Tren-Capped Hexaphyrin Zinc Complexes : Interplaying Molecular Recognition, Möbius Aromaticity and Chirality

Hervé Ruffin, Gildas Nyame Mendendy Boussambe, Thierry Roisnel, Vincent Dorcet, Bernard Boitrel* and Stéphane Le Gac*

Institut des Sciences Chimiques de Rennes, UMR CNRS 6226, Université de Rennes 1, 263 avenue du Général Leclerc, 35042 Rennes cedex, France. bernard.boitrel@univ-rennes1.fr; stephane.legac@univ-rennes1.fr

SUPPORTING INFORMATION

Table of content
I. Experimental part
General S3
Synthesis of 5-(2-nitrophenyl)dipyrromethane S3
Synthesis of 1 S4
Synthesis of 2 S4
Synthesis of $\mathbf{3}$ S5
Synthesis of 6 S5
Synthesis of 4 S6
Synthesis of 5 S7
Synthesis of 9 S8
Synthesis of 10 S8
Synthesis of 8 S9
Synthesis of 11 S10
Metallation of 8 with Zn (II) S11
Crystallographic data for 1 S14
Crystallographic data for 5 S14
Crystallographic data for $\mathbf{8 Z n}{ }^{\mathbf{O A c}}{ }_{\mathrm{NH} 2 \mathrm{Bu}} \cdot \mathrm{H}^{+}, \mathrm{OTf}^{-}$ S14
Dihedral angles (${ }^{\circ}$) of $\mathbf{8 Z n}{ }^{\mathbf{O A c}}{ }_{\mathrm{NH} 2 \mathrm{Bu}} \cdot \mathbf{H}^{+}$, $\mathbf{O T f}$ along the SMC S15
II. NMR spectral data
Selected NMR spectra of 1 S16
Selected NMR spectra of $\mathbf{3}$ and $\mathbf{6}$ S18
Selected NMR spectra of 4 S19
Selected NMR spectra of 5 S21
Selected NMR spectra of 9 S23
Selected NMR spectra of 10 S24
Selected NMR spectra of 8 S26
Selected NMR spectra of 11 S28
Comparison of the ${ }^{1} \mathrm{H}$ NMR spectra of 10 and 11 S30
Selected NMR spectra of $\mathbf{8 Z n}{ }^{\mathbf{O A c}}{ }_{\mathrm{NH} 2 \mathrm{Bu}} . \mathrm{H}^{+}, \mathbf{O T f}$ and $\mathbf{8 Z n}{ }^{\mathbf{O A c}}{ }_{\mathrm{NH} 2 \mathrm{Bu}}$ S31
III. UV-vis-NIR absorption spectra
UV-vis-NIR absorption spectra of compounds 3, 4, 6 and 8 S41
UV-vis-NIR absorption spectra of compounds 5 and 10 S41
UV-vis-NIR absorption spectra for the titration of 8 by a 1:1 mixture of $\mathrm{Zn}(\mathrm{OAc})_{2}$ and BuNH_{2} S42
CD and UV-vis absorption spectra of (i) a solution of $8, \mathrm{Zn}(\mathrm{OTf})_{2}$ and (R)-MBA vs. (ii) a solution of $\mathbf{8}, \mathrm{Zn}(\mathrm{OTf})_{2},(R)-\mathrm{MBA}$ and TBAOAc S43
Racemization study for the M <-> P twist interconversion in " $8 Z n$ " S44

I. Experimental part

General

All chemicals were commercial products used as received. All reactions were conducted under inert atmosphere. Pyrrole was filtered through a plug of basic alumina before use. Anhydrous $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and THF were obtained, respectively, by distillation over CaH_{2} and Na /benzophenone according to standard procedures. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at 298 K (unless otherwise stated), at $500 \mathrm{MHz}, 125 \mathrm{MHz}$ and 376 MHz , respectively. Residual traces of solvent were used as internal standard. Chemical shifts are expressed in parts per million (ppm; $s=$ singlet $\left[s_{b}=\right.$ broad singlet, and so on], $d=$ doublet, $t=$ triplet, $m=$ multiplet, $d d=$ doublet of doublets, $d t=$ doublet of triplets, and $b r$ = broad signal) and coupling constants are given in Hz. The NMR experiments were conducted in 5 mm standard NMR tubes.

Synthesis of 5-(2-nitrophenyl)dipyrromethane ${ }^{1}$

Under inert atmosphere, 2-nitrobenzaldehyde ($25.0 \mathrm{~g}, 164 \mathrm{mmol}$) was solubilized in 275 mL of pyrrole (4.11 mol) and the mixture was degassed by argon bubbling during 15 min . TFA (1.3 mL , 16 mmol) was then added and the reaction was stirred at RT for 45 min . Upon addition of $c a .2 \mathrm{~mL}$ of $\mathrm{Et}_{3} \mathrm{~N}$, pyrrole was removed under vacuum. The crude mixture was extracted with hexane from a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution and purified by silica gel column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 5-(2nitrophenyl)dipyrromethane as a reddish oil ($35.4 \mathrm{~g}, 80 \%$).
${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 5.89(\mathrm{~s}, 2 \mathrm{H}, \mathrm{c}), 5.82(\mathrm{~d}, \mathrm{~J}=5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{b}), 6.21(\mathrm{~s}, 1 \mathrm{H}, \mathrm{d}), 6.73(\mathrm{~m}, 2 \mathrm{H}, \mathrm{a}), 7.28$ (dd, J1 = $7.8 \mathrm{~Hz}, \mathrm{~J} 2=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{h}), 7.38(\mathrm{td}, \mathrm{J} 1=7.8 \mathrm{~Hz}, \mathrm{~J} 2=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{g}), 7.51(\mathrm{td}, \mathrm{J} 1=7.8 \mathrm{~Hz}, \mathrm{~J} 2=$ $1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{f}), 7.87(\mathrm{dd}, \mathrm{J} 1=7.8 \mathrm{~Hz}, \mathrm{~J} 2=1.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{e}), 8.16(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH})$.

Synthesis of 1

(mixture of atropisomers)

Under inert atmosphere, at $0^{\circ} \mathrm{C}$, MSA ($440 \mu \mathrm{~L}, 6.8 \mathrm{mmol}$) was added to a solution of 5-(2nitrophenyl)dipyrromethane ($30.0 \mathrm{~g}, 112 \mathrm{mmol}$) and pentafluorobenzaldehyde ($22.0 \mathrm{~g}, 112 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.6 \mathrm{~L})$. After 1 h 30 , DDQ ($76.3 \mathrm{~g}, 336 \mathrm{mmol}$) was added and the reaction was stirred at RT for an additional $2 \mathrm{~h} . \mathrm{Et}_{3} \mathrm{~N}(2 \mathrm{~mL}, 14 \mathrm{mmol})$ was added to stop the reaction and the solvent was removed under reduced pressure. The crude mixture was purified by silica gel column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to provide hexaphyrin $\mathbf{1}$ as a purple solid ($6.4 \mathrm{~g}, 16 \%$).
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 330 \mathrm{~K}$, average spectrum) $\delta-2.36\left(\mathrm{~m}, 4 \mathrm{H}, \beta \pi_{\text {in }}\right),-1.83(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH}), 7.95-8.20(\mathrm{~m}, 8 \mathrm{H}$, Ar), $8.39\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}_{\mathrm{d}(\mathrm{s})}\right), 8.60\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}_{\mathrm{a}(\mathrm{S}+L)}\right), 8.86\left(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 2 \mathrm{H}, \beta \pi_{1}\right), 8.99\left(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 2 \mathrm{H}, \beta \pi_{4}\right)$, $9.26\left(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 2 \mathrm{H}, \beta \pi_{2}\right), 9.33\left(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \beta \pi_{3}\right) .{ }^{19} \mathrm{~F}$ NMR ($\mathrm{CDCl}_{3}, 298 \mathrm{~K}$, complex spectrum corresponding to a mixture of atropisomers, see Figure S5) $\delta-164.35\left(\mathrm{~m}, \mathrm{~F}_{\text {meta }}\right)$, $-164.01\left(\mathrm{~m}, \mathrm{~F}_{\text {meta }}\right)$, $162.99\left(\mathrm{~m}, \mathrm{~F}_{\text {meta }}\right),-162.50\left(\mathrm{~m}, \mathrm{~F}_{\text {meta }}\right),-161.26\left(\mathrm{~m}, \mathrm{~F}_{\text {meta }}\right),-160.92\left(\mathrm{~m}, \mathrm{~F}_{\text {meta }}\right),-160.54\left(\mathrm{~m}, \mathrm{~F}_{\text {meta }}\right),-154.87$ (m, $\mathrm{F}_{\text {para }}$), -150.70 (t, J = 20.9 Hz, F para), -138.52 (d, J = $24.2 \mathrm{~Hz}, \mathrm{~F}_{\text {ortho }}$), -138.29 (d, J = $23.4 \mathrm{~Hz}, \mathrm{~F}_{\text {ortho }}$), 137.62 ($\mathrm{d}, J=24.4 \mathrm{~Hz}, \mathrm{~F}_{\text {ortho }}$), -137.28 ($\mathrm{d}, J=24.4 \mathrm{~Hz}, \mathrm{~F}_{\text {ortho }}$), -137.01 ($\mathrm{d}, J=24.7 \mathrm{~Hz}, \mathrm{~F}_{\text {ortho }}$), $-136.80(\mathrm{~m}$, $\left.F_{\text {ortho }}\right),-136.64$ (d, J = $24.4 \mathrm{~Hz}, \mathrm{~F}_{\text {ortho }}$), -136.21 (m, $\mathrm{F}_{\text {ortho }}$), -136.07 ($\mathrm{d}, \mathrm{J}=26.4 \mathrm{~Hz}, \mathrm{~F}_{\text {ortho }}$), -135.76 ($\mathrm{d}, \mathrm{J}=$ 24.1 Hz, Fortho), -135.58 (d, J = 24.0 Hz , Fortho). UV-visible ($\mathrm{CHCl}_{3}, \lambda_{\max } \mathrm{nm} / \varepsilon \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 566 (141149), 600 (51758), 714 (18735), 744 (8639), 901 (7728), 1024 (11970). HRMS (ESI-TOF, positive ion mode): m / z calcd for $\mathrm{C}_{66} \mathrm{H}_{27} \mathrm{~N}_{9} \mathrm{O}_{6} \mathrm{~F}_{15}$: $1326.1844\left[\mathrm{M}+\mathrm{H}^{+}\right]$; found 1326.1854.

