2(6)	C (19)-C(28)-C(29)	120.9(6)
$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(34)$	119.1(6)	$\mathrm{C}(30)-\mathrm{C}(29)-\mathrm{C}(28)$	121.4(6)
C (34)-C(29)-C(28)	118.9(6)	$\mathrm{C}(29)-\mathrm{C}(30)-\mathrm{C}(31)$	120.0(6)
$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{C}(32)$	120.8(6)	$\mathrm{C}(30)-\mathrm{C}(31)-\mathrm{S}(5)$	121.1(5)
$\mathrm{C}(32)-\mathrm{C}(31)-\mathrm{S}(5)$	118.1(5)	$\mathrm{C}(33)-\mathrm{C}(32)-\mathrm{C}(31)$	118.3(7)
$\mathrm{C}(34)-\mathrm{C}(33)-\mathrm{C}(32)$	120.8(7)	C(34)-C(33)-S(6)	120.7(5)
$\mathrm{C}(32)-\mathrm{C}(33)-\mathrm{S}(6)$	118.4(6)	$\mathrm{C}(33)-\mathrm{C}(34)-\mathrm{C}(29)$	121.2(6)
$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(44)$	123.3(6)	$\mathrm{C}(36)-\mathrm{C}(35)-\mathrm{O}(3)$	118.2(6)
$\mathrm{C}(44)-\mathrm{C}(35)-\mathrm{O}(3)$	118.4(6)	$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(37)$	118.8(7)
$\mathrm{C}(35)-\mathrm{C}(36)-\mathrm{C}(52)$	119.4(6)	$\mathrm{C}(37)-\mathrm{C}(36)-\mathrm{C}(52)$	121.5(7)
$\mathrm{C}(42)-\mathrm{C}(37)-\mathrm{C}(38)$	119.1(7)	$\mathrm{C}(42)-\mathrm{C}(37)-\mathrm{C}(36)$	118.5(7)
$\mathrm{C}(38)-\mathrm{C}(37)-\mathrm{C}(36)$	122.2(7)	$\mathrm{C}(39)-\mathrm{C}(38)-\mathrm{C}(37)$	119.3(8)
$\mathrm{C}(38)-\mathrm{C}(39)-\mathrm{C}(40)$	121.2(8)	$\mathrm{C}(41)-\mathrm{C}(40)-\mathrm{C}(39)$	120.8(8)
$\mathrm{C}(40)-\mathrm{C}(41)-\mathrm{C}(42)$	121.1(8)	$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{C}(41)$	121.8(7)
$\mathrm{C}(43)-\mathrm{C}(42)-\mathrm{C}(37)$	119.9(7)	$\mathrm{C}(41)-\mathrm{C}(42)-\mathrm{C}(37)$	118.3(7)
$\mathrm{C}(44)-\mathrm{C}(43)-\mathrm{C}(42)$	121.8(7)	$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(35)$	117.3(7)
$\mathrm{C}(43)-\mathrm{C}(44)-\mathrm{C}(45)$	119.0(7)	$\mathrm{C}(35)-\mathrm{C}(44)-\mathrm{C}(45)$	123.6(7)
$\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{C}(50)$	119.7(8)	$\mathrm{C}(46)-\mathrm{C}(45)-\mathrm{C}(44)$	120.4(7)
$\mathrm{C}(50)-\mathrm{C}(45)-\mathrm{C}(44)$	119.9(7)	$\mathrm{C}(45)-\mathrm{C}(46)-\mathrm{C}(47)$	120.4(9)
$\mathrm{C}(48)-\mathrm{C}(47)-\mathrm{C}(46)$	120.5(9)	$\mathrm{C}(48)-\mathrm{C}(47)-\mathrm{S}(7)$	119.8(7)
$\mathrm{C}(46)-\mathrm{C}(47)-\mathrm{S}(7)$	119.7(8)	$\mathrm{C}(49)-\mathrm{C}(48)-\mathrm{C}(47)$	118.4(8)
$\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{C}(50)$	122.3(8)	$\mathrm{C}(48)-\mathrm{C}(49)-\mathrm{S}(8)$	119.5(6)
$\mathrm{C}(50)-\mathrm{C}(49)-\mathrm{S}(8)$	118.2(6)	$\mathrm{C}(49)-\mathrm{C}(50)-\mathrm{C}(45)$	118.7(7)
$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{O}(4)$	118.0(6)	$\mathrm{C}(52)-\mathrm{C}(51)-\mathrm{C}(60)$	123.1(7)
$\mathrm{O}(4)-\mathrm{C}(51)-\mathrm{C}(60)$	118.8(6)	$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(53)$	117.9(6)
$\mathrm{C}(51)-\mathrm{C}(52)-\mathrm{C}(36)$	119.7(7)	$\mathrm{C}(53)-\mathrm{C}(52)-\mathrm{C}(36)$	122.4(6)
$\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(54)$	121.5(7)	$\mathrm{C}(52)-\mathrm{C}(53)-\mathrm{C}(58)$	119.5(6)
$\mathrm{C}(54)-\mathrm{C}(53)-\mathrm{C}(58)$	118.9(7)	$\mathrm{C}(55)-\mathrm{C}(54)-\mathrm{C}(53)$	120.1(7)
$\mathrm{C}(56)-\mathrm{C}(55)-\mathrm{C}(54)$	119.7(7)	C (57)-C(56)-C(55)	121.6(7)
$\mathrm{C}(56)-\mathrm{C}(57)-\mathrm{C}(58)$	120.5(7)	$\mathrm{C}(59)-\mathrm{C}(58)-\mathrm{C}(57)$	122.8(6)
$\mathrm{C}(59)-\mathrm{C}(58)-\mathrm{C}(53)$	118.2(6)	$\mathrm{C}(57)-\mathrm{C}(58)-\mathrm{C}(53)$	119.0(7)
$\mathrm{C}(60)-\mathrm{C}(59)-\mathrm{C}(58)$	122.9(7)	$\mathrm{C}(59)-\mathrm{C}(60)-\mathrm{C}(51)$	117.4(6)
$\mathrm{C}(59)-\mathrm{C}(60)-\mathrm{C}(61)$	121.5(6)	$\mathrm{C}(51)-\mathrm{C}(60)-\mathrm{C}(61)$	120.8(6)
$\mathrm{C}(66)-\mathrm{C}(61)-\mathrm{C}(62)$	120.3(7)	$\mathrm{C}(66)-\mathrm{C}(61)-\mathrm{C}(60)$	120.7(6)
$\mathrm{C}(62)-\mathrm{C}(61)-\mathrm{C}(60)$	118.7(6)	$\mathrm{C}(63)-\mathrm{C}(62)-\mathrm{C}(61)$	119.9(6)
$\mathrm{C}(62)-\mathrm{C}(63)-\mathrm{C}(64)$	122.3(6)	$\mathrm{C}(62)-\mathrm{C}(63)-\mathrm{S}(9)$	118.9(5)
$\mathrm{C}(64)-\mathrm{C}(63)-\mathrm{S}(9)$	118.7(5)	$\mathrm{C}(63)-\mathrm{C}(64)-\mathrm{C}(65)$	116.5(7)
$\mathrm{C}(64)-\mathrm{C}(65)-\mathrm{C}(66)$	123.0(7)	$\mathrm{C}(64)-\mathrm{C}(65)-\mathrm{S}(10)$	117.2(5)
$\mathrm{C}(66)-\mathrm{C}(65)-\mathrm{S}(10)$	119.7(5)	$\mathrm{C}(61)-\mathrm{C}(66)-\mathrm{C}(65)$	117.9(7)

$\mathrm{C}(67)-\mathrm{C}(68)-\mathrm{Cl}(10)$	96(3)	$\mathrm{C}(70)-\mathrm{C}(71)-\mathrm{C}(72)$	116(3)
$\mathrm{C}(70)-\mathrm{C}(71)-\mathrm{C}(69)$	115(3)	$\mathrm{C}(72)-\mathrm{C}(71)-\mathrm{C}(69)$	102(3)
$\mathrm{C}(71)-\mathrm{C}(72)-\mathrm{C}(73)$	117(2)	$\mathrm{C}(71)-\mathrm{C}(72)-\mathrm{C}(96)$	173(3)
$\mathrm{C}(73)-\mathrm{C}(72)-\mathrm{C}(96)$	56(2)	$\mathrm{C}(72)-\mathrm{C}(73)-\mathrm{C}(78)$	121(2)
$\mathrm{C}(72)-\mathrm{C}(73)-\mathrm{C}(96)$	78(2)	$\mathrm{C}(78)-\mathrm{C}(73)-\mathrm{C}(96)$	46(2)
$\mathrm{C}(81)-\mathrm{C}(74)-\mathrm{Cl}(6)$	78(3)	$\mathrm{C}(81)-\mathrm{C}(74)-\mathrm{C}(99)$	135(5)
$\mathrm{Cl}(6)-\mathrm{C}(74)-\mathrm{C}(99)$	72(4)	$\mathrm{C}(81)-\mathrm{C}(74)-\mathrm{Cl}(5)$	88(3)
$\mathrm{C}(99)-\mathrm{C}(74)-\mathrm{Cl}(5)$	77(4)	$\mathrm{C}(81)-\mathrm{C}(74)-\mathrm{Cl}(7)$	55(2)
$\mathrm{Cl}(6)-\mathrm{C}(74)-\mathrm{Cl}(7)$	87(2)	$\mathrm{C}(99)-\mathrm{C}(74)-\mathrm{Cl}(7)$	90(4)
$\mathrm{Cl}(5)-\mathrm{C}(74)-\mathrm{Cl}(7)$	109.3(19)	$\mathrm{C}(81)-\mathrm{C}(74)-\mathrm{Cl}(8)$	71(2)
$\mathrm{Cl}(6)-\mathrm{C}(74)-\mathrm{Cl}(8)$	105(2)	$\mathrm{C}(99)-\mathrm{C}(74)-\mathrm{Cl}(8)$	84(4)
$\mathrm{Cl}(5)-\mathrm{C}(74)-\mathrm{Cl}(8)$	127(2)	$\mathrm{C}(87)-\mathrm{C}(76)-\mathrm{C}(75)$	79(10)
$\mathrm{Cl}(1)-\mathrm{C}(77)-\mathrm{Cl}(2)$	102(6)	$\mathrm{C}(96)-\mathrm{C}(78)-\mathrm{C}(73)$	67(3)
C(86)-C(80)-C(81)	93(6)	$\mathrm{C}(74)-\mathrm{C}(81)-\mathrm{Cl}(7)$	85(3)
$\mathrm{C}(74)-\mathrm{C}(81)-\mathrm{Cl}(6)$	58(2)	$\mathrm{Cl}(7)-\mathrm{C}(81)-\mathrm{Cl}(6)$	91(2)
$\mathrm{C}(74)-\mathrm{C}(81)-\mathrm{C}(80)$	145(4)	$\mathrm{Cl}(7)-\mathrm{C}(81)-\mathrm{C}(80)$	121(3)
$\mathrm{Cl}(6)-\mathrm{C}(81)-\mathrm{C}(80)$	96(2)	$\mathrm{C}(74)-\mathrm{C}(81)-\mathrm{Cl}(8)$	74(2)
$\mathrm{Cl}(6)-\mathrm{C}(81)-\mathrm{Cl}(8)$	97.5(19)	$\mathrm{C}(80)-\mathrm{C}(81)-\mathrm{Cl}(8)$	137(3)
$\mathrm{C}(74)-\mathrm{C}(81)-\mathrm{Cl}(5)$	58(2)	$\mathrm{Cl}(7)-\mathrm{C}(81)-\mathrm{Cl}(5)$	108.4(19)
$\mathrm{C}(80)-\mathrm{C}(81)-\mathrm{Cl}(5)$	90(2)	$\mathrm{Cl}(8)-\mathrm{C}(81)-\mathrm{Cl}(5)$	112.5(17)
C(85)-C(82)-C(89)	85(4)	C(88)-C(83)-C(85)	66(7)
C(88)-C(83)-C(89)	150(10)	C(85)-C(83)-C(89)	139(10)
C(88)-C(83)-C(82)	120(8)	C(85)-C(83)-C(82)	62(5)
C(89)-C(83)-C(82)	78(6)	C(88)-C(83)-C(84)	45(4)
C(85)-C(83)-C(84)	108(7)	C(89)-C(83)-C(84)	105(7)
$\mathrm{C}(82)-\mathrm{C}(83)-\mathrm{C}(84)$	138(5)	$\mathrm{C}(88)-\mathrm{C}(84)-\mathrm{C}(79)$	144(6)
$\mathrm{C}(79)-\mathrm{C}(84)-\mathrm{C}(83)$	170(6)	C(83)-C(85)-C(88)	54(5)
C(83)-C(85)-C(82)	76(6)	$\mathrm{C}(88)-\mathrm{C}(85)-\mathrm{C}(82)$	123(5)
$\mathrm{C}(83)-\mathrm{C}(85)-\mathrm{C}(90)$	99(6)	$\mathrm{C}(88)-\mathrm{C}(85)-\mathrm{C}(90)$	123(5)
$\mathrm{C}(82)-\mathrm{C}(85)-\mathrm{C}(90)$	87(4)	$\mathrm{C}(80)-\mathrm{C}(86)-\mathrm{Cl}(5)$	94(6)
$\mathrm{C}(76)-\mathrm{C}(87)-\mathrm{C}(75)$	71(10)	C(83)-C(88)-C(85)	60(5)
C(83)-C(88)-C(84)	99(7)	$\mathrm{C}(85)-\mathrm{C}(88)-\mathrm{C}(84)$	152(6)
C(83)-C(89)-C(82)	60(5)	$\mathrm{C}(94)-\mathrm{C}(91)-\mathrm{C}(92)$	54(5)
C(94)-C(91)-C(97)	135(8)	$\mathrm{C}(92)-\mathrm{C}(91)-\mathrm{C}(97)$	81(6)
C(94)-C(91)-C(95)	102(7)	$\mathrm{C}(92)-\mathrm{C}(91)-\mathrm{C}(95)$	49(4)
$\mathrm{C}(94)-\mathrm{C}(92)-\mathrm{C}(98)$	146(8)	$\mathrm{C}(94)-\mathrm{C}(92)-\mathrm{C}(95)$	126(6)
C(94)-C(92)-C(91)	51(5)	$\mathrm{C}(98)-\mathrm{C}(92)-\mathrm{C}(91)$	114(7)
$\mathrm{C}(95)-\mathrm{C}(92)-\mathrm{C}(91)$	77(5)	$\mathrm{C}(94)-\mathrm{C}(92)-\mathrm{C}(93)$	98(5)
C(98)-C(92)-C(93)	58(6)	C(95)-C(92)-C(93)	89(4)

