Supporting information

for

Stereoselective Construction of α-Tetralone-Fused Spirooxindoles via Pd-Catalyzed Domino Carbene Migratory Insertion/Conjugate Addition Sequence

D. Arunprasath, B. Devi Bala and G. Sekar*

Department of Chemistry, Indian Institute of Technology Madras, Chennai,

Tamilnadu-600036 India.

Fax: (+91)-44-2257-4202; E-mail: gsekar@iitm.ac.in

Table of contents

1	General information	S2
2	General procedure for the synthesis of spirooxindoles	S 3
3	General procedure for the synthesis of spiroacenaphthylenes	S 13
4	Synthetic transformations of product 3b	S15
5	Preliminary asymmetric results	S17
6	Control experiments	S17
7	General procedure for the synthesis of substrates	S17
8	Procedure for the synthesis of α -deuterated 2'-iodochalcone	S18
9	Reference	S18
10	¹ H and ¹³ C spectra for all compounds	S20
11	Single crystal XRD data	S56
12	Crystal structures of 3a and 3a'	S64

1. General information

All reactions were carried out in oven-dried reaction tubes. Reactions were monitored by thin-layer chromatography (TLC) using Merck silica gel 60 F_{254} precoated plates (0.25 mm) and visualized by UV fluorescence quenching using appropriate mixture of ethyl acetate and hexanes. Silica gel (particle size: 100-200 mesh) was purchased from Avra Synthesis Pvt. Ltd and used for column chromatography using hexanes and ethyl acetate mixture as eluent. All the reactions were carried out in temperature controlled IKA magnetic stirrers. ¹H and ¹³C NMR spectra were recorded on a Bruker 400 MHz and 500 MHz (100 MHz and 125 MHz for ¹³C) instrument. ¹H NMR spectra were reported relative to residual CDCl₃ (δ 7.26 ppm) and DMSO-d₆ (δ 2.50 ppm) or residual TMS. ¹³C NMR were reported relative to CDCl₃ (δ 77.16 ppm) and DMSO-d₆ (δ 39.51 ppm). Chemical shifts were reported in parts per million and multiplicities are as indicated: s (singlet), d (doublet), t (triplet), q (quartet), p (pentet), m (multiplet), and br (broad). Coupling constants, *J*, are reported in Hertz. Melting points were recorded on a Guna capillary melting point apparatus and are corrected with benzoic acid as reference. Infrared spectra were recorded on a FTIR 4000 Series Spectrometer using dry KBr pellet. The wave numbers of recorded IR signals are quoted in cm⁻¹. High resolution mass spectra (HRMS) were recorded on Q-Tof Micro mass spectrometer.

Solvents used for extraction and column chromatography were laboratory grade and used as received. Reaction solvents used were obtained from Fischer Scientific, India Pvt. Ltd. Allylpalladium chloride dimer and PPh₃ were obtained from Sigma-Aldrich and used directly as received.

2. Experimental data

2.1. General procedure for the synthesis of α -tetralone-fused spirooxindoles 3

Under open atmosphere, *E*-2'-iodochalcone **1** (167 mg, 0.5 mmol), isatin-derived *N*-tosylhydrazone **2** (304 mg, 0.75 mmol), [Pd(allyl)Cl]₂ (18.5 mg, 0.05 mmol), PPh₃ (39.5 mg, 0.15 mmol), TBAB (40 mg, 0.125 mmol) and DIPEA (262 μ L, 1.5 mmol) were successively added to oven-dried reaction tube. CH₃CN (3 mL) was added and closed with a glass-stopper. The reaction tube was then immersed in a 50 °C pre-heated oil bath with stirring (500 rpm) till complete consumption of 2'-iodochalcone. Upon cooling down to room temperature, the solvent was removed under reduced pressure. Water (approx.10 mL) was added to the reaction mixture and extracted with dichloromethane (3×5 mL). Brine wash (1×5 mL) was given to the combined organic extractions and dried over anhydrous Na₂SO₄. The dr was determined by ¹H NMR analysis of the crude reaction mixture and was subsequently purified by silica gel column separation using hexanes and ethylacetate mixture (8:2, v/v) as mobile phase afforded the corresponding spirooxindoles **3**.