Synthesis of 2

In a sealed reactor, $\mathrm{Pd}(0) / \mathrm{C}(30 \mathrm{wt} . \%$ loading, 12.5 mg) was added to hexaphyrin $1(250 \mathrm{mg}, 190$ $\mu \mathrm{mol}$) in AcOEt (20 mL). The reaction was stirred under a pressure of $\mathrm{H}_{2}(80 \mathrm{bar})$ for 24 h at $30^{\circ} \mathrm{C}$, then filtered through a plug of celite. AcOEt was removed under reduced pressure affording $\mathbf{2}$ as the major compound. The crude mixture was used in the next steps without purification.

Synthesis of 3

Under inert atmosphere, the crude hexaphyrin 2, obtained from 250 mg of 1, was solubilized in anhydrous THF (10 mL) and, at $-50^{\circ} \mathrm{C}$, DIPEA ($164 \mu \mathrm{~L}, 940 \mu \mathrm{~mol}$) and acryloyl chloride ($55 \mu \mathrm{~L}, 670$ $\mu \mathrm{mol}$) were added. After 30 min of stirring, the excess of acyl chloride was quenched by addition of of $\mathrm{MeOH}(1 \mathrm{~mL})$. THF was removed under reduced pressure and the residue was purified by silica gel column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt} 97: 3$) to afford hexaphyrin 3 as a blue solid (109 mg , 41% overall yield from 1).
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 298 \mathrm{~K}$): broad spectrum due to fast equilibrium between Möbius conformers (see text and Figure S6a). UV-visible ($\mathrm{CHCl}_{3}, \lambda_{\text {max }} \mathrm{nm}$): $393,446,604,774,866,913,1022$. HRMS (ESI-TOF, positive ion mode): m / z calcd for $\mathrm{C}_{75} \mathrm{H}_{41} \mathrm{~N}_{9} \mathrm{O}_{3} \mathrm{~F}_{15}$: $1400.3093\left[\mathrm{M}+\mathrm{H}^{+}\right]$; found 1400.3086.

Synthesis of 6

Under inert atmosphere, the crude hexaphyrin 2, obtained from 250 mg of $\mathbf{1}$, was solubilized in anhydrous THF (10 mL) and, at $0^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}(128 \mu \mathrm{~L}, 912 \mu \mathrm{~mol})$ and 3 -(chloromethy) benzoyl chloride (97 $\mu \mathrm{L}, 682 \mu \mathrm{~mol}$) were successively added. After 30 min of stirring, the excess of acyl chloride was quenched by addition of butylamine ($75 \mu \mathrm{~L}, 760 \mu \mathrm{~mol}$). THF was removed under reduced pressure and the residue was purified by silica gel column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford hexaphyrin 6 as a blue solid ($150 \mathrm{mg}, 46 \%$ overall yield from 1).
${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 298 \mathrm{~K}$): broad spectrum due to fast equilibrium between Möbius conformers (see text and Figure S6b). UV-visible ($\mathrm{CHCl}_{3}, \lambda_{\max } \mathrm{nm} / \varepsilon \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 398 (30237), 454 (29580), 604 (174408), 633 (88085), 774 (13620), 865 (8400), 913 (7527), 1036 (3807). HRMS (ESI-TOF, positive ion mode): m / z calcd for $\mathrm{C}_{90} \mathrm{H}_{50} \mathrm{~N}_{9} \mathrm{O}_{3} \mathrm{~F}_{15}{ }^{35} \mathrm{Cl}_{3}$: $1694.2857\left[\mathrm{M}+\mathrm{H}^{+}\right]$; found 1694.2852.

Synthesis of 4

Under inert atmosphere, a solution of hexaphyrin $\mathbf{3}$ ($51 \mathrm{mg}, 36 \mu \mathrm{~mol}$) and tris(2 -aminoethyl)amine $(5.4 \mu \mathrm{~L}, 36 \mu \mathrm{~mol})$ in $\mathrm{MeOH} / \mathrm{CHCl}_{3}(9: 1,50 \mathrm{~mL})$ was stirred overnight at $45^{\circ} \mathrm{C}$. The solvents were then removed under reduced pressure and the residue was purified by silica gel column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 90: 10$, with $5 \% \mathrm{v}: \mathrm{v}$ of $\mathrm{Et}_{3} \mathrm{~N}$), then washed twice with water to afford hexaphyrin 4 as a reddish solid ($23 \mathrm{mg}, 41 \%$).
${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 2.40\left(\mathrm{~s}_{\mathrm{b}}, 2 \mathrm{H}, \mathrm{NH}_{\text {out }}\right) 2.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{e}(\mathrm{s})}\right), 2.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{e}(\mathrm{l})}\right), 3.16(\mathrm{~d}, \mathrm{~J}=4.6$ $\mathrm{Hz}, 2 \mathrm{H}, \beta \pi_{\text {out }}, 3.36\left(\mathrm{~m}, 6 \mathrm{H}, \beta \pi_{\text {out }}\right), 3.49\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 e(l)}\right), 3.68\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 f(s)}\right), 3.95\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 f(L)}\right), 4.17$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2 f(L)}\right), 5.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{~g}(\mu)}\right), 5.53\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{~g}(\mathrm{~s})}\right), 5.89\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 g(L)}\right), 6.07(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\operatorname{Ar}_{\mathrm{d}(\mu)}\right), 6.09\left(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}_{\mathrm{d}(\mathrm{s})}\right), 6.16\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 h(s)}\right), 6.57\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}_{\mathrm{c}(\mathrm{s})}\right), 6.61(\mathrm{t}, \mathrm{J}=7.4$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \operatorname{Ar}_{(\mu)}\right), 6.76\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Arb}_{\mathrm{b}(\mu)}\right), 6.86\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 h(L)}\right), 6.87\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}_{\mathrm{b}}(\mathrm{s}), 6.98(\mathrm{~m}\right.$, $\left.2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{~h}(\mu)}\right), 7.08\left(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}_{\mathrm{a}(\mu)}\right), 7.77\left(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}_{\mathrm{a}(\mathrm{s})}\right), 8.36\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CONH}_{(L)}\right), 11.19(\mathrm{~s}$, $\left.1 \mathrm{H}, \mathrm{CONH}_{(s)}\right), 19.93\left(\mathrm{~s}_{\mathrm{b}}, 2 \mathrm{H}, \beta \pi_{\mathrm{in}}\right), 20.52\left(\mathrm{~s}_{\mathrm{b}}, 2 \mathrm{H}, \beta \pi_{\mathrm{in}}\right), 26.79\left(\mathrm{~s}_{\mathrm{b}}, 2 \mathrm{H}, \mathrm{NH}_{\mathrm{in}}\right) .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta-$ $160.72\left(\mathrm{dt}, \mathrm{J} 1=21.8 \mathrm{~Hz}, \mathrm{~J} 2=8.1 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{m(\mathrm{~s})}\right),-160.58\left(\mathrm{~m}, 3 \mathrm{~F}, \mathrm{~F}_{m(\mathrm{~s}+\mathrm{L}}\right),-159.44(\mathrm{dt}, \mathrm{J} 1=22.7 \mathrm{~Hz}, \mathrm{~J} 2=8.1$ $\left.\mathrm{Hz}, 2 \mathrm{~F}, \mathrm{~F}_{m(L)}\right),-154.73\left(\mathrm{t}, \mathrm{J}=21.0 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{p(\mathrm{~S})}\right),-153.03\left(\mathrm{t}, \mathrm{J}=21.1 \mathrm{~Hz}, 2 \mathrm{~F}, \mathrm{~F}_{p(L)}\right),-139.82(\mathrm{~d}, \mathrm{~J}=23.6 \mathrm{~Hz}$, $\left.2 F, F_{o(L)}\right),-139.55\left(\mathrm{dd}, \mathrm{J} 1=24.8, \mathrm{~J} 2=8.3 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{\mathrm{o}(\mathrm{s})}\right),-139.34\left(\mathrm{dd}, \mathrm{J} 1=24.6, \mathrm{~J} 2=8.5 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{\mathrm{o}(\mathrm{s})}\right),-$ $138.55\left(\mathrm{~d}, \mathrm{~J}=21.6 \mathrm{~Hz}, 2 \mathrm{~F}, \mathrm{~F}_{o(L)}\right)$. Partial ${ }^{13} \mathrm{C}$ from 2D HSQC $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 35.3\left(1 \mathrm{C}, \mathrm{Ce}_{\mathrm{e}(\mathrm{s})}\right), 36.6(2 \mathrm{C}$, $\left.\mathrm{C}_{\mathrm{e}(L)}\right), 45.4\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{f}(L)}\right), 46.3\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{f}(\mathrm{S})}\right), 47.2\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{g}(\mu)}\right), 48.6\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{g}(\mathrm{s})}\right), 54.7\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{h}(L)}\right), 57.3\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{h}(\mathrm{s})}\right), 122.3$
 ($2 \mathrm{C}, \mathrm{C}_{\beta \text { rout }}$), $128.4\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{b}(s)}\right), 128.5$ (2C, $\left.\mathrm{C}_{\text {вrout }}\right), 128.9\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{d}(L)}\right), 129.0\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{b}(\mu)}\right), 129.1\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{d}(\mathrm{s})}\right), 130.5$ ($2 \mathrm{C}, \mathrm{C}_{\beta \text { rrout }}$), 132.4 (2C, $\mathrm{C}_{\text {Brout }}$). UV-visible ($\mathrm{CHCl}_{3}, \lambda_{\max } \mathrm{nm} / \varepsilon \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 426 (39220), 488 (105568), 526 (61807), 577 (66258), 608 (47290). HRMS (ESI-TOF, positive ion mode): m / z calcd for $\mathrm{C}_{81} \mathrm{H}_{59} \mathrm{~N}_{13} \mathrm{O}_{3} \mathrm{~F}_{15}$: $1546.4618\left[\mathrm{M}+\mathrm{H}^{+}\right]$; found 1546.4616.