$\mathrm{C}(91)-\mathrm{C}(92)-\mathrm{C}(93)$	113(6)	$\mathrm{C}(98)-\mathrm{C}(93)-\mathrm{C}(92)$	47(5)
$\mathrm{C}(91)-\mathrm{C}(94)-\mathrm{C}(92)$	75(6)	C(98)-C(95)-C(97)	167(10)
$\mathrm{C}(98)-\mathrm{C}(95)-\mathrm{Cl}(2)$	64(8)	$\mathrm{C}(97)-\mathrm{C}(95)-\mathrm{Cl}(2)$	108(6)
$\mathrm{C}(98)-\mathrm{C}(95)-\mathrm{C}(92)$	67(8)	$\mathrm{C}(97)-\mathrm{C}(95)-\mathrm{C}(92)$	113(6)
$\mathrm{Cl}(2)-\mathrm{C}(95)-\mathrm{C}(92)$	117(5)	C(98)-C(95)-C(91)	115(9)
C(97)-C(95)-C(91)	70(5)	$\mathrm{Cl}(2)-\mathrm{C}(95)-\mathrm{C}(91)$	165(5)
$\mathrm{C}(92)-\mathrm{C}(95)-\mathrm{C}(91)$	54(4)	C (78)-C(96)-C(73)	66(3)
$\mathrm{C}(78)-\mathrm{C}(96)-\mathrm{C}(72)$	110(4)	C (73)-C(96)-C(72)	46.1(17)
$\mathrm{C}(95)-\mathrm{C}(97)-\mathrm{C}(91)$	71(6)	$\mathrm{C}(91)-\mathrm{C}(97)-\mathrm{Cl}(2)$	106(6)
$\mathrm{C}(95)-\mathrm{C}(98)-\mathrm{Cl}(2)$	68(9)	C(95)-C(98)-C(92)	72(8)
$\mathrm{Cl}(2)-\mathrm{C}(98)-\mathrm{C}(92)$	123(10)	C(95)-C(98)-C(93)	123(10)
$\mathrm{Cl}(2)-\mathrm{C}(98)-\mathrm{C}(93)$	161(10)	C (92)-C(98)-C(93)	$75(8)$
$\mathrm{C}(74)-\mathrm{C}(99)-\mathrm{Cl}(6)$	51(3)	$\mathrm{C}(74)-\mathrm{C}(99)-\mathrm{Cl}(5)$	57(4)
$\mathrm{P}(2)-\mathrm{N}(1)-\mathrm{P}(1)$	157.1(5)	$\mathrm{S}(1 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{P}(1)$	133.1(5)
$\mathrm{S}(1 \mathrm{~B})-\mathrm{N}(2 \mathrm{~B})-\mathrm{P}(1)$	171.2(9)	$\mathrm{S}(2 \mathrm{~A})-\mathrm{N}(3 \mathrm{~A})-\mathrm{P}(2)$	142.2(7)
$\mathrm{S}(2 \mathrm{~B})-\mathrm{N}(3 \mathrm{~B})-\mathrm{P}(2)$	164.4(12)	$\mathrm{C}(3)-\mathrm{O}(1)-\mathrm{P}(1)$	120.9(4)
$\mathrm{C}(19)-\mathrm{O}(2)-\mathrm{P}(1)$	116.1(4)	$\mathrm{C}(35)-\mathrm{O}(3)-\mathrm{P}(2)$	119.2(5)
$\mathrm{C}(51)-\mathrm{O}(4)-\mathrm{P}(2)$	115.8(4)	$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{N}(2 \mathrm{~B})$	113.6(4)
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{N}(2 \mathrm{~A})$	113.6(4)	$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{O}(1)$	106.3(3)
$\mathrm{N}(2 \mathrm{~B})-\mathrm{P}(1)-\mathrm{O}(1)$	112.5(4)	$\mathrm{N}(2 \mathrm{~A})-\mathrm{P}(1)-\mathrm{O}(1)$	112.5(4)
$\mathrm{N}(1)-\mathrm{P}(1)-\mathrm{O}(2)$	112.2(3)	$\mathrm{N}(2 \mathrm{~B})-\mathrm{P}(1)-\mathrm{O}(2)$	107.9(3)
$\mathrm{N}(2 \mathrm{~A})-\mathrm{P}(1)-\mathrm{O}(2)$	107.9(3)	$\mathrm{O}(1)-\mathrm{P}(1)-\mathrm{O}(2)$	104.1(3)
$\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{N}(3 \mathrm{~B})$	123.0(4)	$\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{N}(3 \mathrm{~A})$	123.0(4)
$\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{O}(3)$	106.3(3)	$\mathrm{N}(3 \mathrm{~B})-\mathrm{P}(2)-\mathrm{O}(3)$	107.3(4)
$\mathrm{N}(3 \mathrm{~A})-\mathrm{P}(2)-\mathrm{O}(3)$	107.3(4)	$\mathrm{N}(1)-\mathrm{P}(2)-\mathrm{O}(4)$	110.6(3)
$\mathrm{N}(3 \mathrm{~B})-\mathrm{P}(2)-\mathrm{O}(4)$	104.0(4)	$\mathrm{N}(3 \mathrm{~A})-\mathrm{P}(2)-\mathrm{O}(4)$	104.0(4)
$\mathrm{O}(3)-\mathrm{P}(2)-\mathrm{O}(4)$	104.3(3)	$\mathrm{O}(6)-\mathrm{S}(1 \mathrm{~A})-\mathrm{O}(5)$	117.8(5)
$\mathrm{O}(6)-\mathrm{S}(1 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})$	113.8(4)	$\mathrm{O}(5)-\mathrm{S}(1 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})$	110.9(5)
$\mathrm{O}(6)-\mathrm{S}(1 \mathrm{~A})-\mathrm{C}(1)$	105.4(6)	$\mathrm{O}(5)-\mathrm{S}(1 \mathrm{~A})-\mathrm{C}(1)$	103.4(6)
$\mathrm{N}(2 \mathrm{~A})-\mathrm{S}(1 \mathrm{~A})-\mathrm{C}(1)$	103.6(5)	$\mathrm{N}(2 \mathrm{~B})-\mathrm{S}(1 \mathrm{~B})-\mathrm{C}(1)$	109.1(12)
$\mathrm{F}(10)-\mathrm{S}(3)-\mathrm{F}(9)$	90.3(4)	$F(10)-S(3)-F(7)$	87.9(4)
$\mathrm{F}(9)-\mathrm{S}(3)-\mathrm{F}(7)$	87.8(3)	$\mathrm{F}(10)-\mathrm{S}(3)-\mathrm{F}(11)$	90.5(4)
$F(9)-S(3)-\mathrm{F}(11)$	175.9(3)	$F(7)-S(3)-F(11)$	88.2(3)
$\mathrm{F}(10)-\mathrm{S}(3)-\mathrm{F}(8)$	176.0(3)	$\mathrm{F}(9)-\mathrm{S}(3)-\mathrm{F}(8)$	89.8(4)
$\mathrm{F}(7)-\mathrm{S}(3)-\mathrm{F}(8)$	88.0(4)	$F(11)-S(3)-F(8)$	89.1(4)
$F(10)-S(3)-C(15)$	92.1(4)	$F(9)-S(3)-C(15)$	91.9(4)
$F(7)-S(3)-C(15)$	179.7(4)	$\mathrm{F}(11)-\mathrm{S}(3)-\mathrm{C}(15)$	92.1(3)
$\mathrm{F}(8)-\mathrm{S}(3)-\mathrm{C}(15)$	91.9(4)	$\mathrm{O}(8)-\mathrm{S}(2 \mathrm{~A})-\mathrm{N}(3 \mathrm{~A})$	119.4(9)
$\mathrm{O}(8)-\mathrm{S}(2 \mathrm{~A})-\mathrm{O}(7)$	123.2(10)	$\mathrm{N}(3 \mathrm{~A})-\mathrm{S}(2 \mathrm{~A})-\mathrm{O}(7)$	110.7(6)

