Climbing up the Ladder: Intermediate Triplet States Promote the Reverse Intersystem Crossing in the Efficient TADF Emitter ACRSA

Supporting Information

Igor Lyskov and Christel M. Marian*

Institute of Theoretical and Computational Chemistry, Heinrich-Heine-University Düsseldorf, Universitätsstraße 1, 40225 Düsseldorf, Germany, E-mail: Christel.Marian@hhu.de

August 30, 2017

Table S1: Vertical electronic excitation energies (eV) at the ground-state geometry as a function of the AO basis and DFT/MRCI parameter set. Note that some values may be different from those in the main text of the article due to slightly modified reference space.

State	$Character^{a-e}$	Excitation	SV(P) b	asis	TZVP bas	is	cc-aug-pT	ZV ^f
			DFT/MR	CI-R	DFT/MRCI	I-R	DFT/MR(CI-R
			standard	tight	standard ti	ight	standard	tight
$1^{1}A_{1}$		ground state	0.00	0.00	0.00 0	00.0	0.00	0.00
$1^{1}A_{2}$	CT / ANT	$\pi_{ m H} ightarrow \pi_{ m I}^{*} / n_{ m O} ightarrow \pi_{ m I}^{*}$	3.37	3.40	3.32 3	3.36	3.32	3.36
$2^{1}A_{2}$	ANT / CT	$n_{\rm O} ightarrow \pi_{\rm L}^* / \pi_{\rm H} ightarrow \pi_{\rm L}^*$	3.53	3.55	3.55 3	3.57	3.55	3.58
1^1B_1	CT / ANT	$\pi_{H-1} \rightarrow \pi_L^*$	3.96	3.96	3.94 3	3.95	3.95	3.99
1^1B_2	ACR / CT^*	$\pi_{ m H} ightarrow \pi_{ m L+1}^*$	4.01	4.02	3.99 4	1.01	3.96	3.99
2^1A_1	ACR	$\pi_{H} \rightarrow \pi_{L+4}^{*}$	4.07	4.07	4.04 4	1.06	4.02	4.05
3^1A_1	ANT	$\pi_{\mathrm{H-3}} ightarrow \pi_{\mathrm{L}}^{*}$	4.17	4.14	4.18 4	1.17	4.18	4.21
$1^{3}A_{2}$	ANT / CT	$n_{\rm O} ightarrow \pi_{\rm L}^* / \pi_{\rm H} ightarrow \pi_{\rm L}^*$	3.23	3.24	3.22 3	3.25	3.24	3.27
$1^{3}B_{2}$	ACR	$\pi_{\rm H} ightarrow \pi_{\rm L+1}^*$	3.33	3.30	3.35 3	3.34	3.36	3.35
$1^{3}A_{1}$	ANT	$\pi_{\mathrm{H-6}} \rightarrow \pi_{\mathrm{L}}^{*}$	3.39	3.37	3.37 3	3.40	3.47	3.46
$2^{3}A_{2}$	CT / ANT	$\pi_{ m H} ightarrow \pi_{ m L}^{st} \ / \ n_{ m O} ightarrow \pi_{ m L}^{st}$	3.40	3.40	3.43 3	3.41	3.38	3.42
$1^{3}B_{1}$	ACR/CT	$\pi_{\mathrm{H}-4} ightarrow \pi_{\mathrm{L}}^{*} / \pi_{\mathrm{H}-5} ightarrow \pi_{\mathrm{L}}^{*}$	3.48	3.44	3.49 3	3.46	3.53	3.51
$2^{3}B_{1}$	CT / ANT	$\pi_{\mathrm{H}-1} ightarrow \pi_{\mathrm{L}}^{*}$	3.64	3.58	3.62 3	3.58	3.65	3.63
$2^{3}A_{1}$	ACR	$\pi_{ m H} ightarrow \pi_{ m L+4}^*$	3.67	3.62	3.64 3	3.60	3.60	3.56
$3^{3}A_{1}$	ANT/ACR	$\pi_{\mathrm{H-3}} ightarrow \pi_{\mathrm{L}}^{*} / \pi_{\mathrm{H-1}} ightarrow \pi_{\mathrm{L+1}}^{*}$	3.77	3.72	3.78 3	3.74	3.80	3.77
$2^{3}B_{2}$	ACR/CT*	$\pi_{\rm H} \rightarrow \pi_{\rm L+7}^* / \pi_{\rm H} \rightarrow \pi_{\rm L+3}^*$	3.82	3.74	3.79 3	3.74	3.79	3.75
$4^{3}A_{1}$	ACR/ANT	$\pi_{\mathrm{H-2}} \rightarrow \pi^*_{\mathrm{L+4}} / \pi_{\mathrm{H-3}} \rightarrow \pi^*_{\mathrm{L}} / \pi_{\mathrm{H}} \rightarrow \pi^*_{\mathrm{L+9}}$	3.85	3.79	3.87 3	3.83	3.88	3.84
$5^{3}A_{1}$	PHE	$\pi_{\mathrm{H-8}} \rightarrow \pi_{\mathrm{L+3}}^* / \pi_{\mathrm{H-7}} \rightarrow \pi_{\mathrm{L+2}}^*$	4.02	3.93	4.03 3	3.97	3.80	3.99
$3^{3}B_{2}$	ACR	$\pi_{\mathrm{H}-1} ightarrow \pi^*_{\mathrm{L}+4}$	4.03	3.98	4.05 4	1.01	4.05	4.02
$3^{3}B_{1}$	ANT	$\pi_{\mathrm{H}-1} \rightarrow \pi_{\mathrm{L}+5}^{*}$	4.07	4.01	4.09 4	1.03	4.11	4.07