Synthesis of 5

Under inert atmosphere, a solution of hexaphyrin $3(60 \mathrm{mg}, 42 \mu \mathrm{~mol}$) and tris[2(methylamino)ethyl]amine ($9 \mu \mathrm{~L}, 43 \mu \mathrm{~mol}$) in $\mathrm{MeOH} / \mathrm{CHCl}_{3}\left(9: 1,60 \mathrm{~mL}\right.$) was stirred overnight at $45^{\circ} \mathrm{C}$. The solvents were removed under reduced pressure and the residue was purified by silica gel column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 90: 10$, with $1 \% \mathrm{v}: \mathrm{v}$ of $\mathrm{Et}_{3} \mathrm{~N}$), then washed twice with water to afford hexaphyrin 5 as a reddish solid ($46 \mathrm{mg}, 67 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 3.08\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2 \mathrm{e}(L)}\right), 3.15\left(\mathrm{~d}, \mathrm{~J}=5.1 \mathrm{~Hz}, 2 \mathrm{H}, \beta \pi_{\text {out }}\right), 3.21\left(\mathrm{~m}, 4 \mathrm{H}, \beta \pi_{\text {out }}\right), 3.27$ $\left(\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{e}(\mathrm{s})}\right), 3.39\left(\mathrm{~d}, \mathrm{~J}=5.3 \mathrm{~Hz}, 2 \mathrm{H}, \beta \pi_{\text {out }}\right.$), $3.73\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3(\mathrm{~s})}\right), 3.81\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2 \mathrm{f}(L)}\right), 4.16(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2 f(s)}\right), 4.97\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3(L)}\right), 5.82\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{CH}_{2 \mathrm{~h}(\mathrm{~s}+L)+\mathrm{g}(L)}\right), 5.95\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}_{\mathrm{d}(\mathrm{S})}+\mathrm{CH}_{2 \mathrm{~h}(L)}\right), 6.20(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}$, $\left.2 \mathrm{H}, \operatorname{Ar}_{\mathrm{d}(L)}\right), 6.53\left(\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}_{\mathrm{c}(L)}\right), 6.57\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}_{\mathrm{c}(\mathrm{s})}\right), 6.75\left(\mathrm{t}, \mathrm{J}=7.2,2 \mathrm{H}, \operatorname{Ar}_{\mathrm{b}(L)}\right), 6.86(\mathrm{t}$, $\left.\mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}_{\mathrm{b}(\mathrm{s})}\right), 7.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{~g}(L)}\right), 7.52\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}_{\mathrm{a}(L)}\right), 7.94\left(\mathrm{~d}, \mathrm{~J}=8.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}_{\mathrm{a}(\mathrm{s})}\right)$, $8.49\left(m_{b}, 2 H, C_{2 g(s)}\right), 8.97\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CONH}_{(L)}\right), 11.07\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CONH}_{(s)}\right), 20.37\left(\mathrm{~s}_{\mathrm{b}}, 2 \mathrm{H}, \beta \pi_{\text {in }}\right), 20.53\left(\mathrm{~s}_{\mathrm{b}}, 2 \mathrm{H}\right.$, $\left.\beta \pi_{i n}\right), 27.07\left(s_{b}, 2 H, N H_{i n}\right) .{ }^{19} \mathrm{~F} N M R\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta-160.74\left(\mathrm{dt}, \mathrm{J} 1=20.5 \mathrm{~Hz}, \mathrm{~J} 2=9.9 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{\mathrm{m}(\mathrm{s})}\right)$, $160.34\left(\mathrm{dt}, \mathrm{J} 1=20.9 \mathrm{~Hz}, \mathrm{~J} 2=8.3 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{\mathrm{m}(\mathrm{s})}\right),-159.74\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{m(L)}\right),-158.28\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{m(L)}\right),-154.58(\mathrm{t}, \mathrm{J}$ $\left.=21.2 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{p(S)}\right),-152.25\left(\mathrm{t}, \mathrm{J}=20.9 \mathrm{~Hz}, 2 \mathrm{~F}, \mathrm{~F}_{p(L)}\right),-140.15\left(\mathrm{dd}, \mathrm{J} 1=24.3 \mathrm{~Hz}, \mathrm{~J} 2=8.3 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{o(s)}\right)$, 139.52 (dd, J1 = 24.4, J2 = 8.5 Hz, 1F, $\mathrm{F}_{o(S)}$), $-139.14\left(\mathrm{~d}, \mathrm{~J}=23.9 \mathrm{~Hz}, 2 \mathrm{~F}, \mathrm{~F}_{o(L)}\right),-138.16(\mathrm{~d}, \mathrm{~J}=23.6 \mathrm{~Hz}, 2 \mathrm{~F}$, $\left.\mathrm{F}_{o(L)}\right)$. Partial ${ }^{13} \mathrm{C}$ from 2D HSQC ($\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 34.5\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{e}(S)}\right), 34.9\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{e}(L)}\right), 41.2$ (1C, NMe $\left.\mathrm{Na}_{(s)}\right), 43.5$ (2C, $\left.\mathrm{NMe}_{(L)}\right), 51.7\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{h}(S)}\right), 53.0\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{f}(\mathrm{S})}\right)$, $54.0\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{h}(L)}\right), 54.1\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{f}(L)}\right), 57.7\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{g}(L)}\right), 59.9(1 \mathrm{C}$, $\left.\mathrm{C}_{\mathrm{g}(\mathrm{s})}\right), 121.6\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{a}(L)}\right), 122.4\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{a}(s)}\right), 124.4\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{c}(L)}\right), 124.6\left(4 \mathrm{C}, \mathrm{C}_{\beta \pi i n}\right), 124.7\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{c}(s)}\right), 126.0(2 \mathrm{C}$, C $_{\beta \text { rout }}$), 128.6 (1C, $\left.\mathrm{C}_{\mathrm{b}(s)}\right), 128.7$ (2C, $\left.\mathrm{C}_{\beta \text { rout }}\right), 129.0\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{d}(L)}\right), 129.3$ (2C, $\left.\mathrm{C}_{\mathrm{b}(L)}\right), 129.6\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{d}(s)}\right), 130.4$ (2C, $\left.C_{\beta \text { rout }}\right), 132.9\left(2 C, C_{\beta \text { rout }}\right)$. UV-visible $\left(\mathrm{CHCl}_{3}, \lambda_{\max } \mathrm{nm} / \varepsilon \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}\right): 484$ (114279), 528 (56238), 578 (63088). HRMS (ESI-TOF, positive ion mode): m / z calcd for $\mathrm{C}_{84} \mathrm{H}_{65} \mathrm{~N}_{13} \mathrm{O}_{3} \mathrm{~F}_{15}: 1588.5088\left[\mathrm{M}+\mathrm{H}^{+}\right]$; found 1588.5087.

Synthesis of 9

Note: compound 9 could not be isolated with high purity due to tedious purification, and was thus formed by addition of DDQ to an NMR tube solution of 4 for spectroscopic characterization.

In a NMR tube, hexaphyrin 4 (3 mg , $1.9 \mu \mathrm{~mol}$) was dissolved in $500 \mu \mathrm{~L}$ of $9: 1 \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}$. At $25^{\circ} \mathrm{C}$ DDQ ($0.5 \mathrm{mg}, 2.2 \mu \mathrm{~mol}$) was added to this solution. After $30 \mathrm{~min}, \mathrm{Et}_{3} \mathrm{~N}(16 \mu \mathrm{~L})$ was added. ${ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum showed quasi-quantitative formation of 9. Note: an excess of both $\mathrm{CD}_{3} \mathrm{OD}$ and $\mathrm{Et}_{3} \mathrm{~N}$ was needed to obtain a well resolved NMR spectrum.
${ }^{1} \mathrm{H}$ NMR (9:1 $\left.\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right) \delta-3.10\left(4 \mathrm{H}, \mathrm{d}_{\mathrm{b}}, \beta \pi_{\mathrm{in}}\right)$, $-2.02\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{~g} / \mathrm{h}}\right)-1.51\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{~g} / \mathrm{h}}\right)$, -
 $\mathrm{CH}_{2 \mathrm{e} / \mathrm{f}}$), $0.91\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{e} / \mathrm{f}}\right), 1.05\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{e} / \mathrm{f}}\right), 1.35\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{e} / \mathrm{f}}\right), 1.54\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{e} / \mathrm{f}}\right), 1.71(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2 \mathrm{e} / \mathrm{f}}\right), 7.65\left(\mathrm{t}, \mathrm{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}_{\mathrm{c}(\mathrm{s})}\right), 7.75\left(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar}_{\mathrm{c}(L)}\right), 7.93\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}_{\mathrm{b}(L+5)}\right), 8.22(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\operatorname{Ar}_{\mathrm{a}(L)}\right), 8.30\left(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Ar}_{\mathrm{d}(\mathrm{s})}\right), 8.41\left(\mathrm{~m}, 2 \mathrm{H}, \operatorname{Ar}_{\mathrm{d}(L)}\right), 8.72\left(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}_{\mathrm{a}(\mathrm{s})}\right), 9.09\left(\mathrm{~m}, 2 \mathrm{H}, \beta \pi_{\text {out }}\right), 9.23$ (m, 2H, $\beta \pi_{\text {out }}$), 9.47 (m, 2H, $\beta \pi_{\text {out }}$), 9.51 (m, $2 \mathrm{H}, \beta \pi_{\text {out }}$). Partial ${ }^{13} \mathrm{C}$ from 2D HSQC (9:1 $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}$, 298 K) $\delta 121.8\left(2 \mathrm{C}, \mathrm{C}_{\beta \pi \mathrm{in}}\right), 122.5\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{a}(s)}\right), 122.8\left(2 \mathrm{C}, \mathrm{C}_{\beta \pi \mathrm{in}}\right), 123.7\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{c}(\mathrm{S})}\right), 124.6\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{c}(L)}\right), 124.9(2 \mathrm{C}$, $\left.\mathrm{C}_{\mathrm{a}(L)}\right), 129.9\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{b}(L)}\right), 130.5\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{b}(\mathrm{s})}\right), 131.7$ (2C, $\left.\mathrm{C}_{\beta \text { rout }}\right), 134.1$ (2C, $\left.\mathrm{C}_{\beta \text { rout }}\right), 134.4$ (2C, $\left.\mathrm{C}_{\beta \text { rоиt }}\right), 135.0$ (1C, $\left.\mathrm{C}_{\mathrm{d}(s)}\right), 135.4\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{d}(L)}\right), 136.4$ (2C, $\left.\mathrm{C}_{\beta \text { rout }}\right)$.