$\mathrm{O}(8)-\mathrm{S}(2 \mathrm{~A})-\mathrm{C}(2)$	103.3(13)	$\mathrm{N}(3 \mathrm{~A})-\mathrm{S}(2 \mathrm{~A})-\mathrm{C}(2)$	96.7(8)
$\mathrm{O}(7)-\mathrm{S}(2 \mathrm{~A})-\mathrm{C}(2)$	95.5(9)	$\mathrm{N}(3 \mathrm{~B})-\mathrm{S}(2 \mathrm{~B})-\mathrm{C}(2)$	117.3(16)
$\mathrm{F}(14)-\mathrm{S}(4)-\mathrm{F}(12)$	87.7(5)	$\mathrm{F}(14)-\mathrm{S}(4)-\mathrm{F}(13)$	88.7(5)
$F(12)-S(4)-F(13)$	88.8(4)	$F(14)-S(4)-F(16)$	175.8(5)
$\mathrm{F}(12)-\mathrm{S}(4)-\mathrm{F}(16)$	88.3(5)	$\mathrm{F}(13)-\mathrm{S}(4)-\mathrm{F}(16)$	90.0(5)
$\mathrm{F}(14)-\mathrm{S}(4)-\mathrm{F}(15)$	91.8(5)	$\mathrm{F}(12)-\mathrm{S}(4)-\mathrm{F}(15)$	87.2(4)
$\mathrm{F}(13)-\mathrm{S}(4)-\mathrm{F}(15)$	176.0(4)	$\mathrm{F}(16)-\mathrm{S}(4)-\mathrm{F}(15)$	89.2(4)
$\mathrm{F}(14)-\mathrm{S}(4)-\mathrm{C}(17)$	92.2(4)	$\mathrm{F}(12)-\mathrm{S}(4)-\mathrm{C}(17)$	179.4(5)
$\mathrm{F}(13)-\mathrm{S}(4)-\mathrm{C}(17)$	91.7(4)	$\mathrm{F}(16)-\mathrm{S}(4)-\mathrm{C}(17)$	91.8(4)
$\mathrm{F}(15)-\mathrm{S}(4)-\mathrm{C}(17)$	92.2(4)	$\mathrm{F}(21)-\mathrm{S}(5)-\mathrm{F}(17)$	87.9(3)
$\mathrm{F}(21)-\mathrm{S}(5)-\mathrm{F}(20)$	90.2(3)	$F(17)-S(5)-F(20)$	88.0(2)
$\mathrm{F}(21)-\mathrm{S}(5)-\mathrm{F}(18)$	90.6(3)	$\mathrm{F}(17)-\mathrm{S}(5)-\mathrm{F}(18)$	88.0(2)
$F(20)-S(5)-F(18)$	175.8(3)	$\mathrm{F}(21)-\mathrm{S}(5)-\mathrm{F}(19)$	175.2(2)
$F(17)-S(5)-F(19)$	87.3(3)	$\mathrm{F}(20)-\mathrm{S}(5)-\mathrm{F}(19)$	89.5(3)
$\mathrm{F}(18)-\mathrm{S}(5)-\mathrm{F}(19)$	89.3(3)	$\mathrm{F}(21)-\mathrm{S}(5)-\mathrm{C}(31)$	92.5(3)
$\mathrm{F}(17)-\mathrm{S}(5)-\mathrm{C}(31)$	179.5(3)	$\mathrm{F}(20)-\mathrm{S}(5)-\mathrm{C}(31)$	92.4(3)
$\mathrm{F}(18)-\mathrm{S}(5)-\mathrm{C}(31)$	91.7(3)	$\mathrm{F}(19)-\mathrm{S}(5)-\mathrm{C}(31)$	92.3(3)
$\mathrm{F}(22)-\mathrm{S}(6)-\mathrm{F}(23)$	88.3(3)	$\mathrm{F}(22)-\mathrm{S}(6)-\mathrm{F}(26)$	87.8(3)
$\mathrm{F}(23)-\mathrm{S}(6)-\mathrm{F}(26)$	89.9(3)	$\mathrm{F}(22)-\mathrm{S}(6)-\mathrm{F}(25)$	87.1(3)
$F(23)-S(6)-F(25)$	175.4(3)	$\mathrm{F}(26)-\mathrm{S}(6)-\mathrm{F}(25)$	89.7(3)
$\mathrm{F}(22)-\mathrm{S}(6)-\mathrm{F}(24)$	87.4(3)	$\mathrm{F}(23)-\mathrm{S}(6)-\mathrm{F}(24)$	90.5(3)
$\mathrm{F}(26)-\mathrm{S}(6)-\mathrm{F}(24)$	175.2(3)	$\mathrm{F}(25)-\mathrm{S}(6)-\mathrm{F}(24)$	89.6(3)
$\mathrm{F}(22)-\mathrm{S}(6)-\mathrm{C}(33)$	179.2(4)	$\mathrm{F}(23)-\mathrm{S}(6)-\mathrm{C}(33)$	92.5(3)
$\mathrm{F}(26)-\mathrm{S}(6)-\mathrm{C}(33)$	92.1(3)	$\mathrm{F}(25)-\mathrm{S}(6)-\mathrm{C}(33)$	92.0(3)
$\mathrm{F}(24)-\mathrm{S}(6)-\mathrm{C}(33)$	92.6(3)	$\mathrm{F}(29)-\mathrm{S}(7)-\mathrm{F}(27)$	88.5(6)
$\mathrm{F}(29)-\mathrm{S}(7)-\mathrm{F}(31)$	177.2(5)	$\mathrm{F}(27)-\mathrm{S}(7)-\mathrm{F}(31)$	88.7(7)
$\mathrm{F}(29)-\mathrm{S}(7)-\mathrm{F}(30)$	90.1(6)	$F(27)-S(7)-F(30)$	87.0(7)
$\mathrm{F}(31)-\mathrm{S}(7)-\mathrm{F}(30)$	89.6(8)	$\mathrm{F}(29)-\mathrm{S}(7)-\mathrm{F}(28)$	89.4(7)
$\mathrm{F}(27)-\mathrm{S}(7)-\mathrm{F}(28)$	90.3(7)	$\mathrm{F}(31)-\mathrm{S}(7)-\mathrm{F}(28)$	90.8(6)
$\mathrm{F}(30)-\mathrm{S}(7)-\mathrm{F}(28)$	177.2(5)	$\mathrm{F}(29)-\mathrm{S}(7)-\mathrm{C}(47)$	92.3(5)
$\mathrm{F}(27)-\mathrm{S}(7)-\mathrm{C}(47)$	178.1(10)	$\mathrm{F}(31)-\mathrm{S}(7)-\mathrm{C}(47)$	90.5(5)
$\mathrm{F}(30)-\mathrm{S}(7)-\mathrm{C}(47)$	91.3(5)	$\mathrm{F}(28)-\mathrm{S}(7)-\mathrm{C}(47)$	91.4(5)
$\mathrm{F}(32)-\mathrm{S}(8)-\mathrm{F}(36)$	88.3(3)	$\mathrm{F}(32)-\mathrm{S}(8)-\mathrm{F}(33)$	88.3(3)
$F(36)-S(8)-F(33)$	90.7(3)	$F(32)-S(8)-\mathrm{F}(35)$	87.4(3)
$F(36)-S(8)-F(35)$	89.3(3)	$F(33)-S(8)-F(35)$	175.7(3)
$F(32)-S(8)-F(34)$	87.6(3)	$F(36)-S(8)-F(34)$	175.9(3)
$F(33)-S(8)-F(34)$	89.8(3)	$F(35)-S(8)-F(34)$	89.9(3)
$\mathrm{F}(32)-\mathrm{S}(8)-\mathrm{C}(49)$	179.6(4)	F(36)-S(8)-C(49)	92.0(3)
$\mathrm{F}(33)-\mathrm{S}(8)-\mathrm{C}(49)$	91.8(3)	$\mathrm{F}(35)-\mathrm{S}(8)-\mathrm{C}(49)$	92.5(3)

$\mathrm{F}(34)-\mathrm{S}(8)-\mathrm{C}(49)$	$92.1(3)$
$\mathrm{F}(40)-\mathrm{S}(9)-\mathrm{F}(37)$	$88.6(3)$
$\mathrm{F}(40)-\mathrm{S}(9)-\mathrm{F}(38)$	$176.2(3)$
$\mathrm{F}(37)-\mathrm{S}(9)-\mathrm{F}(38)$	$87.6(3)$
$\mathrm{F}(41)-\mathrm{S}(9)-\mathrm{F}(39)$	$176.1(3)$
$\mathrm{F}(38)-\mathrm{S}(9)-\mathrm{F}(39)$	$89.4(3)$
$\mathrm{F}(41)-\mathrm{S}(9)-\mathrm{C}(63)$	$92.0(3)$
$\mathrm{F}(38)-\mathrm{S}(9)-\mathrm{C}(63)$	$91.6(3)$
$\mathrm{F}(44)-\mathrm{S}(10)-\mathrm{F}(42)$	$88.4(3)$
$\mathrm{F}(42)-\mathrm{S}(10)-\mathrm{F}(45)$	$87.2(3)$
$\mathrm{F}(42)-\mathrm{S}(10)-\mathrm{F}(43)$	$88.6(3)$
$\mathrm{F}(44)-\mathrm{S}(10)-\mathrm{F}(46)$	$176.3(3)$
$\mathrm{F}(45)-\mathrm{S}(10)-\mathrm{F}(46)$	$89.8(3)$
$\mathrm{F}(44)-\mathrm{S}(10)-\mathrm{C}(65)$	$91.8(3)$
$\mathrm{F}(45)-\mathrm{S}(10)-\mathrm{C}(65)$	$91.8(3)$
$\mathrm{F}(46)-\mathrm{S}(10)-\mathrm{C}(65)$	$91.9(3)$
$\mathrm{C}(98)-\mathrm{Cl}(2)-\mathrm{C}(95)$	$48(6)$
$\mathrm{C}(95)-\mathrm{Cl}(2)-\mathrm{C}(77)$	$125(5)$
$\mathrm{C}(95)-\mathrm{Cl}(2)-\mathrm{Cl}(1)$	$117(4)$
$\mathrm{C}(77)-\mathrm{Cl}(2)-\mathrm{C}(97)$	$100(4)$
$\mathrm{Cl}(6)-\mathrm{Cl}(5)-\mathrm{C}(74)$	$49(2)$
$\mathrm{C}(74)-\mathrm{Cl}(5)-\mathrm{C}(99)$	$46(3)$
$\mathrm{Cl}(6)-\mathrm{Cl}(5)-\mathrm{C}(86)$	$95(4)$
$\mathrm{C}(99)-\mathrm{Cl}(5)-\mathrm{C}(86)$	$134(4)$
$\mathrm{Cl}(5)-\mathrm{Cl}(6)-\mathrm{C}(74)$	$109(3)$
$\mathrm{Cl}(5)-\mathrm{Cl}(6)-\mathrm{C}(99)$	$108(4)$
$\mathrm{C}(81)-\mathrm{Cl}(6)-\mathrm{C}(99)$	$95(4)$
$\mathrm{C}(74)-\mathrm{Cl}(6)-\mathrm{Cl}(7)$	$53.2(16)$
$\mathrm{Cl}(8)-\mathrm{Cl}(7)-\mathrm{C}(81)$	$120(3)$
$\mathrm{Cl}(8)-\mathrm{Cl}(7)-\mathrm{Cl}(6)$	$124(3)$
$\mathrm{Cl}(7)-\mathrm{Cl}(8)-\mathrm{C}(74)$	$67(2)$
$\mathrm{Cl}(11)-\mathrm{Cl}(10)-\mathrm{Cl}(12)$	$49.7(16)$
$\mathrm{Cl}(10)-\mathrm{Cl}(11)-\mathrm{Cl}(12)$	$110(2)$
$\mathrm{Cl}(9)-\mathrm{Cl}(12)-\mathrm{Cl}(10)$	$118.6(19)$