1-Benzyl-2'-phenyl-2',3'-dihydro-4'*H***-spiro[indoline-3,1'-naphthalene]-2,4'-dione (3b):** 189 mg, 88% yield; 91:09 dr (*anti:syn*); **Major**: white solid; mp 164-166 °C; $R_f 0.42$ (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 3.01 (dd, J = 18.2, 4.4 Hz, 1H), 3.54 (dd, J = 18.2, 14.4 Hz, 1H), 4.23

(dd, J = 14.4, 4.4 Hz, 1H), 4.58 (d, J = 15.8 Hz, 1H), 4.90 (d, J = 15.8 Hz, 1H), 6.44-6.51 (m, 1H), 6.64 (d, J = 6.4 Hz, 2H), 6.85 (d, J = 7.2 Hz, 2H), 6.89-7.02 (m, 2H), 7.06-7.28 (m, 8H), 7.44 (td, J = 7.4, 1.4 Hz, 1H), 7.49 (td, J = 7.4, 1.4 Hz, 1H), 8.23 (dd, J = 8.0, 1.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 40.7, 44.0, 47.5, 58.8, 110.2, 122.7, 125.1, 126.8, 127.4, 127.5, 128.0 (2C), 128.3, 128.4, 128.6, 128.8, 128.9, 130.1, 131.9, 135.0, 135.1, 137.7,

142.6, 143.5, 177.9, 196.9; FTIR (KBr) 3059, 3032, 2920, 1714, 1685, 1608, 1466, 1359, 1294, 758, 700 cm⁻¹; HRMS (*m*/*z*): [M+Na]⁺ calcd for C₃₀H₂₃NO₂Na: 452.1626; found: 452.1607.

Minor (**3b'**) : white solid; mp 191-193 °C; R_f 0.45 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 2.86 (dd, J = 16.6, 3.8 Hz, 1H), 4.05 (dd, J = 14.6, 3.8 Hz, 1H), 4.37 (dd, J = 16.6, 14.6 Hz, 1H), 4.65 (d, J = 15.8 Hz, 1H), 4.71 (d, J = 15.8 Hz, 1H), 6.43-6.49 (m, 1H), 6.61 (dd, J = 7.8, 1.0 Hz, 1H), 6.81-6.89 (m, 2H), 6.97-7.26 (m, 11H), 7.39 (td, J = 7.4, 1.6 Hz, 1H), 7.44 (td, J = 7.4, 1.6 Hz, 1H), 8.25 (dd, J = 7.8, 1.8 Hz,

1H); ¹³C NMR (CDCl₃, 100 MHz) δ 39.4, 43.9, 48.6, 57.4, 109.4, 123.2, 124.5, 127.1, 127.5, 127.6,

127.9, 128.0, 128.1, 128.4, 128.6, 128.7, 128.8, 132.6, 133.0, 134.1, 135.3, 137.7, 142.6, 143.5, 176.0, 197.5; FTIR (KBr) 3060, 3032, 1704, 1610, 1492, 1359, 1297, 751, 700 cm⁻¹; HRMS (m/z): [M+Na]⁺ calcd for C₃₀H₂₄Na: 430.1807; found: 430.1836.

1-Benzyl-2'-(*p*-tolyl)-2',3'-dihydro-4'*H*-spiro[indoline-3,1'naphthalene]-2,4'-dione (3c): 186 mg, 84% yield; 91:09 dr (*anti:syn*); Major: white solid; mp 101-103 °C; $R_f 0.41$ (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 2.31 (s, 3H), 2.97 (dd, J = 18.2, 4.5 Hz,

1H), 3.52 (dd, J = 18.2, 14.5 Hz, 1H), 4.20 (dd, J = 14.5, 4.5 Hz, 1H), 4.55 (d, J = 16.0 Hz, 1H), 5.00 (d, J = 16.0 Hz, 1H), 6.47-6.51 (m, 1H), 6.66 (d, J = 7.5 Hz, 2H), 6.73 (d, J = 8.0 Hz, 2H), 6.87-7.01 (m, 4H), 7.09-7.23 (m, 5H), 7.43 (td, J = 7.5, 1.8 Hz, 1H), 7.48 (td, J = 7.5, 1.8 Hz, 1H), 8.22 (dd, J = 7.7, 1.2 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 21.4, 40.9, 44.1, 47.1, 58.9, 110.2, 122.7, 125.2, 126.9, 127.3, 127.4, 128.0, 128.3, 128.5, 128.7, 128.8, 129.1, 130.3, 131.9, 134.8, 135.0, 135.1, 137.5, 142.6, 143.7, 178.0, 197.1; FTIR (KBr) 3060, 3030, 1714, 1685, 1606, 1462, 1359, 1294, 736 cm⁻¹; HRMS (*m*/*z*): [M+H]⁺ calcd for C₃₁H₂₆NO₂: 444.1964; found: 444.1993.