Synthesis of 10

DDQ ($4.8 \mathrm{mg}, 21.1 \mu \mathrm{~mol}$) was added to a solution of hexaphyrin 5 ($17 \mathrm{mg}, 10.7 \mu \mathrm{~mol}$) in $\mathrm{CHCl}_{3}(2 \mathrm{~mL})$. After stirring for 10 min at room temperature, $\mathrm{Et}_{3} \mathrm{~N}(100 \mu \mathrm{~L})$ was added. CHCl_{3} was removed under
reduced pressure and the crude product was purified by silica gel column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 90: 10$, with $1 \% \mathrm{v} / \mathrm{v}$ of $\mathrm{Et}_{3} \mathrm{~N}$) to afford hexaphyrin 10 as a purple solid ($14 \mathrm{mg}, 82 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta-3.18\left(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 2 \mathrm{H}, \beta \pi_{\mathrm{in}}\right),-3.05\left(\mathrm{~d}, \mathrm{~J}=3.8 \mathrm{~Hz}, 2 \mathrm{H}, \beta \pi_{\mathrm{in}}\right),-2.85(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2 g / h(s)}\right),-2.46\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 g / h(L)}\right),-1.25\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2 g / h(L)}\right),-1.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{~g} / \mathrm{h}(\mu)}\right),-0.77\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 g / h(s)}\right)$, $-0.47\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3(L)}\right), 0.49\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3(s)}\right), 0.74\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 e / f(\mathrm{~s})}\right), 1.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 e / f(\mathrm{l})}\right), 1.19(\mathrm{~m}, 2 \mathrm{H}$,
 $\left.\operatorname{Ar}_{(s)}\right), 7.72\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}_{\mathrm{c}(\mathrm{L})}\right), 7.97\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}_{\mathrm{b}(\mathrm{s})}\right), 8.00\left(\mathrm{t}, \mathrm{J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}_{\mathrm{b}(\mu)}\right), 8.16(\mathrm{~d}$, $\left.J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}_{\mathrm{d}(\mu)}\right), 8.38\left(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}_{\mathrm{d}(\mathrm{s})}\right), 8.50\left(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}_{\mathrm{a}(L)}\right), 8.78(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\operatorname{Ar}_{\text {a }(s)}\right), 9.10\left(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 2 \mathrm{H}, \beta \pi_{\text {out }}\right), 9.30\left(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 2 \mathrm{H}, \beta \pi_{\text {out }}\right), 9.37\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NHCO}_{(L)}\right), 9.53(\mathrm{~d}, \mathrm{~J}=4.7$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \beta \pi_{\text {out }}\right), 9.61\left(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 2 \mathrm{H}, \beta \pi_{\text {out }}\right.$), $9.82\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCO}_{(\mathrm{s})}\right) .{ }^{19} \mathrm{~F} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta-163.20$ (td, J1 = $\left.23.1 \mathrm{~Hz}, \mathrm{~J} 2=7.8 \mathrm{~Hz}, 2 \mathrm{~F}, \mathrm{~F}_{m(L)}\right),-162.32\left(\mathrm{td}, \mathrm{J} 1=22.0 \mathrm{~Hz}, \mathrm{~J} 2=7.2 \mathrm{~Hz}, 2 \mathrm{~F}, \mathrm{~F}_{m(L)}\right),-160.77(\mathrm{~m}, 2 \mathrm{~F}$, $\left.F_{m(s)}\right),-153.14\left(t, J=20.8 \mathrm{~Hz}, 2 F, F_{p(L)}\right),-150.24\left(t, J=20.7 \mathrm{~Hz}, 1 F, F_{p(s)}\right),-139.21\left(d, J=23.5 \mathrm{~Hz}, 2 F, F_{o(L)}\right)$, $-137.51\left(d, J=23.3 \mathrm{~Hz}, 2 \mathrm{~F}, \mathrm{~F}_{\mathrm{o}(\mu)}\right),-136.76\left(\mathrm{dd}, \mathrm{J} 1=24.9 \mathrm{~Hz}, \mathrm{~J} 2=8.1 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{\mathrm{o}(\mathrm{S})}\right),-136.46(\mathrm{dd}, \mathrm{J} 1=27.1$ $\left.\mathrm{Hz}, \mathrm{J} 2=8.4 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{o(s)}\right)$. Partial ${ }^{13} \mathrm{C}$ from 2D HSQC $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 32.8\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{e} / \mathrm{f}(\mathrm{s})}\right), 33.0\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{e} / \mathrm{fl}(\mathrm{L}}\right)$, $37.0\left(1 \mathrm{C}, \mathrm{NMe}_{(s)}\right), 37.6\left(2 \mathrm{C}, \mathrm{NMe}_{(L)}\right), 43.0\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{g} / \mathrm{h}(\mathrm{s})}\right), 46.7\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{g} / \mathrm{h} /(\mathrm{L}}\right), 49.2\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{e} /(\mathrm{f})}\right), 50.9\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{g} / \mathrm{h}} /(\mathrm{s})\right)$, $51.0\left(2 \mathrm{C}^{2} \mathrm{C}_{\mathrm{e} / f(L)}\right), 51.6\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{g} / h(L)}\right), 122.4\left(2 \mathrm{C}, \mathrm{C}_{\beta \text { rin }}\right), 122.5\left(2 \mathrm{C}, \mathrm{C}_{\beta \text { rin }}\right), 122.9\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{a}(s)}\right), 123.4\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{C}(s)}\right)$, $124.2\left(2 \mathrm{C}, \mathrm{C}_{a}(\mu)\right), 124.6\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{C}(\mu)}\right), 129.9\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{b}(\mu)}\right), 131.0\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{b}(\mathrm{s})}\right), 131.6$ (2C, $\left.\mathrm{C}_{\beta \text { rout }}\right), 134.0\left(2 \mathrm{C}, \mathrm{C}_{\beta \text { rout }}\right)$, 134.3 ($2 \mathrm{C}, \mathrm{C}_{\beta \text { rout }}$), 135.3 ($\left.1 \mathrm{C}, \mathrm{C}_{\mathrm{d}(s)}\right), 135.9$ ($2 \mathrm{C}, \mathrm{C}_{\mathrm{d}(L)}$), 137.3 ($2 \mathrm{C}, \mathrm{C}_{\beta \text { rout }}$). UV-visible ($\mathrm{CHCl}_{3}, \lambda_{\text {max }} \mathrm{nm} / \varepsilon$ $\mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 488 (49153), 570 (160870), 581 (175624), 607 (68791), 718 (16335), 779 (3917), 904 (6035), 1028 (13156). HRMS (ESI-TOF, positive ion mode): m / z calcd for $\mathrm{C}_{84} \mathrm{H}_{63} \mathrm{~N}_{13} \mathrm{O}_{3} \mathrm{~F}_{15}$: 1586.4931 $\left[\mathrm{M}+\mathrm{H}^{+}\right]$; found 1586.4931.

Synthesis of 8

Under inert atmosphere, sodium iodide ($51 \mathrm{mg}, 340 \mu \mathrm{~mol}$) and DIPEA ($57 \mu \mathrm{~L}, 340 \mu \mathrm{~mol}$) were successively added to a solution of $6(57 \mathrm{mg}, 34 \mu \mathrm{~mol})$ in anhydrous THF (60 mL) and the mixture was refluxed for 4 hours. Tris[2-(methylamino)ethyl]amine ($7 \mu \mathrm{~L}, 34 \mu \mathrm{~mol}$) was then added and the reaction was stirred at $50^{\circ} \mathrm{C}$ overnight. THF was removed under reduced pressure and the residue was purified by silica gel column chromatography (eluent: $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 90: 10$, with $2 \% \mathrm{v} / \mathrm{v}$ of $\mathrm{Et}_{3} \mathrm{~N}$) affording, after washing with water, hexaphyrin $\mathbf{8}$ as a reddish solid ($33 \mathrm{mg}, 55 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 2.80\left(\mathrm{~s}_{\mathrm{b}}, 2 \mathrm{H}, \mathrm{NH}_{\text {out }}\right), 3.03\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3(\mathrm{~s})}\right), 3.45\left(\mathrm{~m}, 2 \mathrm{H}, \beta \pi_{\text {out }}\right), 3.47\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3(L)}\right)$, $3.55\left(\mathrm{~d}_{\mathrm{b}}, \mathrm{J}=4.6 \mathrm{~Hz}, 2 \mathrm{H}, \beta \pi_{\text {out }}\right), 3.59\left(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 2 \mathrm{H}, \beta \pi_{\text {out }}\right), 3.68\left(\mathrm{~d}, \mathrm{~J}=4.9 \mathrm{~Hz}, 2 \mathrm{H}, \beta \pi_{\text {out }}\right), 3.75-3.85$
(m, 10H, CH $\mathrm{CH}_{2 \mathrm{j} / \mathrm{k}}$, $4.01\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{j} / \mathrm{k}}\right), 4.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{i}(\mathrm{s})}\right), 4.73\left(\mathrm{~d}, \mathrm{~J}=13.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{i}(\mathrm{L})}\right), 4.78(\mathrm{~d}, \mathrm{~J}=$ $\left.13.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{i}(L)}\right), 6.38\left(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \operatorname{Ar}_{\mathrm{d}(\mathrm{S}+L)}\right), 6.70\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}_{\mathrm{c}(L)}\right), 6.71(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\operatorname{Ar}_{c(s)}\right), 6.87\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}_{\mathrm{b}(L)}\right), 6.97\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}_{\mathrm{b}(\mathrm{s})}\right), 7.16\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NHCO}_{(L)}\right), 7.47(\mathrm{~d}, \mathrm{~J}=7.9$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \mathrm{Ar}_{\mathrm{a}(L)}\right), 7.77\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}_{\mathrm{g}(\mathrm{s})}\right), 7.84\left(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}_{\mathrm{h}(\mathrm{s})}\right), 7.91\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCO}_{(\mathrm{s})}\right), 8.03(\mathrm{~d}$, $\left.J=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}_{\mathrm{a}(\mathrm{s})}\right), 8.04\left(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}_{f(S)}\right), 8.14\left(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}_{\mathrm{h}(\mathrm{L})}\right), 8.21(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}$, $\left.\operatorname{Ar}_{\mathrm{g}(L)}\right), 8.30\left(\mathrm{~s}, 1 \mathrm{H}, \operatorname{Ar}_{\mathrm{e}(\mathrm{s})}\right), 8.37\left(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}_{f(L)}\right), 8.45\left(\mathrm{~s}, 2 \mathrm{H}, \operatorname{Ar}_{\mathrm{e}(L)}\right), 19.01\left(\mathrm{~s}_{\mathrm{b}}, 2 \mathrm{H}, \beta \pi_{\mathrm{in}}\right), 19.14\left(\mathrm{~s}_{\mathrm{b}}\right.$, $2 \mathrm{H}, \beta \pi_{\text {in }}$), $25.73\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NH}_{\text {in }}\right) .{ }^{19} \mathrm{~F}$ NMR ($\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta-160.62\left(\mathrm{~m}, 4 \mathrm{~F}, \mathrm{~F}_{\mathrm{m}}\right),-158.79\left(\mathrm{t}_{\mathrm{b}}, \mathrm{J}=22.3 \mathrm{~Hz}, 2 \mathrm{~F}\right.$, $\left.F_{m}\right),-154.50\left(t, J=21.7 \mathrm{~Hz}, 1 F, F_{p(S)}\right),-152.79\left(t, J=22.1 \mathrm{~Hz}, 2 F, F_{p(L)}\right),-139.77(\mathrm{dd}, \mathrm{J} 1=24.6 \mathrm{~Hz}, \mathrm{~J} 2=8.4$ $\left.\mathrm{Hz}, 1 \mathrm{~F}, \mathrm{~F}_{o(S)}\right),-139.06\left(\mathrm{dd}, \mathrm{J} 1=24.4, \mathrm{~J} 2=8.6 \mathrm{~Hz}, 1 F, F_{o(S)}\right),-138.52\left(\mathrm{~d}, \mathrm{~J}=21.9 \mathrm{~Hz}, 2 \mathrm{~F}, \mathrm{~F}_{o(L)}\right),-137.32(\mathrm{~d}, \mathrm{~J}$ $\left.=23.8 \mathrm{~Hz}, 2 \mathrm{~F}, \mathrm{~F}_{(L)}\right)$. Partial ${ }^{13} \mathrm{C}$ from 2D HSQC $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 44.2\left(1 \mathrm{C}, \mathrm{NMe}_{(S)}\right), 45.1\left(2 \mathrm{C}, \mathrm{NMe}_{(L)}\right)$, 55.3-56.8 ($6 \mathrm{C}, \mathrm{C}_{\mathrm{j} / \mathrm{k}}$), $64.0\left(3 \mathrm{C}, \mathrm{C}_{\mathrm{i}}\right), 121.3\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{a}(S)}\right), 123.2\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{a}(L)}\right), 123.9\left(2 \mathrm{C}, \mathrm{C}_{\beta \text { rin }}\right), 124.2\left(2 \mathrm{C}, \mathrm{C}_{\beta \text { rin }}\right)$, $125.5\left(3 C_{1} \mathrm{C}_{\mathrm{c}(S+L)}\right), 126.6\left(2 \mathrm{C}, \mathrm{C}_{\beta \text { rout }}\right), 126.7\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{h}(L)}\right), 126.9$ (1C, $\left.\mathrm{C}_{\mathrm{h}(s)}\right), 128.3$ (1C, $\left.\mathrm{C}_{\mathrm{e}(S)}\right), 128.6$ (2C, $\mathrm{C}_{\beta \text { rout }}$), 129.3 (3C, $\left.\mathrm{C}_{\mathrm{b}(S)+\mathrm{e}(L)}\right), 129.7$ (5C, $\left.\mathrm{C}_{\mathrm{b}(L)+\mathrm{d}(S+L)}\right), 130.1$ (3C, $\left.\mathrm{C}_{\mathrm{g}(S+L)}\right), 131.2$ (2C, $\mathrm{C}_{\beta \text { rout }}$), 132.3 (2C, $\left.\mathrm{C}_{\beta \text { rout }}\right)$, $133.6\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{f}(\mathrm{S})}\right), 134.2\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{f}(\mathrm{L})}\right)$. UV-visible ($\mathrm{CHCl}_{3}, \lambda_{\max } \mathrm{nm} / \varepsilon \mathrm{L} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~cm}^{-1}$): 410 (23768), 439 (44683), 488 (93368), 579 (76945), 606 (57401). HRMS (ESI-TOF, positive ion mode): m / z calcd for $\mathrm{C}_{99} \mathrm{H}_{71} \mathrm{~N}_{13} \mathrm{O}_{3} \mathrm{~F}_{15}$: $1774.5563\left[\mathrm{M}+\mathrm{H}^{+}\right]$; found 1774.5541.