$\mathrm{F}(40)-\mathrm{S}(9)-\mathrm{F}(41)$	$90.7(3)$
$\mathrm{F}(41)-\mathrm{S}(9)-\mathrm{F}(37)$	$88.7(3)$
$\mathrm{F}(41)-\mathrm{S}(9)-\mathrm{F}(38)$	$89.2(3)$
$\mathrm{F}(40)-\mathrm{S}(9)-\mathrm{F}(39)$	$90.4(3)$
$\mathrm{F}(37)-\mathrm{S}(9)-\mathrm{F}(39)$	$87.6(3)$
$\mathrm{F}(40)-\mathrm{S}(9)-\mathrm{C}(63)$	$92.2(3)$
$\mathrm{F}(37)-\mathrm{S}(9)-\mathrm{C}(63)$	$178.9(3)$
$\mathrm{F}(39)-\mathrm{S}(9)-\mathrm{C}(63)$	$91.7(3)$
$\mathrm{F}(44)-\mathrm{S}(10)-\mathrm{F}(45)$	$89.9(3)$
$\mathrm{F}(44)-\mathrm{S}(10)-\mathrm{F}(43)$	$90.7(3)$
$\mathrm{F}(45)-\mathrm{S}(10)-\mathrm{F}(43)$	$175.8(3)$
$\mathrm{F}(42)-\mathrm{S}(10)-\mathrm{F}(46)$	$87.9(3)$
$\mathrm{F}(43)-\mathrm{S}(10)-\mathrm{F}(46)$	$89.4(3)$
$\mathrm{F}(42)-\mathrm{S}(10)-\mathrm{C}(65)$	$179.0(4)$
$\mathrm{F}(43)-\mathrm{S}(10)-\mathrm{C}(65)$	$92.4(3)$
$\mathrm{C}(77)-\mathrm{Cl}(1)-\mathrm{Cl}(2)$	$53(5)$
$\mathrm{C}(98)-\mathrm{Cl}(2)-\mathrm{C}(77)$	$147(8)$
$\mathrm{C}(98)-\mathrm{Cl}(2)-\mathrm{Cl}(1)$	$161(8)$
$\mathrm{C}(98)-\mathrm{Cl}(2)-\mathrm{C}(97)$	$83(7)$
$\mathrm{Cl}(1)-\mathrm{Cl}(2)-\mathrm{C}(97)$	$84(4)$
$\mathrm{Cl}(6)-\mathrm{Cl}(5)-\mathrm{C}(99)$	$53(3)$
$\mathrm{C}(99)-\mathrm{Cl}(5)-\mathrm{C}(81)$	$74(3)$
$\mathrm{C}(74)-\mathrm{Cl}(5)-\mathrm{C}(86)$	$88(3)$
$\mathrm{C}(81)-\mathrm{Cl}(5)-\mathrm{C}(86)$	$61(3)$
$\mathrm{Cl}(5)-\mathrm{Cl}(6)-\mathrm{C}(81)$	$120(3)$
$\mathrm{C}(74)-\mathrm{Cl}(6)-\mathrm{C}(99)$	$57(4)$
$\mathrm{Cl}(5)-\mathrm{Cl}(6)-\mathrm{Cl}(7)$	$159(3)$
$\mathrm{C}(99)-\mathrm{Cl}(6)-\mathrm{Cl}(7)$	$72(4)$
$\mathrm{Cl}(8)-\mathrm{Cl}(7)-\mathrm{C}(74)$	$92(3)$
$\mathrm{C}(81)-\mathrm{Cl}(7)-\mathrm{Cl}(6)$	$47.3(14)$
$\mathrm{Cl}(11)-\mathrm{Cl}(10)-\mathrm{C}(68)$	$115(2)$
$\mathrm{C}(68)-\mathrm{Cl}(10)-\mathrm{Cl}(12)$	$69.6(15)$
$\mathrm{Cl}(9)-\mathrm{Cl}(12)-\mathrm{Cl}(11)$	$100.4(19)$

Anisotropic displacement parameters ($\AA^{\mathbf{2}}$).
The anisotropic displacement factor exponent takes the form:

```
\(-2 \pi^{2}\left[h^{2} a^{*}{ }^{2} \mathrm{U}_{11}+\ldots+2 \mathrm{hk} \mathrm{a}{ }^{*} \mathrm{~b}^{*} \mathrm{U}_{12}\right]\).
```

U_{11}	U_{22}	U_{33}	U_{23}	U_{13}	U_{12}

$\mathrm{C}(1)$	$0.064(8)$	$0.109(12)$	$0.031(7)$	$0.001(7)$	$0.005(6)$	$-0.009(8)$
$\mathrm{C}(2)$	$0.204(17)$	$0.197(17)$	$0.209(17)$	$-0.002(7)$	$-0.011(7)$	$0.015(7)$
$\mathrm{C}(3)$	$0.031(4)$	$0.026(4)$	$0.024(4)$	$0.004(3)$	$-0.002(3)$	$0.000(3)$
$\mathrm{C}(4)$	$0.025(3)$	$0.032(4)$	$0.019(4)$	$0.003(3)$	$-0.002(3)$	$0.000(3)$
$\mathrm{C}(5)$	$0.025(3)$	$0.034(4)$	$0.020(4)$	$0.006(3)$	$0.001(3)$	$-0.001(3)$
$\mathrm{C}(6)$	$0.034(4)$	$0.039(4)$	$0.019(4)$	$0.002(3)$	$0.003(3)$	$-0.001(3)$
$\mathrm{C}(7)$	$0.038(4)$	$0.035(4)$	$0.027(4)$	$0.000(3)$	$0.006(3)$	$-0.011(3)$
$\mathrm{C}(8)$	$0.034(4)$	$0.051(5)$	$0.026(4)$	$-0.007(3)$	$0.007(3)$	$-0.015(4)$
$\mathrm{C}(9)$	$0.026(4)$	$0.047(5)$	$0.019(4)$	$-0.004(3)$	$0.006(3)$	$-0.006(3)$
$\mathrm{C}(10)$	$0.022(3)$	$0.038(4)$	$0.020(4)$	$0.000(3)$	$-0.002(3)$	$-0.001(3)$
$\mathrm{C}(11)$	$0.019(3)$	$0.039(4)$	$0.025(4)$	$0.004(3)$	$-0.003(3)$	$-0.002(3)$
$\mathrm{C}(12)$	$0.030(4)$	$0.036(4)$	$0.024(4)$	$0.000(3)$	$0.000(3)$	$0.002(3)$
$\mathrm{C}(13)$	$0.035(4)$	$0.030(4)$	$0.029(4)$	$0.002(3)$	$0.001(3)$	$0.005(3)$
$\mathrm{C}(14)$	$0.034(4)$	$0.041(5)$	$0.042(5)$	$-0.003(3)$	$0.001(3)$	$0.000(3)$
$\mathrm{C}(15)$	$0.039(4)$	$0.038(5)$	$0.052(6)$	$-0.006(4)$	$0.003(4)$	$0.002(4)$
$\mathrm{C}(16)$	$0.060(6)$	$0.032(4)$	$0.062(6)$	$0.003(4)$	$0.017(5)$	$0.003(4)$
$\mathrm{C}(17)$	$0.052(5)$	$0.035(5)$	$0.059(6)$	$0.006(4)$	$0.009(4)$	$0.005(4)$
$\mathrm{C}(18)$	$0.047(5)$	$0.036(4)$	$0.040(5)$	$0.003(3)$	$0.006(4)$	$0.009(4)$
$\mathrm{C}(19)$	$0.025(3)$	$0.028(4)$	$0.018(3)$	$-0.001(3)$	$-0.002(3)$	$0.001(3)$
$\mathrm{C}(20)$	$0.024(3)$	$0.030(4)$	$0.024(4)$	$0.003(3)$	$-0.005(3)$	$-0.001(3)$
$\mathrm{C}(21)$	$0.026(3)$	$0.027(4)$	$0.028(4)$	$0.004(3)$	$-0.004(3)$	$-0.003(3)$
$\mathrm{C}(22)$	$0.033(4)$	$0.039(4)$	$0.018(4)$	$0.004(3)$	$0.002(3)$	$-0.002(3)$
$\mathrm{C}(23)$	$0.045(4)$	$0.047(5)$	$0.018(4)$	$-0.002(3)$	$-0.001(3)$	$-0.005(4)$
$\mathrm{C}(24)$	$0.034(4)$	$0.046(5)$	$0.030(4)$	$-0.008(3)$	$0.010(3)$	$0.000(4)$
$\mathrm{C}(25)$	$0.029(4)$	$0.037(4)$	$0.031(4)$	$-0.008(3)$	$0.005(3)$	$0.001(3)$
$\mathrm{C}(26)$	$0.027(3)$	$0.033(4)$	$0.023(4)$	$-0.002(3)$	$0.004(3)$	$0.003(3)$
$\mathrm{C}(27)$	$0.032(4)$	$0.028(4)$	$0.025(4)$	$0.003(3)$	$-0.007(3)$	$0.002(3)$
$\mathrm{C}(28)$	$0.021(3)$	$0.038(4)$	$0.016(4)$	$0.002(3)$	$0.000(2)$	$0.003(3)$
$\mathrm{C}(29)$	$0.023(3)$	$0.037(4)$	$0.027(4)$	$0.002(3)$	$-0.004(3)$	$0.005(3)$
$\mathrm{C}(30)$	$0.026(4)$	$0.036(4)$	$0.024(4)$	$0.003(3)$	$-0.002(3)$	$0.003(3)$
$\mathrm{C}(31)$	$0.022(3)$	$0.035(4)$	$0.029(4)$	$0.001(3)$	$0.005(3)$	$0.000(3)$
$\mathrm{C}(32)$	$0.028(4)$	$0.047(4)$	$0.024(4)$	$0.004(3)$	$0.000(3)$	$0.001(3)$
$\mathrm{C}(33)$	$0.024(4)$	$0.041(4)$	$0.028(4)$	$0.000(3)$	$0.003(3)$	$0.003(3)$
				s 78		