1-Benzyl-2'-(4-(*tert***-butyl)phenyl)-2',3'-dihydro-4'***H***-spiro[indoline-3,1'-naphthalene]-2,4'-dione (3d):** 209 mg, 86% yield; 91:09 dr (*anti:syn*); Major: white solid; mp 120-122 °C; R_f 0.51 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 1.26 (s, 9H), 3.00 (dd, J = 18.0, 4.4 Hz, 1H), 3.51 (dd, J = 18.0, 14.4 Hz, 1H), 4.19 (dd, J = 14.4,

4.4 Hz, 1H), 4.57 (d, J = 15.8 Hz, 1H), 4.74 (d, J = 15.8 Hz, 1H), 6.48 (d, J = 7.6 Hz, 1H), 6.76 (d, J = 8.4 Hz, 2H), 6.88-7.01 (m, 4H), 7.05-7.15 (m, 4H), 7.19-7.25 (m, 3H), 7.43 (td, J = 7.4, 1.4 Hz, 1H), 7.48 (td, J = 7.4, 1.4 Hz, 1H), 8.22 (dd, J = 7.8, 1.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 31.5, 34.6, 40.7, 44.2, 47.1, 58.8, 110.0, 122.6, 124.9, 125.1, 127.1, 127.4, 127.6, 127.9, 128.2, 128.3, 128.8, 128.9, 130.3, 132.1, 134.6, 134.9, 135.4, 142.7, 143.4, 150.7, 178.0, 197.1; FTIR (KBr) 3058, 2959, 2926, 1713, 1685, 1608, 1465, 1361, 1294, 833, 753 cm⁻¹; HRMS (*m*/*z*): [M+H]⁺ calcd for C₃₄H₃₂NO₂: 486.2433; found: 486.2415.

1-Benzyl-2'-(4-methoxyphenyl)-2',3'-dihydro-4'*H*-spiro[indoline-3,1'naphthalene]-2,4'-dione (3e): 211 mg, 92% yield; 89:11 dr (*anti:syn*); Major: white solid; mp 196-198 °C; R_f 0.38 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 2.97 (dd, J = 18.0, 4.4 Hz, 1H), 3.50 (dd, J = 18.0, 14.4 Hz, 1H), 3.75 (s, 3H), 4.19 (dd, J = 14.4, 4.4 Hz,

1H), 4.55 (d, J = 16.0 Hz, 1H), 5.03 (d, J = 16.0 Hz, 1H), 6.50 (d, J = 7.6 Hz, 1H), 6.63 (d, J = 8.4 Hz, 4H), 6.76 (d, J = 8.8 Hz, 2H), 6.89-7.02 (m, 2H), 7.08-7.23 (m, 5H), 7.43 (td, J = 7.6, 1.4 Hz, 1H), 7.48 (td, J = 7.6, 1.4 Hz, 1H), 8.22 (dd, J = 7.6, 1.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ

41.1, 44.0, 46.7, 55.2, 59.0, 110.2, 113.7, 122.7, 125.1, 126.8, 127.3, 127.5, 128.0, 128.3, 128.7, 128.8, 129.7, 129.9 (2C), 130.2, 131.9, 135.0, 142.6, 143.7, 159.3, 178.0, 197.0; FTIR (KBr) 3060, 2952, 1714, 1685, 1608, 1512, 1465, 1359, 1250, 832, 735 cm⁻¹; HRMS (m/z): [M+Na]⁺ calcd for C₃₁H₂₅NO₃Na: 482.1732; found: 482.1708.

1-Benzyl-2'-(4-fluorophenyl)-2',3'-dihydro-4'*H***-spiro[indoline-3,1'-naphthalene]-2,4'-dione (3f):** 190 mg, 85% yield; 91:09 dr (*anti:syn*); Major: white solid; mp 163-165 °C; $R_f 0.44$ (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) 2.97 (dd, J = 18.0, 4.2 Hz, 1H), 3.48 (dd, J = 18.0, 14.4 Hz, 1H), 4.22 (dd, J = 14.4, 4.2 Hz, 1H), 4.58 (d, J = 15.8 Hz,

1H), 4.95 (d, J = 15.8 Hz, 1H), 6.54 (d, J = 8.0 Hz, 2H), 6.65-6.84 (m, 6H), 6.92 (dd, J = 7.6, 0.8 Hz, 1H), 6.99 (dd, J = 7.6, 0.8 Hz, 1H), 7.09-7.25 (m, 5H), 7.44 (td, J = 7.6, 1.6 Hz, 1H), 7.49 (td, J = 7.6, 1.6 Hz, 1H), 8.22 (dd, J = 7.8, 1.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 40.8, 44.1, 46.7, 58.8, 110.2, 115.2 (d, J = 21 Hz), 122.8, 125.2, 126.9, 127.4, 127.7, 128.0, 128.4, 128.8, 129.1, 129.9, 130.2 (d, J = 8 Hz), 131.9, 133.5 (d, J = 4 Hz), 135.0, 135.1, 142.6, 143.4, 162.5 (d, J = 245 Hz), 177.8, 196.5; FTIR (KBr) 3060, 2910, 1714, 1686, 1604, 1487, 1362, 1295, 839, 735 cm⁻¹; HRMS (m/z): [M+H]⁺ calcd for C₃₀H₂₃NO₂F: 448.1713; found: 448.1700.