Synthesis of 11

Note: compound 11 could not be isolated with high purity due to tedious purification, and was thus formed by addition of DDQ to an NMR tube solution of $\mathbf{8}$ for spectroscopic characterization.

In a NMR tube, hexaphyrin $8(10 \mathrm{mg}, 5.6 \mu \mathrm{~mol})$ was dissolved in $500 \mu \mathrm{~L}$ of CDCl_{3}. At $25{ }^{\circ} \mathrm{C}$, DDQ (1.5 $\mathrm{mg}, 6.6 \mu \mathrm{~mol})$ was added to this solution. After $30 \mathrm{~min}, \mathrm{Et}_{3} \mathrm{~N}(16 \mu \mathrm{~L})$ was added. ${ }^{1} \mathrm{H} \mathrm{NMR}$ spectrum showed quasi-quantitative formation of 11. Note: a large excess of $E t_{3} \mathrm{~N}$ was needed to obtain a well resolved NMR spectrum.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta-2.99\left(\mathrm{~d}_{\mathrm{b}}, \mathrm{J}=4.1 \mathrm{~Hz}, 2 \mathrm{H}, \beta \pi_{\mathrm{in}}\right),-2.96\left(\mathrm{~d}_{\mathrm{b}}, \mathrm{J}=4.1 \mathrm{~Hz}, 2 \mathrm{H}, \beta \pi_{\text {in }}\right), 0.07(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{CH}_{2 \mathrm{j} / \mathrm{k}(L)}\right), 0.17\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{j} / \mathrm{k}(L)}\right), 0.21\left(\mathrm{~s}, 6 \mathrm{H}, \mathrm{CH}_{3(L)}\right), 0.41\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{CH}_{2 \mathrm{j} / \mathrm{k}(L)}\right), 0.63\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{j} / \mathrm{k}(\mathrm{s})}\right), 0.87(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2 \mathrm{j} / \mathrm{k}(\mathrm{s})}\right), 1.20\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3(\mathrm{~s})}\right), 1.51\left(\mathrm{~d}, \mathrm{~J}=12.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{i}(L)}\right), 1.83\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{i}(L)}\right), 2.55\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{\mathrm{i}(\mathrm{s})}\right)$, $5.94\left(\mathrm{~s}, 2 \mathrm{H}, \operatorname{Ar}_{(L)}\right), 6.52\left(\mathrm{~m}, 5 \mathrm{H}, \operatorname{Arg}_{\mathrm{g}(L)+f(L)+e(s)}\right), 6.66\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}_{\mathrm{g}(\mathrm{s})}\right), 6.81\left(\mathrm{~d}, \mathrm{~J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}_{f(s)}\right)$, $7.05\left(\mathrm{~m}, 3 \mathrm{H}, \operatorname{Ar}_{\mathrm{h}(\mathrm{s}+L)}\right), 7.66\left(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}_{\mathrm{c}(L)}\right), 7.69\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NHCO}_{(s)}\right), 7.77\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}_{\mathrm{c}(\mathrm{s})}\right)$, $7.90\left(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}_{\mathrm{d}(L)}\right), 8.01\left(\mathrm{t}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \operatorname{Ar}_{\mathrm{b}(L)}\right), 8.04\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \operatorname{Ar}_{\mathrm{b}(\mathrm{s})}\right), 8.35(\mathrm{~d}, \mathrm{~J}=7.3$
$\left.\mathrm{Hz}, 1 \mathrm{H}, \operatorname{Ar}_{\mathrm{d}(\mathrm{s})}\right), 8.61\left(\mathrm{~d}, \mathrm{~J}=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}_{\mathrm{a}(L)}\right), 8.73\left(\mathrm{~d}, \mathrm{~J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}_{\mathrm{a}(\mathrm{s})}\right), 9.08\left(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 2 \mathrm{H}, \beta \pi_{\text {out }}\right)$, 9.23 (s, 2H, NHCO (L)), 9.37 ($\mathrm{d}, \mathrm{J}=4.2 \mathrm{~Hz}, 2 \mathrm{H}, \beta \pi_{\text {out }}$), $9.54\left(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}, 2 \mathrm{H}, \beta \pi_{\text {out }}\right), 9.58(\mathrm{~d}, \mathrm{~J}=4.2 \mathrm{~Hz}$, $2 \mathrm{H}, \beta \pi_{\text {out }}$). Partial ${ }^{13} \mathrm{C}$ from 2D HSQC $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right) \delta 41.6\left(2 \mathrm{C}, \mathrm{NMe}_{(L)}\right), 42.8$ (1C, $\left.\mathrm{NMe}_{(S)}\right), 51.2$ (2C, $\left.\mathrm{C}_{\mathrm{j} / \mathrm{k}(L)}\right)$, $51.7\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{j} / \mathrm{k}(S)}\right)$, $53.0\left(3 \mathrm{C}, \mathrm{C}_{\mathrm{j} / \mathrm{k}(L+S)}\right), 61.3\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{i}(L)}\right), 62.1$ (1C, $\left.\mathrm{C}_{\mathrm{i}(S)}\right)$, 121.8 (2C, $\left.\mathrm{C}_{\beta \pi \mathrm{in}}\right), 123.1$ (2C, $\left.\mathrm{C}_{\beta \text { rin }}\right), 123.4\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{a}(S)}\right), 124.5\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{a}(L)}\right), 124.7\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{c}(S)}\right), 124.9\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{c}(L)}\right), 125.9\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{e}(L)}\right), 126.2(3 \mathrm{C}$, $\left.\mathrm{C}_{\mathrm{h}(s+L)}\right), 126.7\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{e}(s)}\right), 128.4\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{f} / \mathrm{g}(L)}\right), 128.8\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{g}(s)}\right), 130.3\left(2 \mathrm{C}, \mathrm{C}_{\mathrm{b}(L)}\right), 131.2\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{b}(\mathrm{s})}\right), 131.5(2 \mathrm{C}$, $\left.\mathrm{C}_{\mathrm{f} / \mathrm{g}(L)}\right), 131.8\left(2 \mathrm{C}, \mathrm{C}_{\beta \text { rout }}\right), 132.4\left(1 \mathrm{C}, \mathrm{C}_{\mathrm{f}(\mathrm{s})}\right), 134.1$ (2C, $\left.\mathrm{C}_{\beta \text { rout }}\right), 134.6$ (2C, $\left.\mathrm{C}_{\beta \text { rout }}\right), 136.4$ (1C, $\left.\mathrm{C}_{\mathrm{d}(s)}\right), 136.9$ $\left(2 \mathrm{C}, \mathrm{C}_{d(L)}\right), 137.4$ ($2 \mathrm{C}, \mathrm{C}_{\beta \pi \text { rout }}$). HRMS (ESI-TOF, positive ion mode): m / z calcd for $\mathrm{C}_{99} \mathrm{H}_{69} \mathrm{~N}_{13} \mathrm{O}_{3} \mathrm{~F}_{15}$: $1772.5406\left[\mathrm{M}+\mathrm{H}^{+}\right]$; found 1772.5393.

Metallation of 8 with Zn (II)

- General procedures, pathway A and B :

Pathway A. The three following solutions were prepared:

- \quad S1: 12.3 mg of $\mathrm{Zn}(\mathrm{OTf})_{2}$ in 9:1 $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}(500 \mu \mathrm{~L})$.
- \quad S2: 10.5 mg of $\mathrm{Bu}_{4} \mathrm{NOAc}$ in 9:1 $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}(500 \mu \mathrm{~L})$.
- \quad S3: $3.4 \mu \mathrm{~L}$ of butylamine in 9:1 $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}(500 \mu \mathrm{~L})$.