$\left.\begin{array}{lllllll}\mathrm{C}(34) & 0.023(3) & 0.036(4) & 0.026(4) & -0.001(3) & -0.002(3) & 0.000(3) \\ \mathrm{C}(35) & 0.023(3) & 0.039(4) & 0.027(4) & -0.001(3) & 0.003(3) & -0.009(3) \\ \mathrm{C}(36) & 0.026(4) & 0.034(4) & 0.030(4) & 0.001(3) & 0.000(3) & -0.009(3) \\ \mathrm{C}(37) & 0.028(4) & 0.046(5) & 0.035(4) & -0.001(3) & 0.000(3) & -0.002(3) \\ \mathrm{C}(38) & 0.034(4) & 0.039(4) & 0.035(4) & -0.002(3) & 0.008(3) & -0.005(3) \\ \mathrm{C}(39) & 0.026(4) & 0.059(5) & 0.045(5) & 0.005(4) & 0.008(3) & 0.000(4) \\ \mathrm{C}(40) & 0.037(4) & 0.053(5) & 0.060(6) & -0.001(4) & 0.000(4) & -0.007(4) \\ \mathrm{C}(41) & 0.033(4) & 0.053(5) & 0.042(5) & -0.004(4) & -0.002(4) & -0.008(4) \\ \mathrm{C}(42) & 0.028(4) & 0.044(5) & 0.036(5) & 0.000(3) & -0.001(3) & -0.009(3) \\ \mathrm{C}(43) & 0.036(4) & 0.043(4) & 0.038(5) & -0.002(3) & -0.007(3) & -0.008(4) \\ \mathrm{C}(44) & 0.035(4) & 0.043(4) & 0.026(4) & 0.002(3) & -0.004(3) & -0.004(3) \\ \mathrm{C}(45) & 0.043(4) & 0.041(4) & 0.025(4) & -0.008(3) & 0.001(3) & -0.011(4) \\ \mathrm{C}(46) & 0.082(7) & 0.065(6) & 0.042(6) & -0.015(5) & 0.017(5) & -0.025(6) \\ \mathrm{C}(47) & 0.095(8) & 0.060(6) & 0.049(6) & -0.028(5) & 0.037(6) & -0.027(6) \\ \mathrm{C}(48) & 0.078(7) & 0.059(6) & 0.046(6) & -0.022(5) & 0.020(5) & -0.019(5) \\ \mathrm{C}(49) & 0.042(4) & 0.041(5) & 0.030(4) & -0.001(3) & 0.004(3) & -0.003(4) \\ \mathrm{C}(50) & 0.031(4) & 0.045(4) & 0.024(4) & -0.002(3) & 0.001(3) & -0.003(3) \\ \mathrm{C}(51) & 0.032(4) & 0.031(4) & 0.023(4) & 0.000(3) & 0.003(3) & 0.000(3) \\ \mathrm{C}(52) & 0.030(4) & 0.039(4) & 0.019(4) & 0.002(3) & 0.000(3) & -0.003(3) \\ \mathrm{C}(53) & 0.023(3) & 0.046(4) & 0.017(4) & 0.002(3) & 0.001(3) & -0.004(3) \\ \mathrm{C}(54) & 0.027(4) & 0.044(4) & 0.027(4) & 0.003(3) & 0.000(3) & 0.000(3) \\ \mathrm{C}(55) & 0.030(4) & 0.056(5) & 0.031(4) & 0.005(4) & -0.001(3) & 0.004(4) \\ \mathrm{C}(56) & 0.037(4) & 0.039(4) & 0.032(4) & -0.001(3) & 0.009(3) & 0.004(3) \\ \mathrm{C}(57) & 0.034(4) & 0.035(4) & 0.024(4) & 0.000(3) & -0.005(3) & 0.000(3) \\ \mathrm{C}(58) & 0.027(3) & 0.035(4) & 0.024(4) & -0.002(3) & 0.007(3) & -0.004(3) \\ \mathrm{C}(59) & 0.031(4) & 0.039(4) & 0.025(4) & -0.006(3) & -0.004(3) & -0.005(3) \\ \mathrm{C}(60) & 0.031(4) & 0.028(4) & 0.021(4) & 0.001(3) & -0.003(3) & 0.000(3) \\ \mathrm{C}(61) & 0.035(4) & 0.026(4) & 0.022(4) & -0.002(3) & -0.001(3) & 0.002(3) \\ \mathrm{C}(62) & 0.032(4) & 0.035(4) & 0.026(4) & -0.007(3) & -0.003(3) & -0.008(3) \\ \mathrm{C}(63) & 0.034(4) & 0.024(4) & 0.024(4) & -0.004(3) & 0.000(3) & -0.001(3) \\ \mathrm{C}(64) & 0.045(4) & 0.034(4) & 0.025(4) & 0.000(3) & 0.000(3) & 0.005(3) \\ \mathrm{C}(65) & 0.042(4) & 0.024(4) & 0.026(4) & 0.003(3) & -0.005(3) & -0.004(3) \\ \mathrm{C}(66) & 0.034(4) & 0.036(4) & 0.026(4) & 0.002(3) & -0.004(3) & -0.001(3) \\ \mathrm{N}(1) & 0.019(3) & 0.050(4) & 0.040(4) & -0.010(3) & -0.005(3) & -0.007(3) \\ \mathrm{N}(2 \mathrm{~A}) & 0.058(4) & 0.039(4) & 0.047(5) & -0.016(3) & 0.018(3) & 0.008(3) \\ \mathrm{N}(2 \mathrm{~B}) & 0.058(4) & 0.039(4) & 0.047(5) & -0.016(3) & 0.018(3) & 0.008(3) \\ \mathrm{N}(3 \mathrm{~A}) & 0.083(6) & 0.054(5) & 0.062(6) & -0.033(4) & 0.011(5) & -0.010(4) \\ \mathrm{N}) & 0.083(6) & 0.054(5) & 0.062(6) & -0.033(4) & 0.011(5) & -0.010(4) \\ \mathrm{C}\end{array}\right)$

$\mathrm{O}(2)$	$0.031(3)$	$0.028(3)$	$0.025(3)$	$-0.001(2)$	$-0.002(2)$	$0.006(2)$
$\mathrm{O}(3)$	$0.023(2)$	$0.056(3)$	$0.025(3)$	$0.005(2)$	$0.000(2)$	$-0.005(2)$
$\mathrm{O}(4)$	$0.031(3)$	$0.035(3)$	$0.027(3)$	$-0.003(2)$	$-0.002(2)$	$-0.002(2)$
$\mathrm{O}(5)$	$0.073(5)$	$0.062(5)$	$0.054(5)$	$-0.023(4)$	$-0.010(4)$	$0.044(4)$
$\mathrm{O}(6)$	$0.031(4)$	$0.069(5)$	$0.045(4)$	$-0.012(4)$	$0.004(3)$	$-0.008(3)$
$\mathrm{O}(7)$	$0.138(9)$	$0.119(8)$	$0.100(8)$	$0.020(7)$	$0.035(7)$	$0.046(8)$
$\mathrm{O}(8)$	$0.197(12)$	$0.218(13)$	$0.143(11)$	$-0.064(10)$	$-0.025(10)$	$0.089(10)$
$\mathrm{F}(1)$	$0.095(6)$	$0.198(11)$	$0.028(4)$	$0.025(5)$	$0.008(4)$	$-0.002(7)$
$\mathrm{F}(2)$	$0.126(7)$	$0.077(5)$	$0.065(5)$	$0.025(4)$	$-0.020(5)$	$0.036(5)$
$\mathrm{F}(3)$	$0.068(5)$	$0.139(8)$	$0.040(4)$	$-0.031(4)$	$-0.017(3)$	$0.024(5)$
$\mathrm{F}(4)$	$0.371(13)$	$0.350(13)$	$0.372(13)$	$-0.008(8)$	$0.023(8)$	$0.006(8)$
$\mathrm{F}(5)$	$0.371(13)$	$0.350(13)$	$0.372(13)$	$-0.008(8)$	$0.023(8)$	$0.006(8)$
$\mathrm{F}(6)$	$0.371(13)$	$0.350(13)$	$0.372(13)$	$-0.008(8)$	$0.023(8)$	$0.006(8)$
$\mathrm{F}(7)$	$0.082(4)$	$0.070(4)$	$0.099(5)$	$-0.030(4)$	$0.041(4)$	$0.009(3)$
$\mathrm{F}(8)$	$0.063(3)$	$0.058(4)$	$0.103(5)$	$0.001(3)$	$0.024(3)$	$0.027(3)$
$\mathrm{F}(9)$	$0.086(4)$	$0.059(4)$	$0.095(5)$	$-0.038(3)$	$0.029(4)$	$-0.011(3)$
$\mathrm{F}(10)$	$0.101(5)$	$0.080(4)$	$0.055(4)$	$-0.012(3)$	$0.036(3)$	$0.014(4)$
$\mathrm{F}(11)$	$0.043(3)$	$0.062(3)$	$0.101(5)$	$-0.021(3)$	$0.019(3)$	$-0.002(3)$
$\mathrm{F}(12)$	$0.172(8)$	$0.047(4)$	$0.203(9)$	$0.051(5)$	$0.139(8)$	$0.040(4)$
$\mathrm{F}(13)$	$0.090(5)$	$0.053(4)$	$0.193(9)$	$0.040(5)$	$0.083(5)$	$0.018(3)$
$\mathrm{F}(14)$	$0.231(10)$	$0.051(4)$	$0.085(5)$	$0.031(4)$	$0.079(6)$	$0.031(5)$
$\mathrm{F}(15)$	$0.128(6)$	$0.043(3)$	$0.107(5)$	$0.024(3)$	$0.054(5)$	$0.031(4)$
$\mathrm{F}(16)$	$0.106(5)$	$0.048(4)$	$0.158(7)$	$-0.015(4)$	$0.062(5)$	$-0.020(4)$
$\mathrm{F}(17)$	$0.015(2)$	$0.084(3)$	$0.034(3)$	$0.000(2)$	$-0.001(2)$	$0.001(2)$
$\mathrm{F}(18)$	$0.027(2)$	$0.070(3)$	$0.036(3)$	$-0.011(2)$	$0.002(2)$	$0.009(2)$
$\mathrm{F}(19)$	$0.029(2)$	$0.055(3)$	$0.037(3)$	$0.013(2)$	$0.000(2)$	$-0.007(2)$
$\mathrm{F}(20)$	$0.029(2)$	$0.072(3)$	$0.028(2)$	$-0.013(2)$	$0.000(2)$	$-0.002(2)$
$\mathrm{F}(21)$	$0.030(2)$	$0.069(3)$	$0.040(3)$	$0.020(2)$	$-0.002(2)$	$0.008(2)$
$\mathrm{F}(22)$	$0.030(2)$	$0.111(5)$	$0.032(3)$	$0.022(3)$	$0.000(2)$	$-0.015(3)$
$\mathrm{F}(23)$	$0.023(2)$	$0.082(3)$	$0.034(3)$	$0.005(2)$	$0.003(2)$	$0.006(2)$
$\mathrm{F}(24)$	$0.036(2)$	$0.070(3)$	$0.035(3)$	$0.010(2)$	$-0.007(2)$	$-0.018(2)$
$\mathrm{F}(25)$	$0.030(2)$	$0.061(3)$	$0.034(2)$	$0.020(2)$	$-0.007(2)$	$-0.004(2)$
$\mathrm{F}(26)$	$0.032(2)$	$0.080(3)$	$0.024(2)$	$-0.004(2)$	$0.004(2)$	$-0.006(2)$
$\mathrm{F}(27)$	$0.372(19)$	$0.140(8)$	$0.192(10)$	$-0.132(8)$	$0.193(12)$	$-0.181(11)$
$\mathrm{F}(28)$	$0.205(10)$	$0.064(4)$	$0.130(7)$	$-0.041(5)$	$0.103(8)$	$-0.043(5)$
$\mathrm{F}(29)$	$0.244(12)$	$0.059(4)$	$0.130(7)$	$-0.031(4)$	$0.117(8)$	$-0.058(6)$
$\mathrm{F}(30)$	$0.208(11)$	$0.188(10)$	$0.113(7)$	$-0.096(7)$	$0.084(7)$	$-0.162(9)$
$\mathrm{F}(31)$	$0.295(15)$	$0.192(10)$	$0.093(7)$	$-0.100(7)$	$0.092(8)$	$-0.179(11)$
$\mathrm{F}(32)$	$0.068(3)$	$0.047(3)$	$0.061(3)$	$-0.002(2)$	$0.029(3)$	$-0.005(3)$