1-Benzyl-2'-(4-bromophenyl)-2',3'-dihydro-4'*H***-spiro[indoline-3,1'-naphthalene]-2,4'-dione (3g):** 216 mg, 85% yield; 89:11 dr (*anti:syn*); Major: white solid; mp 167-169 °C; $R_f 0.38$ (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 2.96 (dd, J = 18.0, 4.2 Hz, 1H), 3.48 (dd, J = 18.0, 14.5 Hz, 1H), 4.20 (dd, J = 14.5, 4.2 Hz, 1H), 4.54 (d, J = 15.7 Hz,

1H), 5.04 (d, J = 15.7 Hz, 1H), 6.56 (d, J = 8.0 Hz, 1H), 6.64-6.69 (m, 2H), 6.71 (d, J = 8.5 Hz, 2H), 6.91 (dd, J = 7.8, 0.8 Hz, 1H), 6.99 (td, J = 7.5, 1.0 Hz, 1H), 7.12 (d, J = 7.5 Hz, 1H), 7.16 (td, J = 7.5, 1.3 Hz, 1H), 7.21 (d, J = 8.5 Hz, 2H), 7.22-7.29 (m, 3H), 7.44 (td, J = 7.5, 1.5 Hz, 1H), 7.49 (td, J = 7.5, 1.5 Hz, 1H), 8.22 (dd, J = 8.0, 1.5 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 40.6, 44.2, 46.8, 58.5, 110.3, 122.1, 122.9, 125.1, 126.8, 127.3, 127.7, 128.0, 128.4, 128.9, 129.1, 129.8, 130.3, 131.5, 131.8, 134.8, 135.1, 136.7, 142.6, 143.4, 177.7, 196.4; FTIR (KBr) 3025, 2957, 1706, 1690, 1598, 1457, 1352, 1244, 773, 730 cm⁻¹; HRMS (m/z): [M+Na]⁺ calcd for C₃₀H₂₂NO₂NaBr: 530.0732; found: 530.0719.

1-Benzyl-2'-(4-(trifluoromethyl)phenyl)-2',3'-dihydro-4'H-

spiro[indoline-3,1'-naphthalene]-2,4'-dione (**3h**): 201 mg, 81% yield; 88:12 dr (*anti:syn*); Major: white solid; mp 167-169 °C; R_f 0.42 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 2.98 (dd, J = 18.0, 4.0 Hz, 1H), 3.53 (dd, J = 18.0, 14.8 Hz, 1H), 4.30 (dd, J = 14.8, 4.0

Hz, 1H), 4.58 (d, J = 15.6 Hz, 1H), 4.91 (d, J = 15.6 Hz, 1H), 6.56 (d, J = 7.6 Hz, 1H), 6.74 (d, J =

6.8 Hz, 2H), 6.91 (dd, J = 7.6, 0.8 Hz, 1H), 6.96 (d, J = 8.0 Hz, 2H), 7.01 (t, J = 7.6 Hz, 1H), 7.10-7.25 (m, 5H), 7.33 (d, J = 8.0 Hz, 2H), 7.45 (td, J = 7.2, 1.4 Hz, 1H), 7.50 (td, J = 7.2, 1.4 Hz, 1H), 8.23 (dd, J = 7.6, 1.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 40.4, 44.2, 47.0, 58.4, 110.3, 123.0, 124.2 (q, J = 270 Hz), 125.1, 125.2 (q, J = 4 Hz), 126.9, 127.3, 127.8, 128.1, 128.5, 128.8, 129.1, 129.3, 129.7, 130.1 (q, J = 32 Hz), 131.8, 134.9, 135.2, 141.7, 142.5, 143.2, 177.6, 196.1; FTIR (KBr) 3056, 3034, 2993, 1714, 1688, 1607, 1485, 1325, 1295, 1124, 849, 755 cm⁻¹; HRMS (m/z): [M+Na]⁺ calcd for C₃₁H₂₂NO₂F₃Na: 520.1500; found: 520.1526.