In a NMR tube, hexaphyrin $8(4.8 \mathrm{mg}, 2.7 \mu \mathrm{~mol})$ was dissolved in 9:1 $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}(500 \mu \mathrm{~L})$. To this solution, $40 \mu \mathrm{~L}$ of S 1 (1 equiv.), $40 \mu \mathrm{~L}$ of S 2 (1 equiv.) and $40 \mu \mathrm{~L}$ of S 3 (1 equiv.) were successively added at room temperature. A ${ }^{1} \mathrm{H}$ NMR spectrum recorded at 298 K showed quasi-quantitative formation of $\mathbf{8 Z n}{ }^{\mathrm{OAC}}{ }_{\mathrm{NH} 2 \mathrm{Bu}} \cdot \mathbf{H}^{+}, \mathbf{O T f}$.

Pathway B. The following solution was prepared:

- \quad S4: 7.4 mg of $\mathrm{Zn}(\mathrm{OAc})_{2}$ in 9:1 $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}(500 \mu \mathrm{~L})$.

In a NMR tube, hexaphyrin $8(4.8 \mathrm{mg}, 2.7 \mu \mathrm{~mol})$ was dissolved in 9:1 $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}(500 \mu \mathrm{~L})$. To this solution, $1 \mu \mathrm{~L}$ (3 equiv.) of butylamine, $3.5 \mu \mathrm{~L}$ (7 equiv.) of DIPEA and $140 \mu \mathrm{~L}$ (3.5 equiv.) of S 4 were added at room temperature. $\mathrm{A}{ }^{1} \mathrm{H}$ NMR spectrum recorded at 298 K showed quasi-quantitative formation of $8 \mathbf{Z n}{ }^{\mathbf{O A c}}{ }_{\mathrm{NH2Bu}}$.

- NMR description of $\mathbf{8 Z n}{ }^{\text {OAc }}{ }_{\mathrm{NH} 2 \mathrm{Bu}}\left[. \mathrm{H}^{+}, \mathbf{O T f}\right]$, pathway A vs. B (partial descriptions because of a strong overlapping and/or highly broaden signals [e.g. CH_{2} tren protons])

Pathway A:

${ }^{1} \mathrm{H}$ NMR (9:1 CDCl $\left.{ }_{3} / \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right) \delta-3.50(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \beta \pi 2),-2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3 \mathrm{OAc}}\right),-1.72(\mathrm{~d}, \mathrm{~J}=4.4$ $\mathrm{Hz}, 1 \mathrm{H}, \beta \pi 2$), 1.28 (m, 1H, Ar6b), 1.96 (m, 1H, ArCH $)_{2}$, $2.30\left(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right.$), $2.44(\mathrm{~d}, \mathrm{~J}=12.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}$), 2.69 ($\mathrm{d}, \mathrm{J}=12.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}$), 3.07 (m, 1H, Ar6c), 3.41 (m, 1H, Ar6d), 3.57 (d, J = 12.8 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}$), $4.27\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 4.37(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}, \beta \pi 5), 4.59(\mathrm{~d}, \mathrm{~J}=4.6 \mathrm{~Hz}, 1 \mathrm{H}, \beta \pi 5), 6.52(\mathrm{~s}$, $1 \mathrm{H}, \operatorname{Ar6a}), 6.54\left(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}_{\text {meso }}\right), 6.64\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}_{\text {tren }}\right), 6.85\left(\mathrm{~d}, \mathrm{~J}=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}_{\text {tren }}\right), 6.97(\mathrm{t}, \mathrm{J}=$ $\left.7.9 \mathrm{~Hz}, 1 \mathrm{H}, ~ A r_{\text {meso }}\right), 7.01\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 1 \mathrm{H}, ~ A r_{\text {tren }}\right), 7.09\left(\mathrm{~d}, \mathrm{~J}=4.7 \mathrm{~Hz}, 1 \mathrm{H}, \beta \pi_{\text {out }}\right), 7.12(\mathrm{~d}, \mathrm{~J}=7.4 \mathrm{~Hz}, 1 \mathrm{H}$, Ar meso), 7.19 ($\mathrm{d}, \mathrm{J}=5.1 \mathrm{~Hz}, 1 \mathrm{H}, \beta \pi_{\text {out }}$), $7.24\left(\mathrm{t}, \mathrm{J}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, ~ A r_{\text {meso }}\right), 7.37\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, ~ A r_{\text {meso }}\right), 7.43$ $\left(\mathrm{m}, 2 \mathrm{H}, A r_{\text {tren }}+\beta \pi_{\text {out }}\right), 7.60\left(\mathrm{~m}, 3 \mathrm{H}, A r_{\text {meso }}+2 A r_{\text {tren }}\right), 7.69\left(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, A r_{\text {meso }}\right), 7.72(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}$, Ar $_{\text {meso }}$), 7.78 ($\mathrm{d}, \mathrm{J}=7.9 \mathrm{~Hz}, 1 \mathrm{H}, ~ A r_{\text {meso }}$), $7.88\left(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \beta \pi_{\text {out }}\right), 7.99\left(\mathrm{~d}, \mathrm{~J}=4.3 \mathrm{~Hz}, 1 \mathrm{H}, \beta \pi_{\text {out }}\right), 8.06$ $\left(\mathrm{s}, 1 \mathrm{H}, A r_{\text {tren }}\right), 8.13\left(\mathrm{~m}, 2 \mathrm{H}, A r_{\text {tren }}+\beta \pi_{\text {out }}\right), 8.23\left(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}_{\text {meso }}\right), 8.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}_{\text {meso }}+\beta \pi_{\text {out }}\right), 8.43$ (d, J = $4.3 \mathrm{~Hz}, 1 \mathrm{H}, \beta \pi_{\text {out }}$), 8.56 ($\mathrm{d}, \mathrm{J}=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ar}_{\text {meso }}$). ${ }^{19} \mathrm{~F} \mathrm{NMR}\left(9: 1 \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right) \delta-162.70$ ($\mathrm{dt}, \mathrm{J} 1=22.9 \mathrm{~Hz}, \mathrm{~J} 2=8.1 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{\mathrm{m}}$), -162.29 (m, 3F, F_{o}), -160.78 (m, 2F, F_{o}), -154.23 (t, J = 20.9 Hz, 1F, $\left.F_{p}\right),-154.19\left(\mathrm{t}, \mathrm{J}=20.9 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{p}\right),-152.33\left(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{~F}_{p}\right),-140.19\left(\mathrm{dd}, \mathrm{J} 1=22.4 \mathrm{~Hz}, \mathrm{~J} 2=6.8 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{o}\right),-$ $139.22\left(\mathrm{~d}, \mathrm{~J}=24.4 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{\mathrm{o}}\right),-138.20\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{o}\right),-137.61\left(\mathrm{dd}, \mathrm{J} 1=24.7 \mathrm{~Hz}, \mathrm{~J} 2=8.3 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{\mathrm{o}}\right),-$ 137.27 ($\mathrm{m}, 1 \mathrm{~F}, \mathrm{~F}_{\mathrm{o}}$).

Pathway B:

${ }^{1} \mathrm{H}$ NMR (9:1 CDCl $\left.{ }_{3} / \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right) \delta-3.77\left(\mathrm{~d}_{\mathrm{b}}, 1 \mathrm{H}, \beta \pi 2\right),-2.12\left(\mathrm{~d}_{\mathrm{b}}, 1 \mathrm{H}, \beta \pi 2\right),-2.04\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{30 \mathrm{Ac}}\right), 0.89$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2 _\beta B \mathrm{BNH} 2}$), $1.10\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2 _\beta B u N H 2}\right), 1.26(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 1.43\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2 _\alpha B u N H 2}\right), 1.54(\mathrm{~m}, 1 \mathrm{H}$, Ar6b), 1.58 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2 _ \text {aßuNH2 }}$), $1.60\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}\right.$), $1.91(\mathrm{~s}, 3 \mathrm{H}, \mathrm{NMe}), 2.05$ (d, J = $11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}$), $2.23\left(\mathrm{~d}, \mathrm{~J}=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 2.51\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 2.66\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{ArCH}_{2}\right), 2.83(\mathrm{~d}, \mathrm{~J}=14.3 \mathrm{~Hz}, 1 \mathrm{H}$,
ArCH_{2}), $3.26\left(\mathrm{~m}, 1 \mathrm{H}, \operatorname{ArCH}_{2}\right), 3.68(\mathrm{~m}, 1 \mathrm{H}, \operatorname{Ar6c}), 4.20\left(\mathrm{~d}_{\mathrm{b}}, 1 \mathrm{H}, \beta \pi 5\right), 4.52\left(\mathrm{~d}_{\mathrm{b}}, 1 \mathrm{H}, \beta \pi 5\right), 5.19(\mathrm{~m}, 1 \mathrm{H}$, Ar6d), $6.72\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HAr}_{\text {tren }}\right), 6.78(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar} 6 \mathrm{a}), 6.84\left(\mathrm{~d}_{\mathrm{b}}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HAr}_{\text {tren }}\right), 6.88\left(\mathrm{~d}_{\mathrm{b}}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$, HAr $_{\text {meso }}$), $6.94\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HAr}_{\text {meso }}\right), 6.97\left(\mathrm{t}, \mathrm{J}=7.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HAr}_{\text {tren }}\right), 7.09-7.22\left(\mathrm{~m}_{\mathrm{b}}, \mathrm{HAr}_{\text {meso }}+\right.$ $\left.H A r_{\text {tren }}+\beta \pi_{\text {out }}\right), 7.34-7.55\left(m_{b}, \mathrm{HAr}_{\text {meso }}+\mathrm{HAr}_{\text {tren }}+\beta \pi_{\text {out }}\right), 7.59\left(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HAr}_{\text {meso }}\right), 7.69(\mathrm{~m}, 2 \mathrm{H}$, $\left.\mathrm{HAr}_{\text {meso }}+\beta \pi_{\text {out }}\right), 7.78(\mathrm{~m}, 2 \mathrm{H}, \mathrm{HAr} \mathrm{meso}), 8.02\left(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz}, 1 \mathrm{H}, \beta \pi_{\text {out }}\right), 8.19\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{HAr}_{\text {meso }}+\beta \pi_{\text {out }}\right), 8.26$ ($\mathrm{d}, \mathrm{J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HAr}$ meso), $8.51\left(\mathrm{~m}, 1 \mathrm{H}, \beta \pi_{\text {out }}\right), 8.53\left(\mathrm{~d}, \mathrm{~J}=7.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{HAr}_{\text {meso }}\right) .{ }^{19} \mathrm{~F}$ NMR (9:1 $\left.\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}\right) \delta-162.75\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{\mathrm{m}}\right),-162.45\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{\mathrm{m}}\right),-162.16\left(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{~F}_{\mathrm{m}}\right),-160.76(\mathrm{~m}, 1 \mathrm{~F}$, $\left.F_{m}\right),-154.18\left(\mathrm{t}, \mathrm{J}=20.9 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{p}\right),-153.44\left(\mathrm{~m}, 2 \mathrm{~F}, \mathrm{~F}_{p}\right),-140.25\left(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{~F}_{o}\right),-139.24\left(\mathrm{~m}, 1 \mathrm{~F}, \mathrm{~F}_{0}\right),-138.72$ $\left(\mathrm{m}, 1 \mathrm{~F}, \mathrm{~F}_{o}\right),-138.27\left(\mathrm{dd}, \mathrm{J} 1=23.9 \mathrm{~Hz}, \mathrm{~J} 2=8.0 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{o}\right),-137.42\left(\mathrm{dd}, \mathrm{J} 1=24.4 \mathrm{~Hz}, \mathrm{~J} 2=8.3 \mathrm{~Hz}, 1 \mathrm{~F}, \mathrm{~F}_{o}\right)$, -135.58 (m, 1F, F_{0}). UV-visible (9:1 $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}, \lambda_{\max } n m$): 396, 566, 607, 636, 807, 880, 901, 990.