$\mathrm{F}(33)$	$0.053(3)$	$0.041(3)$	$0.057(3)$	$-0.011(2)$	$0.018(2)$	$0.005(2)$
$\mathrm{F}(34)$	$0.072(4)$	$0.094(4)$	$0.026(3)$	$-0.004(3)$	$0.002(2)$	$-0.005(3)$
$\mathrm{F}(35)$	$0.067(3)$	$0.058(3)$	$0.050(3)$	$0.017(2)$	$0.018(3)$	$0.024(3)$
$\mathrm{F}(36)$	$0.047(3)$	$0.048(3)$	$0.047(3)$	$-0.014(2)$	$0.007(2)$	$-0.009(2)$
$\mathrm{F}(37)$	$0.069(3)$	$0.038(3)$	$0.061(3)$	$0.005(2)$	$0.005(3)$	$-0.014(2)$
$\mathrm{F}(38)$	$0.066(3)$	$0.043(3)$	$0.032(3)$	$0.006(2)$	$0.002(2)$	$-0.008(2)$
$\mathrm{F}(39)$	$0.044(3)$	$0.042(3)$	$0.059(3)$	$0.005(2)$	$0.010(2)$	$-0.005(2)$
$\mathrm{F}(40)$	$0.068(3)$	$0.031(2)$	$0.043(3)$	$-0.010(2)$	$-0.003(2)$	$-0.012(2)$
$\mathrm{F}(41)$	$0.061(3)$	$0.026(2)$	$0.055(3)$	$0.000(2)$	$0.007(2)$	$0.005(2)$
$\mathrm{F}(42)$	$0.046(3)$	$0.050(3)$	$0.051(3)$	$0.012(2)$	$-0.018(2)$	$-0.016(2)$
$\mathrm{F}(43)$	$0.050(3)$	$0.034(2)$	$0.045(3)$	$-0.001(2)$	$-0.011(2)$	$-0.008(2)$
$\mathrm{F}(44)$	$0.063(3)$	$0.056(3)$	$0.029(3)$	$0.017(2)$	$-0.015(2)$	$-0.019(2)$
$\mathrm{F}(45)$	$0.042(3)$	$0.040(3)$	$0.059(3)$	$0.006(2)$	$-0.011(2)$	$0.003(2)$
$\mathrm{F}(46)$	$0.038(2)$	$0.049(3)$	$0.038(3)$	$0.013(2)$	$-0.004(2)$	$-0.006(2)$
$\mathrm{P}(1)$	$0.026(1)$	$0.033(1)$	$0.029(1)$	$-0.005(1)$	$0.002(1)$	$0.001(1)$
$\mathrm{P}(2)$	$0.031(1)$	$0.037(1)$	$0.029(1)$	$-0.008(1)$	$0.000(1)$	$-0.003(1)$
$\mathrm{S}(1 \mathrm{~A})$	$0.034(1)$	$0.050(1)$	$0.025(1)$	$-0.005(1)$	$-0.002(1)$	$0.008(1)$
$\mathrm{S}(1 \mathrm{~B})$	$0.056(8)$	$0.088(10)$	$0.063(9)$	$-0.022(7)$	$-0.019(6)$	$0.020(7)$
$\mathrm{S}(3)$	$0.057(1)$	$0.048(1)$	$0.069(2)$	$-0.012(1)$	$0.021(1)$	$0.004(1)$
$\mathrm{S}(2 \mathrm{~A})$	$0.054(2)$	$0.055(2)$	$0.093(3)$	$-0.038(2)$	$0.008(2)$	$-0.003(2)$
$\mathrm{S}(2 \mathrm{~B})$	$0.114(14)$	$0.055(8)$	$0.077(10)$	$-0.010(7)$	$0.023(9)$	$-0.014(8)$
$\mathrm{S}(4)$	$0.109(2)$	$0.034(1)$	$0.117(3)$	$0.021(2)$	$0.068(2)$	$0.016(1)$
$\mathrm{S}(5)$	$0.022(1)$	$0.051(1)$	$0.025(1)$	$0.001(1)$	$-0.001(1)$	$0.002(1)$
$\mathrm{S}(6)$	$0.023(1)$	$0.069(1)$	$0.025(1)$	$0.007(1)$	$-0.002(1)$	$-0.006(1)$
$\mathrm{S}(7)$	$0.228(5)$	$0.097(3)$	$0.110(3)$	$-0.071(2)$	$0.107(3)$	$-0.104(3)$
$\mathrm{S}(8)$	$0.046(1)$	$0.038(1)$	$0.035(1)$	$0.000(1)$	$0.007(1)$	$0.002(1)$
$\mathrm{S}(9)$	$0.052(1)$	$0.028(1)$	$0.039(1)$	$-0.002(1)$	$0.003(1)$	$-0.005(1)$
$\mathrm{S}(10)$	$0.042(1)$	$0.036(1)$	$0.034(1)$	$0.009(1)$	$-0.010(1)$	$-0.005(1)$

Hydrogen coordinates and isotropic displacement parameters ($\AA^{\mathbf{A}}$).

	x	y	z	$U_{\text {eq }}$
$H(6)$	-0.1313	0.2314	0.1820	0.037
$H(7)$	-0.2371	0.2028	0.1630	0.040
$H(8)$	-0.3483	0.2297	0.1631	0.044

$\mathrm{H}(9)$	-0.3523	0.2848	0.1762	0.036
$\mathrm{H}(11)$	-0.2908	0.3361	0.1986	0.033
$\mathrm{H}(14)$	-0.2707	0.3777	0.3261	0.047
$\mathrm{H}(16)$	-0.2173	0.4680	0.2504	0.062
$\mathrm{H}(18)$	-0.1140	0.3921	0.1363	0.049
$\mathrm{H}(22)$	-0.0905	0.2697	0.0329	0.036
$\mathrm{H}(23)$	-0.0460	0.2369	-0.0826	0.044
$\mathrm{H}(24)$	0.0552	0.2051	-0.0534	0.044
$\mathrm{H}(25)$	0.1126	0.2072	0.0860	0.039
$\mathrm{H}(27)$	0.1246	0.2306	0.2435	0.034
$\mathrm{H}(30)$	0.1950	0.2676	0.3595	0.035
$\mathrm{H}(32)$	0.1667	0.2474	0.6322	0.039
$\mathrm{H}(34)$	-0.0026	0.2526	0.4609	0.034
$\mathrm{H}(38)$	0.3730	0.3305	0.1275	0.043
$\mathrm{H}(39)$	0.4907	0.3456	0.1043	0.052
$\mathrm{H}(40)$	0.5588	0.3658	0.2254	0.060
$\mathrm{H}(41)$	0.5075	0.3778	0.3643	0.051
$\mathrm{H}(43)$	0.4005	0.3805	0.4642	0.047
$\mathrm{H}(46)$	0.3164	0.4236	0.5097	0.076
$\mathrm{H}(48)$	0.1865	0.4123	0.7343	0.073
$\mathrm{H}(50)$	0.2059	0.3405	0.5463	0.040
$\mathrm{H}(54)$	0.3372	0.2820	0.2662	0.039
$\mathrm{H}(55)$	0.3520	0.2290	0.2129	0.047
$\mathrm{H}(56)$	0.2904	0.2116	0.0811	0.043
$\mathrm{H}(57)$	0.2073	0.2437	0.0099	0.038
$\mathrm{H}(59)$	0.1393	0.2958	0.0050	0.038
$\mathrm{H}(62)$	0.1665	0.3935	0.0465	0.037
$\mathrm{H}(64)$	-0.0115	0.4094	-0.1069	0.042
$\mathrm{H}(66)$	-0.0865	0.3229	0.0233	0.038
$\mathrm{H}(2 \mathrm{~A})$	0.1802	0.393		
$\mathrm{H}(2 \mathrm{~B})$	0.0897	0.4079	0.3521	0.080
$\mathrm{H}(3 \mathrm{~A})$		0.3771	0.4271	0.057
$\mathrm{H}(3 \mathrm{~B})$		0.3770	0.057	
		0.365		

The structure of $\mathbf{4 c}$ was solved by direct methods and refined by full-matrix least-squares against F^{2} to $R_{1}=0.0674[I>2 \sigma(I)], w R_{2}=0.1920,1405$ parameters. The trifluoromethyl-sulfonyl-amino group is disordered over the two positions. In addition, the trifluoromethyl-sulfonyl-amino and trifluoromethyl-sulfonyl-phosphazene groups are slightly disordered. The major components (80% occupation) could be located and refined. Only the S atoms of the minor triflate components could be located and refined. All non-H atoms of one of the two trifluoromethyl-sulfonyl-amino/phosphazene groups were refined with anisotropic atomic displacement parameters. The atomic displacement parameters of the F, C and O atoms of the second trifluoromethyl-sulfonyl-amino/phosphazene group were restrained to be isotropic with an effective standard deviation of 0.005 , whereby the atomic displacement parameters of the three F atoms were constrained to be equal. For this tri-fluoromethyl-sulfonylamino/phosphazene group the respective S...F, C-F and F...F distances were restrained to be equal with an effective standard deviation of 0.02 , as were the $\mathrm{S}-\mathrm{C}$ distances of both trifluoromethyl-sulfonyl-amino/phosphazene groups (total 46 restraints). The solvate (dichloromethane/hexane) region of the crystal was modeled by C and Cl atoms of various occupancies and refined isotropic atomic displacement parameters. A void of $43.951 \% \mathrm{~A}$, close to symmetry elements, remained (0.4% of the unit cell volume, probe radius $1.2 \backslash \% \mathrm{~A}$, grid spacing $0.7 \backslash \% \mathrm{~A})$. The H atom attached to the trifluoromethyl-sulfonyl-amino group could not be located and was refined using a riding model, as were the other H atoms in the imidodiphosphorimidate (IDPI). The riding model used C-H distances of $0.95 \AA$ and $\mathrm{U}_{\mathrm{H}}=1.2$ $\times \mathrm{U}_{\mathrm{C}}\left(\mathrm{CH}_{\text {aromatic }}\right)$ and $0.88 \AA$ and $\mathrm{U}_{\mathrm{H}}=1.5 \times \mathrm{U}_{\mathrm{N}}(\mathrm{NH}) . S=1.522$, residual electron density 0.90 ($0.82 \AA$ from F6)/ -0.80 (0.95 from F29) e \AA^{-3}. The Flack parameter (Parsons' method: Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259) is 0.031(4) [6454 quotients]. CCDC 1559571.

Figure S9. Superposition of the central $\mathrm{O}_{2} \mathrm{P}-\mathrm{N}=\mathrm{PO}_{2}$ moieties of $\mathbf{4 b}$ (black, CSD refcode: AWAHIR) and $\mathbf{4 c}$ (red), comparing conformations of the two compounds (left: view from above; right: side view).

Copies of NMR Spectra

${ }^{1} \mathrm{H}$ NMR（S3a）

${ }^{13} \mathbf{C}$ NMR（S3a）

势先号
$\stackrel{\text { 俞 }}{\vec{j}} \underset{1}{1}$

${ }^{19}$ F NMR (S3a)

${ }^{13} \mathbf{C}$ NMR (S3b)

\qquad

${ }^{13} \mathrm{C}$ NMR (S3b) $\left({ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right.$ decoupled; selective ${ }^{19} \mathrm{~F}$ decoupling of F 19 , offset: - $\left.\mathbf{1 2 6 . 1 4}\right)$

${ }^{13} \mathrm{C}$ NMR（S3b）$\left({ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right.$ decoupled；selective ${ }^{19} \mathrm{~F}$ decoupling of F 18 ，offset：－111．88）

${ }^{13} \mathbf{C}$ NMR（S3b）$\left({ }^{1} \mathbf{H},{ }^{19}\right.$ F decoupled；selective ${ }^{19} \mathrm{~F}$ decoupling of F 20 ，offset：－79．90）

$\begin{aligned} & \text { H } \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \text { l } \end{aligned}$	$\xrightarrow[\text { d }]{\text { d }}$	ल్లై		

${ }^{19}$ F NMR (S3b)

${ }^{13} \mathbf{C}$ NMR (S3c)

${ }^{13} \mathrm{C}$ NMR (S3c) $\left({ }^{1} \mathrm{H}\right.$, ${ }^{19} \mathrm{~F}$ decoupled; broadband ${ }^{19} \mathrm{~F}$ decoupling)
受

${ }^{13} \mathrm{C}$ NMR (S3c) $\left({ }^{1} \mathbf{H}\right.$, ${ }^{19} \mathrm{~F}$ decoupled; selective ${ }^{19} \mathrm{~F}$ decoupling of F 17 , offset: - $\mathbf{1 8 2 . 0 0)}$

${ }^{19}$ F NMR (S3c)
(5,44)

${ }^{13} \mathrm{C}$ NMR (S4)

${ }^{19}$ F NMR (S4)

${ }^{31}$ P NMR (S4)

${ }^{1} \mathrm{H}$ NMR (4c)

${ }^{13} \mathbf{C}$ NMR (4c)

${ }^{31} \mathbf{P}$ NMR (4c)

4c: $\mathrm{R}=3,5-\left(\mathrm{SF}_{5}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{R}^{\prime}=\mathrm{CF}_{3}$

$\begin{array}{llllllllllllllllllllllll}110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & \mathrm{ppm}\end{array}$

${ }^{1} \mathrm{H}$ NMR (4d)

${ }^{13} \mathbf{C}$ NMR (4d)

${ }^{13}$ C NMR (4d)

${ }^{13} \mathrm{C}$ NMR (4d) $\left({ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right.$ decoupled; broadband ${ }^{19} \mathrm{~F}$ decoupling)

155	150	145	140	135	130	$\begin{array}{r} 125 \\ \mathrm{f} 1 \text { (ppm) } \end{array}$	120	115	110	105	100

${ }^{13} \mathrm{C}$ NMR (4d) $\left({ }^{1} \mathbf{H},{ }^{19} \mathrm{~F}\right.$ decoupled; selective ${ }^{19} \mathrm{~F}$ decoupling for offset $\left.\delta_{\mathrm{F}} \mathbf{- 1 2 6 . 1}\right)$

