Supporting Information

Synthesis and reactivities of polyhydrido osmium arylsilyl complexes prepared from OsH₃Cl(PPh₃)₃

Guomei He,^{†,‡} Linlin Wu,[†] Wei Bai,[†] Jiangxi Chen,^{*,‡} Herman H. Y. Sung,[†] Ian D. Williams,[†] Zhenyang Lin^{*,†} and Guochen Jia^{*,†}

- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
- ‡. Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen, China.

Table of Contents

- 1. Spectroscopic data
- 2. Crystallographic details for complexes 3 and 18.
- 3. Optimized structures

1. Spectroscopic data

Figure S2. The ¹H NMR spectrum of **2** in CD_2Cl_2 at 400.13 MHz.

Figure S3. The IR spectrum of 2.

Figure S4. The ${}^{31}P{}^{1}H$ NMR spectrum of 3 in C₆D₆ at 121.49 MHz.

Figure S5. The ¹H NMR spectrum of **3** in $C_6D_5CD_3$ at 400.13 MHz.

Figure S6. The hydride region ¹H NMR spectra of **3** in $C_6D_5CD_3$ at various temperatures.

Figure S7. The ²⁹Si $\{^{1}H\}$ NMR spectrum of **3** in C₆D₆ at 59.63 MHz.

Figure S8. The ²⁹Si DEPT135 NMR spectrum of 3 in C₆D₆ at 59.63 MHz.

Figure S11. The ¹³C DEPT135 NMR spectrum of **3** in CD₂Cl₂ at 100.62MHz.

Figure S13. The ¹H NMR spectrum of **4** in C_6D_6 at 400.13 MHz.

Figure S14. The hydride region of the ¹H NMR spectra of 4 in C₆D₅CD₃ at various

Figure S15. The ${}^{29}Si\{{}^{1}H\}$ NMR spectrum of 4 in C₆D₆ at 59.63 MHz.

Figure S17. The¹³C{¹H} NMR spectrum of 4 in CD₂Cl₂ at 100.62 MHz.

Figure S18. The ${}^{31}P{}^{1}H$ NMR spectrum of 18 in C₆D₆ at 161.98 MHz.

Figure S19. The ¹H NMR spectrum of 18 in C₆D₆ at 400.13 MHz.

Figure S20. The ${}^{13}C{}^{1}H$ NMR of **18** in C₆D₆ at 100.62 MHz.

Wavenumber (cm⁻¹)

Figure S21. The IR spectrum of 18.

Figure S22. The hydride region of the ¹H NMR spectra of **18** in CD₂Cl₂ at 295-193 K.

2. Crystallographic details for complexes 3 and 18.

Table S1. Crystall	ographic details f	for complexes 3 a	and 18.
--------------------	--------------------	-------------------	---------

Identification code	3	$18 \cdot CH_2Cl_2$
Empirical formula	C ₆₀ H ₅₅ ClOsP ₂ Si ₂	C ₅₁ H ₄₈ Cl ₃ NOsP ₂ Si
Formula weight	1119.81	1061.48
Temperature, K	99.98(10)	100.00(10)
Wavelength, Å	1.54184	1.54184
Crystal system	Orthorhombic	Triclinic
Space group	P2 ₁ 2 ₁ 2 ₁	P-1
a, Å	12.3673(3)	9.2081(3)
b, Å	15.5428(4)	12.9942(3)
c, Å	26.5491(8)	19.8346(5)
α, deg.	90	83.214(2)
β, deg.	90	82.790(2)
γ, deg.	90	73.209(2)
Volume, Å ³	5103.3(2)	2245.68(11)
Ζ	4	2
d (calculated), Mg/m ³	1.457	1.570
Two Theta range for data collection, deg.	7.886 to 133.992	8.764 to 133.994
Reflections collected	28522	12759
Independent reflections	9052 [R(int) = 0.0682]	7855 [R(int) = 0.0168]
Data / restraints / parameters	9052/57/610	7855/0/545
Goodness-of-fit on F ²	1.002	1.000
Final R indices [I>2sigma(I)]	$R_1 = 0.0409, wR_2 = 0.0911$	R1 = 0.0165, wR2 = 0.0397
Largest diff. peak / hole, e.Å-3	0.91/-0.62	0.74/-0.76

3. Optimized structures

Figure S23. B3LYP optimized structure of complex 2.

Figure S24. B3LYP optimized structure of complex 3

Figure S25. B3LYP optimized structure of complex 16.

Figure S26. B3LYP optimized structure of TS_{16-16B}.

Figure S27. B3LYP optimized structure of complex 17.

Figure S28. B3LYP optimized structure of TS₁₇₋₂.

Figure S29. B3LYP optimized structure of complex 13.

Figure S30. B3LYP optimized structure of complex 13A.

Figure S31. B3LYP optimized structure of complex TS_{13A-14}.

Figure S32. B3LYP optimized structure of complex 14.

Figure S33. B3LYP optimized structure of complex 15.

Figure S34. B3LYP optimized structure of complex 18.