^{*a*}: ANT = local excitation on the anthrace none moiety b : CT = charge transfer from acridine to anthrace none

 c : ACR = local excitation on the acridine moiety

 d : CT* = charge transfer from acridine to the phenyl ring

^e: PHE = local excitation on the phenyl moiety f: cc-aug-pTZV basis for O, N, C, cc-pDZV basis for H.

Table S2: Adiabatic excitation energies ΔE_{adia} (eV), vertical emission energies ΔE_{em} (eV) and static dipole moments μ (Debye) of low-lying electronic states of ACRSA (def-SV(P) basis set) in vacuum.

State	Character	Excitation	ΔE_{adia}	$\Delta E_{\rm em}$	μ
1^1A_1		(0.96) GS	0.00		5.46
$1^{1}A_{2}$	ANT	$(0.79) \ n_{\rm O} \to \pi_{\rm L}^*$	3.12	2.76	2.13
$2^{1}A_{2}$	CT	$(0.80) \ \pi_{\rm H} \to \pi_{\rm L}^*$	3.14	3.04	19.60
$1^{1}B_{1}$	CT / ANT	$(0.72) \ \pi_{\rm H-1} \to \pi_{\rm L}^*$	3.87	3.67	10.62
$2^{1}A_{1}$	ACR	$(0.72) \ \pi_{\rm H} \to \pi^*_{\rm L+4}$	4.02	3.88	6.83
$1^{1}B_{2}$	ACR / CT^*	$(0.71) \ \pi_{\rm H} \to \pi^*_{\rm L+1}$	4.07	3.79	2.74
$1^{3}A_{2}$	ANT	$(0.81) \ n_{\rm O} \to \pi_{\rm L}^*$	2.96	2.57	1.98
$2^{3}A_{2}$	CT / ANT	$(0.59) \ \pi_{\rm H} \to \pi_{\rm L}^* \ (0.25) \ n_{\rm O} \to \pi_{\rm L}^*$	3.13	2.93	14.94
$1^{3}B_{2}$	ACR/CT	$(0.65) \ \pi_{\rm H} \to \pi^*_{\rm L+1}$	3.14	2.93	7.00
$1^{3}A_{1}$	ANT	$(0.82) \ \pi_{\rm H-6} \to \pi_{\rm L}^*$	3.24	2.12	3.48
$1^{3}B_{1}$	ACR/CT	$(0.38) \ \pi_{H-4} \to \pi_L^* \ (0.31) \ \pi_{H-1} \to \pi_L^*$	3.34	3.11	6.97