${ }^{13} \mathrm{C}$ NMR (4d) (${ }^{1} \mathrm{H}$, ${ }^{\mathbf{1 9}}{ }^{\mathrm{F}}$ decoupled; selective ${ }^{\mathbf{1 9}} \mathrm{F}$ decoupling for offset $\left.\delta_{\mathrm{F}}-\mathbf{1 1 2 . 5}\right)$

${ }^{13} \mathrm{C}$ NMR (4d) $\left({ }^{1} \mathbf{H},{ }^{19} \mathrm{~F}\right.$ decoupled; selective ${ }^{19} \mathrm{~F}$ decoupling for offset $\left.\boldsymbol{\delta}_{\mathrm{F}}-\mathbf{8 0 . 0}\right)$

${ }^{31} \mathbf{P}$ NMR (4d)

4d: $\mathrm{R}=3,5-\left(n \mathrm{C}_{3} \mathrm{~F}_{7}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{R}^{\prime}=\mathrm{CF}_{3}$

${ }^{1} \mathrm{H}$ NMR (4e)

4e: $\mathrm{R}=3,5-\left(\mathrm{SF}_{5}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{R}^{\prime}=\mathrm{C}_{2} \mathrm{~F}_{5}$

${ }^{13} \mathrm{C}$ NMR (4e)

ベ

${ }^{13} \mathbf{C}$ NMR (4e)

165	160	155	150	145	140	135	130 f1 (ppm)	125	120	115	110

${ }^{13} \mathbf{C}$ NMR (4e) $\left({ }^{1} \mathbf{H},{ }^{19} \mathbf{F}\right.$ decoupled; selective ${ }^{19} \mathrm{~F}$ decoupling for offset $\left.\delta_{\mathrm{F}} \mathbf{- 1 1 7 . 0 0}\right)$

${ }^{13} \mathrm{C}$ NMR (4e) (${ }^{1} \mathrm{H}$, ${ }^{19} \mathrm{~F}$ decoupled; selective ${ }^{19} \mathrm{~F}$ decoupling for offset $\left.\boldsymbol{\delta}_{\mathrm{F}}-\mathbf{7 9 . 0 0}\right)$

	ํㅜㄴ
$\stackrel{\text { - }}{\sim}$	$\stackrel{m}{=}$
\l	1

${ }^{13} \mathrm{C}$ NMR (4e) $\left({ }^{1} \mathrm{H},{ }^{19} \mathrm{~F}\right.$ decoupled; selective ${ }^{19} \mathrm{~F}$ decoupling for offset $\left.\boldsymbol{\delta}_{\mathrm{F}} \mathbf{6 3 . 3 5}\right)$

${ }^{19}$ F NMR (4e)

${ }^{19}$ F NMR (4e)

${ }^{31} \mathbf{P}$ NMR (4e)

4e: $R=3,5-\left(\mathrm{SF}_{5}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{R}^{\prime}=\mathrm{C}_{2} \mathrm{~F}_{5}$

${ }^{1} \mathrm{H}$ NMR (4f)

${ }^{13} \mathrm{C}$ NMR (4f)

が

$\begin{array}{llllllllllllllllllll}133 & 132 & 131 & 130 & 129 & 128 & 127 & 126 & \begin{array}{rlllllll}125 & 124 & 123 & 122 & (\mathrm{ppm})\end{array} & 122 & 121 & 120 & 119 & 118 & 117 & 116 & 115\end{array}$

idinillim \qquad

${ }^{13} \mathrm{C}$ NMR (4f)

155	150	145	140	135	130	125	120	115	110	105	100

${ }^{13} \mathrm{C}$ NMR (4f) $\left({ }^{1} \mathbf{H},{ }^{19} \mathrm{~F}\right.$ decoupled; selective ${ }^{19} \mathrm{~F}$ decoupling for offset $\left.\boldsymbol{\delta}_{\mathrm{F}} \mathbf{- 1 8 1 . 1 7}\right)$

${ }^{19}$ F NMR (4f)

4f: $\mathrm{R}=3,5-\left(\mathrm{CF}\left(\mathrm{CF}_{3}\right)_{2}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{R}^{\prime}=\mathrm{CF}_{3}$
il

${ }^{31} \mathbf{P}$ NMR (4f)

${ }^{1} \mathrm{H}$ NMR ($\left.(R)-\mathbf{1 1}\right)$

${ }^{13}$ C NMR ((R)-11)
O.
$\overrightarrow{0}$
M
1

${ }^{1} \mathrm{H}$ NMR ((S)-11)

${ }^{13} \mathbf{C}$ NMR ((S)-11)

M

?

${ }^{1} \mathrm{H}$ NMR (1s)

${ }^{13} \mathrm{C}$ NMR (1s)

${ }^{1} \mathrm{H}$ NMR (2k)

${ }^{13}$ C NMR (2k)

$\stackrel{\sim}{m} \stackrel{\stackrel{\sim}{n}}{\stackrel{\infty}{\infty}}$

${ }^{1} H$ NMR (3a)

${ }^{1} \mathrm{H}$ NMR (3b)

${ }^{13} \mathrm{C}$ NMR (3b)

${ }^{1} \mathrm{H}$ NMR (3c)

${ }^{13} \mathrm{C}$ NMR (3c)

${ }^{1} \mathrm{H}$ NMR (3d)

${ }^{1}$ H NMR (3e)

${ }^{13} \mathrm{C}$ NMR (3e)

$\stackrel{\square}{\square}$	은		न-	N	
$\stackrel{\square}{\sim}$	$\stackrel{\circ}{\circ}$		$\stackrel{\infty}{\infty}$	$\cdots{ }^{-1}$	
\|	\bigcirc	-			

${ }^{1}$ H NMR (3f)

${ }^{1} \mathrm{H}$ NMR (3g)

${ }^{1} \mathrm{H}$ NMR (3h)

${ }^{13} \mathrm{C}$ NMR (3h)

新

${ }^{1} \mathbf{H}$ NMR (3i)

$3 i$

${ }^{13} \mathrm{C}$ NMR (3i)

吴紊

${ }^{1} \mathbf{H}$ NMR (3j)

${ }^{13} \mathbf{C}$ NMR ($\mathbf{3 j}$)

	\% \% \%	部员	

${ }^{1} \mathrm{H}$ NMR (3k)

${ }^{13} \mathrm{C}$ NMR (3k)

31
syn, 1R,6R

Atom	Chemical Shift	Predicted Shift	Quality	J	COSY	HSQC	HMBC	NOESY
1 C	79.08	81.21	0.67			1H	$\begin{aligned} & 5 \mathrm{ax}, \\ & 6 \mathrm{H}, 7 \end{aligned}$	
1 HH	3.51	3.95	0.67	10.50(2ax), 3.40(2eq), 8.10(?)	6H, 2ax, 2eq	1		5ax, 7, 2eq, 6H, 9
2 C	35.26	34.46	0.67			2ax, 2eq	6 H	
Hax	1.84	1.94, 2.17	-0.39	-17.50(2eq), 10.50(1H)	1H	2		6H, 2eq, 12, 9
Heq	1.45	1.94, 2.17	-0.02	-17.50(2ax), 3.40(1H)	1H	2		1H, 2ax, 12, 9
3 C	124.6	121.15	0.67					
4 C	123.95	123.76	0.67					
5 C	70.37	69.15	0.67			5ax, 5eq		
Hax	3.95	3.99, 4.08	0.56	-15.40 (5eq)	13	5	1	$13,7,1 \mathrm{H}$
Heq	4.02	3.99, 4.08	0.67	-15.40(5ax)	13	5		13, 7
6 C	45.76	39.93	0.67			6 H	7	
6 HH	2.72	2.93	0.67	7.00(7), 8.10(?)	7, 1H	6	$\begin{aligned} & 8,9, \\ & 1,2,7 \end{aligned}$	1H, 7, 2ax, 9
7 C	18.52	16.47	0.67			7	6 H	
H3	1.33	1.34	0.67	7.00(6H)	6 H	7	8, 1, 6	$5 \mathrm{ax}, 5 \mathrm{eq}, 1 \mathrm{H}, 6 \mathrm{H}, 9$
8 C	144.99	144.51	0.67				6H, 7	
9 C	128.31	126.53	0.67			9	6 H	
H	7.2	7.25	0.67		10	9		7, 1H, 6H, 2ax, 2eq
10 C	128.62	128.56	0.67			10		
H	7.28	7.28	0.63		9, 11	10		
11 C	126.59	126.47	0.67			11		
H	7.2	7.22	0.15		10	11		
12 C	18.41	19.13	0.67					
H3	1.52	1.71	0.67					2ax, 2eq
13 C	13.86	16.25	0.67					
H3	1.52	1.76	0.67		5ax, 5eq			5ax, 5eq

${ }^{1} \mathrm{H}$ NMR (3I)

31

${ }^{13} \mathrm{C}$ NMR (3I)

号
$\stackrel{\sim}{\sim}$

HSQC (31)

NOESY (3I)

COSY (31)

Atom	Chemical Shift	Predicted Shift	Quality	J	COSY	HSQC	HMBC	NOESY
1 C	78.58	81.21	0.67			1H	7	
1 HH	3.61	3.93	0.67	$\begin{aligned} & 10.60(2 \mathrm{ax}), 3.40(2 \mathrm{eq}), \\ & 7.30(6 \mathrm{H}) \end{aligned}$	2eq, 2ax, 6H	1		2eq, 9, 6H, 5ax, 7
2 C	34.66	34.46	0.67			2ax, 2eq	12	
Hax	1.97	1.94, 2.16	-0.43	-16.80(2eq), 10.60(1H)	1H, 2eq	2		12, 6H, 7
Heq	1.84	1.94, 2.16	-0.32	-16.80(2ax), 3.40(1H)	1H, 2ax	2		$12,1 \mathrm{H}, 7$
3 C	124.77	121.15	0.67				13, 12	
4 C	123.76	123.76	0.67				13, 12	
5 C	70.38	69.15	0.67			5ax, 5eq	13	
Hax	3.89	3.99, 4.08	-1	-15.40(5eq)	5 eq	5		13, 1H
Heq	3.82	3.99, 4.08	0.31	-15.40(5ax)	5 x	5		13
6 C	45.33	39.93	0.67			6H	7	
6 H H	2.8	2.94	0.67	7.20(7), 7.30(1H)	1H, 7	6		9, 2ax, 1H, 7
7 C	18.53	16.47	0.67			7		
H3	1.24	1.34	0.67	7.20 (6HH)	6H	7	6, 1, 8	2eq, 9, 2ax, 1H, 6H
8 C	145.41	144.51	0.67				7	
9 C	128.35	126.53	0.67			9	6^{\prime}	
H	7.23	7.24	0.67		10	9		$6 \mathrm{H}, 1 \mathrm{H}, 7$
10 C	128.42	128.56	0.67			10		
H	7.27	7.28	0.67		9, 11	10		
11 C	126.38	126.47	0.67			11		
H	7.18	7.22	0.62		10	11		
12 C	18.03	19.13	0.67			12		
H3	1.62	1.71	0.67			12	2, 3, 4	2eq, $2 a x$
13 C	13.87	16.25	0.67			13		
H3	1.5	1.76	0.67			13	3, 4, 5	5ax, 5eq

${ }^{1} \mathrm{H}$ NMR (3m)

${ }^{13} \mathrm{C}$ NMR (3m)

NOESY (3m)

${ }^{1} H$ NMR (3n)

${ }^{13}$ C NMR (3n)

${ }^{1} \mathrm{H}$ NMR (30)

${ }^{13}$ C NMR (30)

	8	$\stackrel{4}{4}$	

[^1]
${ }^{1} \mathrm{H}$ NMR (S9)

${ }^{13} \mathbf{C}$ NMR (S9)