Crystallographic data for 1 [CCDC 1560725]

$\left(\mathrm{C}_{45.33} \mathrm{H}_{18.67} \mathrm{Cl}_{4} \mathrm{~F}_{10} \mathrm{~N}_{6} \mathrm{O}_{4}\right) ; M=1043.13$. D8 VENTURE Bruker AXS diffractometer, Mo-K α radiation $(\lambda=$ $0.71073 \AA$ Å), $T=150(2) \mathrm{K}$; Triclinic $P-1$ (I.T.\#2), $a=14.7140(6), b=15.8048(7), c=17.2717(7) \AA$, $\alpha=$ $78.0620(10), b=69.3740(10), \gamma=64.0160(10)^{\circ}, V=3372.5(2) \AA^{3} . Z=3, d=1.541 \mathrm{~g} . \mathrm{cm}^{-3}, \mu=0.356$ mm^{-1}. The structure was solved by direct methods using the SIR97 program, ${ }^{2}$ and then refined with full-matrix least-square methods based on F^{2} (SHELXL-97). ${ }^{3}$ The contribution of the disordered solvents to the calculated structure factors was estimated following the BYPASS algorithm, ${ }^{4}$ implemented as the SQUEEZE option in PLATON. ${ }^{5}$ A new data set, free of solvent contribution, was then used in the final refinement. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions. A final refinement on F^{2} with 15413 unique intensities and 869 parameters converged at $\omega R\left(F^{2}\right)=0.3138$ $(R(F)=0.1160)$ for 11260 observed reflections with $/>2 \sigma(I)$.

Crystallographic data for 5 [CCDC 1560726]

$\left(\mathrm{C}_{84} \mathrm{H}_{64} \mathrm{~F}_{15} \mathrm{~N}_{13} \mathrm{O}_{3}\right) ; M=1588.48$. D8 VENTURE Bruker AXS diffractometer, Mo-K α radiation $(\lambda=0.71073$ \AA A), $T=150(2) \mathrm{K}$; monoclinic $P 21 / c$ (I.T.\#14), $a=18.035(2), b=31.918(4), c=16.6641(18) \AA$, $b=$ $112.641(4)^{\circ}, V=8853.2(17) \AA^{3} . Z=4, d=1.192{\mathrm{~g} . \mathrm{cm}^{-3},}$. $\mu=0.096 \mathrm{~mm}^{-1}$. The structure was solved by dual-space algorithm using the SHELXT program, ${ }^{6}$ and then refined with full-matrix least-square methods based on F^{2} (SHELXL-2014). ${ }^{7}$ The contribution of the disordered solvents to the structure factors was calculated by the PLATON SQUEEZE procedure ${ }^{8}$ and then taken into account in the final SHELXL-2014<:I> least-square refinement. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. H atoms were finally included in their calculated positions. A final refinement on F^{2} with 20275 unique intensities and 1051 parameters converged at $\omega R\left(F^{2}\right)=0.2874$ $(R(F)=0.1062)$ for 13083 observed reflections with $I>2 \sigma(I)$.

Crystallographic data for $8 \mathrm{Zn}^{\mathrm{OAc}}{ }_{\mathrm{NH2Bu}} \cdot \mathrm{H}^{+}$,OTf ${ }^{-}$[CCDC 1560727]

$\left(\mathrm{C}_{105} \mathrm{H}_{84} \mathrm{~F}_{15} \mathrm{~N}_{14} \mathrm{O}_{5} \mathrm{Zn}, \mathrm{CF}_{3} \mathrm{O}_{3} \mathrm{~S}, 2\left(\mathrm{CHCl}_{3}\right)\right) ; M=2360.03$. D8 VENTURE Bruker AXS diffractometer, Mo - $\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA \AA$), $T=150 \mathrm{~K}$; monoclinic $P 21_{1} / n$ (I.T.\#14), $a=14.8223(7), b=30.7285(17), c=$ $27.9264(15) \AA, B=97.487(2)^{\circ}, V=12611.1(11) \AA^{3} . Z=4, d=1.243{\mathrm{~g} . \mathrm{cm}^{-3},}^{\circ}, \mu=0.419 \mathrm{~mm}^{-1}$. The structure was solved by dual-space algorithm using the SHELXT program, ${ }^{6}$ and then refined with fullmatrix least-square methods based on F^{2} (SHELXL-2014). ${ }^{7}$ The contribution of the disordered solvents to the structure factors was calculated by the PLATON SQUEEZE procedure ${ }^{8}$ and then taken into account in the final SHELXL-2014 least-square refinement. All non-hydrogen atoms were refined with anisotropic atomic displacement parameters. Except nitrogen N_{151} linked hydrogen atom that was introduced in the structural model through Fourier difference maps analysis, H atoms were finally included in their calculated positions. A final refinement on F^{2} with 28823 unique intensities and 1363 parameters converged at $\omega R\left(F^{2}\right)=0.2972(R(F)=0.1208)$ for 16927 observed reflections with $/>$ $2 \sigma(I)$.

Figure S1. Dihedral angles $\left({ }^{\circ}\right)$ of $\mathbf{8 Z n}{ }^{\mathrm{OAC}}{ }_{\mathrm{NH} 2 \mathrm{Bu}} \cdot \mathbf{H}^{+}$, OTf along the SMC.

II. NMR spectral data

Selected NMR spectra of 1

Figure S2. VT ${ }^{1} \mathrm{H}$ NMR spectra of 1.

Figure S3. 2D COSY NMR spectrum $\left(\mathrm{CDCl}_{3}, 330 \mathrm{~K}\right)$ of $1 . \mathrm{S}=$ solvent, $\mathrm{G}=$ grease.

Figure S4. 2D HSQC NMR spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $1 . \mathrm{S}=$ solvent, $\mathrm{W}=$ water.

Figure S5. ${ }^{19} \mathrm{~F}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of 1.

Selected NMR spectra of 3 and 6

Figure S6. ${ }^{1} \mathrm{H}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $\mathbf{3}(\mathrm{a})$ and $6(\mathrm{~b}) . \mathrm{S}=$ solvent, $\mathrm{G}=$ grease.
Note: the ${ }^{1} \mathrm{H}$ NMR spectra of 3 and 6 are ill defined at 298 K , likely due to both the fast interconversion between several Möbius conformations and meso-aryl atropisomers.

Figure S7. ${ }^{19} \mathrm{~F}$ NMR spectra $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $\mathbf{3}(\mathrm{a})$ and $6(\mathrm{~b})$.

Selected NMR spectra of 4

Figure S8. 2D COSY NMR spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $4 . \mathrm{S}=$ solvent, $\mathrm{G}=$ grease.

Figure S9. 2D ROESY NMR spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $4 . \mathrm{S}=$ solvent, $\mathrm{G}=$ grease.

Figure S10. 2D HSQC NMR spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $4 . \mathrm{S}=$ solvent, $\mathrm{G}=$ grease.

Figure S11. ${ }^{19} \mathrm{~F}$ NMR spectrum ($\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of 4.

Selected NMR spectra of 5

Figure S12. 2D COSY NMR spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $5 . \mathrm{S}=$ solvent, $\mathrm{G}=$ grease.

Figure S13. 2D HSQC NMR spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $5 . \mathrm{S}=$ solvent, $\mathrm{G}=$ grease.

Figure S14. 2D HMBC NMR spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $5 . \mathrm{S}=$ solvent, $\mathrm{G}=$ grease.

Figure S15. ${ }^{19} \mathrm{~F}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of 5.

Selected NMR spectra of 9

Figure S16. 2D COSY NMR spectrum (9:1 $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) of 9 . $\mathrm{S}=$ solvent, $\mathrm{G}=$ grease, $\mathrm{W}=$ water, ${ }^{*}=\mathrm{Et}_{3} \mathrm{~N}$.

Figure S17. 2D HSQC NMR spectrum (9:1 $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) of 9 . $\mathrm{S}=$ solvent, $\mathrm{G}=$ grease, $\mathrm{W}=$ water, ${ }^{*}=\mathrm{Et}_{3} \mathrm{~N}$.

Selected NMR spectra of 10

Figure S18. 2D COSY NMR spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of 10. $\mathrm{S}=$ solvent, $\mathrm{G}=$ grease.

Figure S19. 2D HSQC NMR spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $10 . \mathrm{S}=$ solvent, $\mathrm{G}=$ grease.

Figure S20. 2D HMBC NMR spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of 10. $\mathrm{S}=$ solvent, $\mathrm{G}=$ grease.

Figure S21. ${ }^{19} \mathrm{~F}$ NMR spectrum ($\left.\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of 10.

Selected NMR spectra of 8

Figure S22. 2D COSY NMR spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $8 . \mathrm{S}=$ solvent, $\mathrm{G}=$ grease.

Figure S23. 2D HSQC NMR spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $\mathbf{8} . \mathrm{S}=$ solvent, $\mathrm{G}=$ grease.

Figure S24. 2D HMBC NMR spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $8 . \mathrm{S}=$ solvent, $\mathrm{G}=$ grease.

Figure S25. ${ }^{19} \mathrm{~F}$ NMR spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $\mathbf{8}$.

Selected NMR spectra of 11

Figure S26. 2D COSY NMR spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of $11 . \mathrm{S}=$ solvent, $\mathrm{G}=$ grease, ${ }^{*}=\mathrm{Et}_{3} \mathrm{~N}$.

Figure S27. 2D HSQC NMR spectrum $\left(\mathrm{CDCl}_{3}, 298 \mathrm{~K}\right)$ of 11. $\mathrm{S}=$ solvent, $\mathrm{G}=$ grease, ${ }^{*}=\mathrm{Et}_{3} \mathrm{~N}$.