^{*a*}: ANT = local excitation on the anthracenone moiety

^{*b*}: CT = charge transfer from acridine to anthracenone

^c: ACR = local excitation on the acridine moiety

^{*d*}: $CT^* = charge transfer from acridine to the phenyl ring$

		(Geometry	V	
	GS	¹ CT	³ CT	$^{1}(n\pi^{*})$	$^{3}(n\pi^{*})$
$\langle 1^3 A_2 \hat{\mathcal{H}}_{\rm SO\ z} 1^1 A_1 \rangle$	-34.03	-21.47	-23.01	-44.64	-44.98
$\langle 2^3 A_2 \hat{\mathcal{H}}_{\rm SO\ z} 1^1 A_1 \rangle$	25.38	-37.80	36.93	6.52	6.44
$\langle 1^3 A_1 \hat{\mathcal{H}}_{\rm SO\ z} 1^1 A_2 \rangle$	-15.98	-11.51	12.33	43.70	-44.25
$\langle 1^3 A_1 \hat{\mathcal{H}}_{\rm SO\ z} 2^1 A_2 \rangle$	-23.68	-33.51	-33.39	-3.51	-3.40
$\langle 1^3 B_1 \hat{\mathcal{H}}_{\rm SO~x} 1^1 A_2 \rangle$	-0.80	-0.53	-0.55	-1.20	-1.20
$\langle 1^3 B_1 \hat{\mathcal{H}}_{\rm SO~x} 2^1 A_2 \rangle$	1.10	1.26	1.25	-0.02	-0.00
$\langle 1^3 B_2 \hat{\mathcal{H}}_{\rm SO\ y} 1^1 A_2 \rangle$	0.61	0.66	-0.67	-0.13	-0.12
$\langle 1^3 B_2 \hat{\mathcal{H}}_{\rm SO\ y} 2^1 A_2 \rangle$	0.32	-0.15	-0.17	-0.74	-0.73
$\langle 1^3 A_2 \hat{\mathcal{H}}_{\rm SO\ z} 1^3 A_1 \rangle$	-23.08	-19.07	20.32	42.63	43.19
$\langle 2^3 A_2 \hat{\mathcal{H}}_{\mathrm{SO~z}} 1^3 A_1 \rangle$	16.61	28.41	-27.73	-3.19	-3.12
$\langle 1^3 B_1 \hat{\mathcal{H}}_{\rm SO~x} 1^3 A_2 \rangle$	1.27	-0.89	0.94	1.27	-1.27
$\langle 1^3 B_1 \hat{\mathcal{H}}_{\rm SO~x} 2^3 A_2 \rangle$	-0.73	1.16	-1.13	0.04	-0.02
$\langle 1^3 B_2 \hat{\mathcal{H}}_{\rm SO y} 1^3 A_2 \rangle$	0.37	-0.56	-0.55	0.03	0.03
$\langle 1^3 B_2 \hat{\mathcal{H}}_{\rm SO y} 2^3 A_2 \rangle$	0.60	-0.40	-0.43	0.76	0.76

Table S3: Important spin–orbit coupling matrix elements^{*a*} (cm⁻¹) of DFT/MRCI wave functions (def-SV(P) basis set, tight) at various molecular geometries.