${ }^{1} \mathrm{H}$ NMR (3p)

ชิ่ ัิั
よよ

$\int J \mid \|$

${ }^{13}$ C NMR (3p)

${ }^{1} \mathrm{H}$ NMR (3q)

${ }^{13}$ C NMR (3q)

${ }^{1} \mathrm{H}$ NMR (3r)

ํㅜํํํํํํํ

 $\jmath \quad \leqslant \quad \leqslant 1 / J \mid)$

${ }^{13} \mathrm{C}$ NMR (3r)

```
\begin{tabular}{|c|c|}
\hline ल & 9\% \\
\hline \% & 첯 \\
\hline & \/ \\
\hline
\end{tabular}
```


${ }^{1} \mathrm{H}$ NMR (3s)

${ }^{13} \mathrm{C}$ NMR (3s)

[^2]${ }^{1}$ H NMR (3t)

${ }^{13} \mathrm{C}$ NMR (3t)

${ }^{1}$ H NMR (3v)

${ }^{13}$ C NMR (3v)

${ }^{1}$ H NMR (3w)

${ }^{13}$ C NMR (3w)

$\stackrel{\square}{-}$	\cdots		MN	- ${ }_{\text {¢ }}$
$\stackrel{\square}{\circ}$	$\stackrel{\text { ¢ }}{ }$		$\because \cdot$	$\stackrel{\circ}{6}$
$\stackrel{\sim}{\sim}$	\bigcirc		mm	N
	1	N/	V	V

${ }^{1} \mathrm{H}$ NMR (3x)

${ }^{13}$ C NMR (3x)

${ }^{1} H$ NMR（3y）

${ }^{13}$ C NMR（3y）

ハウゥ

${ }^{1} \mathrm{H}$ NMR (3z)

${ }^{13} \mathbf{C}$ NMR (3z)

${ }^{1}$ H NMR (3aa)

$\stackrel{\square}{\square}$	N¢ヶ¢
m	$\dot{\circ} \dot{\infty} \dot{r} \dot{\circ}$
$\underset{-}{\square}$	
	11

${ }^{1} \mathbf{H}$ NMR (trans-3ab)

${ }^{13} \mathbf{C}$ NMR (trans-3ab)

${ }^{\mathbf{1}} \mathbf{H}$ NMR (cis-3ab)

${ }^{13} \mathbf{C}$ NMR (cis-3ab)

$\stackrel{\sim}{\infty}$

${ }^{1} \mathrm{H}$ NMR (3ac)

${ }^{13}$ C NMR (3ac)

${ }^{1} \mathrm{H}$ NMR (3ad)

${ }^{13} \mathbf{C}$ NMR (3ad)

${ }^{1}$ H NMR (3ae)

${ }^{13}$ C NMR (3ae)

${ }^{1}$ H NMR (3af)

${ }^{13}$ C NMR (3af)

${ }^{1} \mathrm{H}$ NMR (5)

${ }^{13} \mathrm{C}$ NMR (5)

HPLC and GC Traces

Peak \#	Ret. Time/min	Area/\%
5	88.43	98.34
6	92.67	1.66

Peak \#	Ret. Time/min	Area/\%
5	88.95	49.98
6	92.68	50.02

Peak \#	Ret. Time/min	Area/\%
1	4.10	92.34
2	4.50	7.66

mAU

Peak \#	Ret. Time/min	Area/\%
1	4.18	50.01
2	4.57	49.99

mAU

Peak \#	Ret. Time/min	Area/\%
1	4.52	97.86
2	4.92	2.14

mAU

Peak \#	Ret. Time $/ \mathrm{min}$	Area/\%
1	4.53	50.21
2	4.86	49.79

mAU

Peak \#	Ret. Time $/ \mathrm{min}$	Area/\%
1	4.99	49.63
2	5.45	50.37

mAU

Peak \#	Ret. Time $/ \mathrm{min}$	Area/\%
1	5.37	95.01
2	6.16	4.99

mAU

Peak \#	Ret. Time/min	Area/\%
1	5.34	50.10
2	6.12	49.90

mAU

Peak \#	Ret. Time/min	Area/\%
1	5.57	94.97
2	6.17	5.03

mAU

Peak \#	Ret. Time/min	Area/\%
1	5.61	49.66
2	6.19	50.34

Peak \#	Ret. Time $/ \mathrm{min}$	Area/\%
1	5.52	99.74
2	5.96	0.26

mAU

Peak \#	Ret. Time/min	Area/\%
1	5.65	49.77
2	5.99	50.23

Peak \#	Ret. Time/min	Area/\%
1	21.75	50.11
2	23.43	49.89

Peak \#	Ret. Time/min	Area/\%
1	20.68	5.55
2	21.55	94.45

Peak \#	Ret. Time/min	Area/\%
1	20.34	50.04
2	21.38	49.96

Peak \#	Ret. Time/min	Area/\%
1	4.21	3.30
2	4.35	96.70

Peak \#	Ret. Time/min	Area/\%
1	4.18	50.16
2	4.33	49.84

Peak \#	Ret. Time/min	Area/\%
10	37.79	4.49
11	38.98	95.51

Peak \#	Ret. Time/min	Area/\%
1	37.59	50.04
2	38.69	49.96

Peak \#	Ret. Time/min	Area/\%
1	12.54	96.7016
4	13.81	3.2984

Peak \#	Ret. Time/min	Area/\%
1	12.54	0.7309
2	12.87	2.4147
3	13.56	96.8544

Peak \#	Ret. Time/min	Area/\%
1	12.54	44.9979
2	12.88	1.1056
3	13.56	51.7611
4	13.80	2.1354

Aldehyde
Chiral GC spectra

TfOH

4d: $\mathrm{R}=3,5-\left(n \mathrm{C}_{3} \mathrm{~F}_{7}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{3}, \mathrm{R}^{\prime}=\mathrm{CF}_{3}$

4d

4d

Ph

Ph is
Ch

Peak \#	Ret. Time/min	Area/\%
14	34.49	3.47
15	35.43	96.53

Peak \#	Ret. Time $/ \mathrm{min}$	Area/\%
1	34.45	49.98
2	35.43	50.02

Peak \#	Ret. Time/min	Area/\%
11	102.41	3.56
12	104.94	96.44

Peak \#	Ret. Time $/ \mathrm{min}$	Area/\%
13	102.11	49.93
14	104.93	50.07

Peak \#	Ret. Time/min	Area/\%
1	4.86	5.22
2	5.63	94.78

Peak \#	Ret. Time/min	Area/\%
6	52.26	3.45
7	53.72	96.55

Peak \#	Ret. Time/min	Area/\%
10	51.78	50.08
11	53.26	49.92

Peak \#	Ret. Time/min	Area/\%
3	3.96	95.01
4	4.66	4.99

Peak \#	Ret. Time/min	Area/\%
3	3.97	51.13
4	4.73	48.87

Peak \#	Ret. Time/min	Area/\%
9	18.86	98.00
10	19.87	2.00

Peak \#	Ret. Time $/ \mathrm{min}$	Area/\%
1	4.29	89.95
2	4.47	10.05

racemic

Peak \#	Ret. Time $/ \mathrm{min}$	Area/\%
1	4.32	50.01
2	4.49	49.99

Peak \#	Ret. Time/min	Area/\%
1	6.06	5.92
2	7.22	94.08

Peak \#	Ret. Time/min	Area/\%
1	6.04	50.15
2	7.24	49.85

Peak \#	Ret. Time/min	Area/\%
13	114.52	95.98
14	117.41	4.02

Peak \#	Ret. Time/min	Area/\%
11	114.68	49.64
12	117.84	50.36

Peak \#	Ret. Time/min	Area/\%
5	41.98	3.95
6	45.20	96.05

Peak \#	Ret. Time/min	Area/\%
2	42.01	49.96
4	45.60	50.04

Peak \#	Ret. Time/min	Area/\%
1	31.01	4.94
2	31.97	95.06

Peak \#	Ret. Time/min	Area/\%
1	31.04	50.02
2	31.97	49.98

Peak \#	Ret. Time $/ \mathrm{min}$	Area/\%
6	22.14	1.01
7	23.39	98.99

Peak \#	Ret. Time/min	Area/\%
7	22.09	49.95
8	23.40	50.05

Peak \#	Ret. Time/min	Area/\%
11	4.05	50.29
12	4.25	49.71

Peak \#	Ret. Time/min	Area/\%
9	3.99	49.64
10	4.19	50.36

mAU

Peak \#	Ret. Time/min	Area/\%
1	39.28	0.21
2	47.05	99.79

mAU

Peak \#	Ret. Time/min	Area/\%
1	38.97	50.78
2	48.02	49.22

Peak \#	Ret. Time/min	Area/\%
1	31.65	0.18
2	33.78	99.82

Peak \#	Ret. Time $/ \mathrm{min}$	Area/\%
1	32.51	49.50
2	35.66	50.50

Peak \#	Ret. Time/min	Area/\%
1	40.46	2.72
2	42.39	97.28

Peak \#	Ret. Time/min	Area/\%
1	40.23	49.95
2	43.50	50.05

Peak \#	Ret. Time/min	Area/\%
1	38.24	49.93
2	39.57	50.07

Peak \#	Ret. Time/min	Area/\%
1	27.12	5.40
2	29.22	94.60

Peak \#	Ret. Time $/ \mathrm{min}$	Area/\%
1	27.28	49.68
2	30.09	50.32

Peak \#	Ret. Time $/ \mathrm{min}$	Area/\%
1	113.62	50.06
2	117.09	49.94

Peak \#	Ret. Time $/ \mathrm{min}$	Area $/ \%$
1	5.56	5.15
2	6.49	94.85

Peak \#	Ret. Time/min	Area/\%
7	17.04	1.66
8	17.76	87.56
9	19.45	10.18
10	21.17	0.59

Peak \#	Ret. Time/min	Area/\%
27	17.04	43.05
28	17.79	43.13
29	19.47	6.92
30	21.17	6.90
S188		

References

(25). Yue, Y.; Turlington, M.; Yu, X. Q.; Pu, L. J. Org. Chem. 2009, 74, 8681.
(26). Lee, J. W.; List, B. J. Am. Chem. Soc. 2012, 134, 18245.
(27). Lützen, A.; Hapke, M.; Griep-Raming, J.; Haase, D.; Saak, W. Angew. Chem. Int. Ed. 2002, 41, 2086.
(28). Kim, J. H.; Čorić, I.; Vellalath, S.; List, B. Angew. Chem., Int. Ed. 2013, 52, 4474.
(29). Barman, S.; Anslyn, E. V. Tetrahedron 2014, 70, 1357.
(30). Enders, D.; Bartzen, D. Liebigs Ann. Chem. 1991, 1991, 569.
(31). Patel, H. H.; Sigman, M. S. J. Am. Chem. Soc. 2015, 137, 3462.
(32). Quins, L. D.; Marsi, B. G. Heteroat. Chem. 1990, $1,93$.
(33). Margot, C.; Rizzolio, M.; Schlosser, M. Tetrahedron 1990, 46, 2411.
(34). Kobayashi, T.; Tsuruta, H. Synthesis 1980, 6, 492.

[^0]: ${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.0,139.4,133.5,132.6,131.7,130.1,130.0,129.8,129.6$, 129.1, 128.9, 127.7, 125.4, 124.4, 124.2, 120.9, 119.2, 119.0, 118.8, 117.3, 117.1, 116.9, $116.8,116.6,116.4,115.1,114.9,114.7,113.4,113.2,113.0,111.9,110.7,110.4,109.1$, 108.9, 108.6, 108.4, 107.1, 106.9; $\delta 131.7$ (t, $J=6.0 \mathrm{~Hz}$), 130.0 (t, $J=25.0 \mathrm{~Hz}$), 124.4 (p, $J=$

[^1]:

[^2]: $\left.\begin{array}{lllllllllllllllllllll}180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & -20\end{array}\right) \mathrm{ppm}$