Figure S28. Comparison of the ${ }^{1} \mathrm{H}$ NMR spectra (selected parts) of $\mathbf{1 0}$ (a) and $\mathbf{1 1}$ (b) ($\mathrm{CDCl}_{3}, 298 \mathrm{~K}, 500$ $\mathrm{MHz}) . \mathrm{S}=$ solvent; $\mathrm{G}=$ grease; "L"/"S" italicized stand for "long"/"short".

Additional comment. Shielding effects are opposite to those observed for the parent 28π compounds: (i) the inner β-pyrrolic protons (-2.9 to -3.2 ppm for 10 and 11) are located in the highfield region, (ii) the outer β-pyrrolic protons are deshielded (9.0 to 9.6 ppm for 10 and 11), (iii) the tren CH_{2} and NMe protons are markedly upfield shifted ($\delta_{C H 2}$ down to -2.85 and 0.05 ppm for 10 and 11; $\delta_{N M e(L)}=-0.47$ and 0.21 ppm for 10 and 11). Similarly to the parent 28π compounds, the tren cap of 10 lies much closer to the hexaphyrin than that of 11. An extended conformation of the former, stabilized by intramolecular H -bonds, is also expected.

Selected NMR spectra of $8 \mathrm{Zn} n^{\mathrm{OAC}} \mathrm{NH}_{2} \mathrm{Bu} \cdot \mathrm{H}^{+}, \mathrm{OTf}$ and $8 \mathrm{Zn}{ }^{\mathrm{OAC}}{ }_{\mathrm{NH} 2 \mathrm{Bu}}$

Figure S29. 2D ROESY NMR spectrum ($9: 1 \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) of $\mathbf{8 Z n}{ }^{\mathrm{OAc}}{ }^{\mathrm{NH} 2 \mathrm{Bu}} . \mathbf{H}^{+}, \mathbf{O T f}$. $\mathrm{S}=$ solvent, $\mathrm{G}=$ grease, W = water.

Figure S30. 2D TOCSY NMR spectrum (9:1 $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) of $8 \mathrm{Zn}^{\mathrm{OAc}}{ }_{\mathrm{NH} 2 \mathrm{Bu}} \cdot \mathbf{H}^{+}, \mathbf{O T f}$. $\mathrm{S}=$ solvent, $\mathrm{G}=$ grease, W = water.

Figure S31. 2D HSQC NMR spectrum (9:1 $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) of $\mathbf{8 Z n}{ }^{\mathrm{OAc}}{ }_{\mathrm{NH} 2 \mathrm{Bu}} \cdot \mathbf{H}^{+}, \mathbf{O T f} . \mathrm{S}=$ solvent, $\mathrm{G}=$ grease, W = water.

Figure S32. 2D COSY NMR spectrum (9:1 $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) of $\mathbf{8 Z n}{ }^{\mathrm{OAc}} \mathrm{NH}_{2 \mathrm{Bu}} \cdot \mathrm{H}^{+}, \mathbf{O T f} . \mathrm{S}=$ solvent, $\mathrm{G}=$ grease, $\mathrm{W}=$ water.

Figure S33. ${ }^{19} \mathrm{~F}$ NMR spectra ($9: 1 \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) of $\mathbf{8 Z n}{ }^{\mathrm{OAC}}{ }_{\mathrm{NH} 2 \mathrm{Bu}}$.

Figure S34. 2D HSQC NMR spectrum (9:1 $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) of $8 \mathrm{Zn}{ }^{\mathrm{OAc}}{ }_{\mathrm{NH2Bu}} . \mathrm{S}=$ solvent, $\mathrm{G}=$ grease, W = water.

Figure S35. 2D ROESY NMR spectrum ($9: 1 \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) of $8 \mathrm{Zn}{ }^{\mathrm{OAc}}{ }_{\mathrm{NH} 2 \mathrm{Bu}} . \mathrm{S}=$ solvent, $\mathrm{G}=$ grease, W = water.

Figure S36. 2D COSY NMR spectrum (9:1 $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) of $8 \mathrm{Zn}{ }^{\mathrm{OAc}}{ }_{\mathrm{NH} 2 \mathrm{Bu}} . \mathrm{S}=$ solvent, $\mathrm{G}=$ grease, W = water .

Figure S37. 2D ROESY NMR spectrum (9:1 $\mathrm{CDCl}_{3} / C D_{3} \mathrm{OD}, 330 \mathrm{~K}$) of $8 \mathbf{Z n}{ }^{\mathrm{OAc}}{ }_{\mathrm{NH} 2 \mathrm{Bu}}$: expanded view on the exchange correlations of the butylamino and acetato ligands.

Figure S38. 2D ROESY NMR spectrum ($9: 1 \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}, 298 \mathrm{~K}$) of $\mathbf{8 Z n}{ }^{\mathrm{OAc}}{ }_{\mathrm{RNH}} \cdot \mathbf{H}^{+}, \mathrm{OTf}^{-}\left(\mathrm{RNH}_{2}=(S)-\right.$ MBA): expanded view on the exchange correlations of the MBA ligand.

B)

${ }^{8 \mathrm{Zn}} \mathrm{NH}_{2} \mathrm{BAc}\left(\mathrm{H}^{+}, \mathrm{OTf}\right)$
(racemic, " M " twist is shown)

Figure S39. 2D TOCSY NMR spectrum (9:1 $\mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}$) of (a) $\mathbf{8 Z n}{ }^{\mathbf{O A c}}{ }_{\mathrm{NH} 2 \mathrm{Bu} \cdot \mathbf{H}^{+}, \mathbf{O T f}}$ (298 K) and (b) $\mathbf{8 Z n}{ }^{\text {OAC }}{ }_{\text {NH2Bu }}(330 \mathrm{~K})$: expanded view on the Ar6 moiety.

Figure S40. ${ }^{1} \mathrm{H}$ NMR spectra ($9: 1 \mathrm{CDCl}_{3} / \mathrm{CD}_{3} \mathrm{OD}$) of " 8 Zn ", with different combinations of carboxylato and amino ligands: expanded view on the highfield regions (conditions: Pathway A, Pathway B, or modified conditions [excess of all reactants, see text]).

III. UV-vis-NIR absorption spectra

Figure S41. UV-vis-NIR absorption spectra of compounds 3, 4, 6 and $\mathbf{8}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Figure S42. UV-vis-NIR absorption spectra of compounds $\mathbf{5}$ and $\mathbf{1 0}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$.

Figure S43. UV-vis-NIR absorption spectra for the titration of 8 by a $1: 1$ mixture of $\mathrm{Zn}(\mathrm{OAc})_{2}$ and BuNH_{2} (9:1 $\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH}$, DIPEA). Note: the same final absorption spectrum was obtained with a mixture of $\mathrm{Zn}(\mathrm{OTf})_{2}$ and TBAOAc instead of $\mathrm{Zn}(\mathrm{OAc})_{2}$.

Figure S44. Circular dichroism (a) and UV-vis (b) absorption spectra, recorded at $20^{\circ} \mathrm{C}$ in 9:1 $\mathrm{CHCl}_{3} / \mathrm{MeOH}$, of: (i) a solution of $8, \mathrm{Zn}(\mathrm{OTf})_{2}$ and (R)-MBA heated 15 min at $50^{\circ} \mathrm{C}$ (blue curves); (ii) a solution of $8, \mathrm{Zn}(\mathrm{OTf})_{2},(R)-\mathrm{MBA}$ and TBAOAc heated 15 min at $50^{\circ} \mathrm{C}$ (red curves). Conditions: [8] = 50 $\mu \mathrm{M}, 20$ equiv. of $\mathrm{Zn}(\mathrm{OTf})_{2}, 40$ equiv. of (R)-MBA, 40 equiv. of TBAOAc. Note: the blue $C D$ spectrum shows a weak "Möbius-type" hexaphyrin signature, likely due to undesired contamination with acetate ions, as attested by the absorption band at 609 nm in the corresponding UV spectra (formation of $\boldsymbol{P}-(R)-8 \mathbf{Z n}^{\mathrm{OAC}}{ }_{\mathrm{MBA}}\left[. \mathrm{H}^{+}, \mathrm{OTf}\right]$).

Figure S45. Racemization study for the M <-> P twist interconversion in " $\mathbf{8 Z n}$ ". Conditions: pathway A, NMR tube solution analyzed by CD and UV-vis spectroscopies $\left(\mathrm{CHCl}_{3} / \mathrm{CH}_{3} \mathrm{OH} 9: 1\right)$.

Procedure: to the $85: 15$ mixture of $[\mathrm{M} / \mathrm{P}]-(S)-8 \mathrm{Zn}^{\text {OAc }}{ }_{\text {MBA. }} \cdot \mathrm{H}^{+}$, OTf ${ }^{-}$was added an excess of an achiral ligand such as butylamine (4 equiv.). The MBA <-> BuNH2 exchange proceeds instantaneously and quantitatively (deduced from ${ }^{1} \mathrm{H} N M R$), leading to the two neutral enantiomers [M/P]-8Zn ${ }^{\text {OAc }}$ BuNH2. At room temperature, no change in the CD spectrum was observed, indicating amino ligand exchange without loss of chiral induction. In a second step, decreasing of the intensity of the CD signal with the time was monitored. After 10 min at $80^{\circ} \mathrm{C}$, no CD signal was anymore detected, while the UV-vis spectrum was not affected.

[^0]
[^0]: ${ }^{1}$ Littler, B. J.; Miller, M. A.; Hung, C.-H.; Wagner, R. W.; O’Shea, D. F.; Boyle, P. D.; Lindsey, J. S. J. Org. Chem. 1999, 64, 1391-1396.
 ${ }^{2}$ Altomare, A.; Burla, M. C.; Camalli, M.; Cascarano, G.; Giacovazzo, C.; Guagliardi, A.; Moliterni, A. G. G.; Polidori, G.; Spagna, R. J. Appl. Cryst. 1999, 32, 115-119.
 ${ }^{3}$ Sheldrick, G.M. Acta Cryst. 2008, A64, 112-122.
 ${ }^{4}$ Sluis, P. v.d.; Spek, A. L. Acta Cryst. 1990, A46, 194-201.
 ${ }^{5}$ Spek, A. L. J. Appl. Cryst. 2003, 36, 7-13.
 ${ }^{6}$ Sheldrick, G.M. Acta Cryst. 2015, A71, 3-8.
 ${ }^{7}$ Sheldrick, G.M. Acta Cryst. 2015, C71, 3-8.
 ${ }^{8}$ Spek, A. L. Acta Cryst. 2015, C71, 9-18.