^a: The imaginary unit *i* has been omitted.

	sym.	label	ω_i	N	n^a	$\lambda_{12}/\lambda_{34}$	$\lambda_{36}/\lambda_{46}$	$\lambda_{35}/\lambda_{45}$	λ_{56}
vacuum	a_1 a_1	q_{23} q_{138}	381.5 1763.2	$35 \\ 35$	4/7/5/7/6/6	$\frac{0.0028/0.0030}{0.0263/0.0268}$			
toluene	a_1 a_1	q_{23} q_{138}	381.4 1751.2	$35 \\ 35 \\ 35 \\ 35 \\ 35 \\ 35 \\ 35 \\ 35 \\$	5/6/5/7/5/6	-0.0036/-0.0019 0.0243/0.0201			
etonitrile	a_1 a_1	q_{23} q_{138}	381.1 1732.0	$35 \\ 35$	5/7/7/5/6/5	-0.0088/0.0067 0.0301/0.0217			
vacuum	a_2 a_2	q_5 q_{56}	60.0 784.9	$30 \\ 30$	4/4/6/7/4/6		0.0036/0.0025 - $0.0235/0.0033$		
toluene	$a_2 \\ a_2$	q_5 q_{56}	$57.1 \\ 793.9$	$30 \\ 30$	4/4/7/5/4/6		-0.0078/-0.0193 -0.0244/-0.0236		
etonitrile	$a_2 \\ a_2$	q_5 q_{56}	$63.1 \\ 790.1$	$30 \\ 30$	4/4/7/5/4/7		0.0154/-0.0030 0.0039/0.0205		
vacuum	$b_1 \\ b_1 \\ b_2$	q_{13} q_{21} q_{22}	184.6 348.7 7.7 0	25 25 25	4/4/5/7/7/4			-0.0109/-0.0081 0.0084/-0.0114	0.0191
toluene	$p_1^{o_1}$	$egin{array}{c} 426 \\ Q_{13} \\ Q_{21} \\ Q_{26} \end{array}$	$ \frac{129.2}{349.5} $	$ \begin{array}{c} 22 \\ 23 \\ 22 \\ 22 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 32 \\ 33 \\ $	4/4/7/4/5/4			-0.0032/-0.0079 0.0162/-0.0065	0.0004
etonitrile	$b_1 b_1 b_2 b_2$	$\begin{array}{c} q_{13} \\ q_{21} \\ q_{26} \end{array}$	$\frac{186.9}{349.8}$ 428.0	$\begin{array}{c} 25\\ 25\\ 25\\ 25\\ \end{array}$	4/4/7/4/6/5			0.0052/-0.0010 0.0258/-0.0050	-0.0137

(n) in multiset formalism, number of Hermitian DVR (N) and induced linear vibronic coupling strength λ (in eV) between nonadiabatic electronic states. Table S4: Degrees of freedom q_i used in the MCTDH calculations, their harmonic frequencies ω_i (cm⁻¹), number of single-particle-function

Figure S1: Most relevant Kohn-Sham BH-LYP MOs at the ground-state geometry in vacuum. They can be grouped into three categories: (1) MOs that are localized on the anthracenone moiety ($n_{\rm O}$, $\pi_{\rm H-6}$, $\pi_{\rm H-3}$, $\pi_{\rm L}^*$); (2) MOs that are localized on the acridine moiety ($\pi_{\rm H-2}$, $\pi_{\rm H}$, $\pi_{\rm L+4}^*$); (3) MOs that are delocalized ($\pi_{\rm H-5}$, $\pi_{\rm H-4}$, $\pi_{\rm H-1}$, $\pi_{\rm L+1}^*$, $\pi_{\rm L+2}^*$).

Figure S2: Adiabatic and nonadiabatic 1D potential energy cuts through the distortion coordinates q_i

Adiabatic potentials q_{26}

Adiabatic potentials q_{21}

Nonadiabatic potentials q_{21}

Adiabatic potentials q_{13}

Adiabatic potentials q_5

Adiabatic potentials q_{56}

Adiabatic potentials q_{23}

Adiabatic potentials q_{138}

S13