Methyl-4-(1-benzyl-2,4'-dioxo-3',4'-dihydro-2'H-spiro-[indoline-3,1'-naphthalen]-2'-yl)benzoate (3i): 197 mg, 81% yield; 89:11 dr (*anti:syn*); Major: white solid; mp 156-158 °C; R_f 0.32 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 2.99 (dd, J = 18.0, 4.2 Hz, 1H), 3.53 (dd, J = 18.0, 14.4 Hz, 1H), 3.91 (s, 3H), 4.28 (dd, J

= 14.4, 4.2 Hz, 1H), 4.50 (d, J = 15.6 Hz, 1H), 4.81 (d, J = 15.6 Hz, 1H), 6.54 (d, J = 8.0 Hz, 1H), 6.75 (d, J = 7.2 Hz, 2H), 6.85-6.93 (m, 3H), 7.00 (t, J = 7.6 Hz, 1H), 7.07-7.22 (m, 5H), 7.40-7.54 (m, 2H), 7.73 (d, J = 8.4 Hz, 2H), 8.23 (d, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 40.3, 44.1, 47.3, 52.3, 58.5, 110.2, 122.9, 125.2, 127.0, 127.4, 127.7, 128.0, 128.5, 128.6, 128.8, 129.2, 129.5, 129.7, 129.8, 131.9, 135.0, 135.1, 142.5, 142.7, 143.2, 166.9, 177.6, 196.2; FTIR (KBr) 3055, 2952, 1718, 1610, 1486, 1364, 1266, 753, 700 cm⁻¹; HRMS (*m*/*z*): [M+Na]⁺ calcd for C₃₂H₂₅NO₄Na: 510.1681; found: 510.1693.

1-Benzyl-2,4'-dioxo-3',4'-dihydro-2'H-spiro[indoline-3,1'-naphthalen]-2'-yl)benzonitrile (3j): 134 mg, 59% yield; 87:13 dr (*anti:syn*); Major: white solid; mp 189-191 °C; R_f 0.30 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 2.96 (dd, J = 18.0, 4.4 Hz, 1H), 3.49 (dd, J = 18.0, 14.6 Hz, 1H), 4.26 (dd, J = 14.6, 4.4 Hz, 1H), 4.58 (d, J = 15.6 Hz,

1H), 4.87 (d, J = 15.6 Hz, 1H), 6.63 (d, J = 7.6 Hz, 1H), 6.74-6.81 (m, 2H), 6.87-6.94 (m, 3H), 7.02 (td, J = 7.6, 0.8 Hz, 1H), 7.09-7.34 (m, 7H), 7.45 (td, J = 7.6, 1.4 Hz, 1H), 7.50 (td, J = 7.6, 1.4 Hz, 1H), 8.19-8.25 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 39.9, 44.2, 47.3, 58.3, 110.2, 111.9, 118.6, 123.1, 125.2, 127.1, 127.3, 128.0, 128.1, 128.6, 128.9, 129.3, 129.4, 131.7, 132.0, 134.9, 135.2, 142.5, 142.7 (2C), 142.9, 177.4, 195.7; FTIR (KBr) 3056, 2899, 2228, 1713, 1686, 1607, 1484, 1363, 1294, 847, 756 cm⁻¹; HRMS (*m*/*z*): [M+Na]⁺ calcd for C₃₁H₂₂N₂O₂Na: 477.1579; found: 477.1579.

1-Benzyl-2'-(2-bromo-4-fluorophenyl)-2',3'-dihydro-4'*H*-spiro [indoline-3,1'-naphthalene]-2,4'-dione (3k): 197 mg, 75% yield; 88:12 dr (*anti:syn*); Major: white solid; mp 207-209 °C; $R_f 0.38$ (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 3.06-3.25 (m, 2H), 4.51 (d, *J* = 15.6 Hz, 1H), 4.90 (dd, J = 12.0, 5.6 Hz, 1H), 5.16 (d, J = 15.6 Hz, 1H), 6.32 (dd, J = 8.8, 6.0 Hz, 1H), 6.51-6.59 (m, 1H), 6.70 (d, J = 7.6 Hz, 1H), 6.78-6.94 (m, 4H), 6.98 (td, J = 7.6, 0.8 Hz, 1H), 7.16-7.30 (m, 5H), 7.42-7.53 (m, 2H), 8.20-8.27 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 41.2, 43.8, 44.1, 57.3, 110.1, 114.5 (d, J = 20 Hz), 120.6 (d, J = 24 Hz), 122.9, 125.6, 126.1 (d, J = 9 Hz), 127.1, 127.2, 127.7, 128.1, 128.5, 128.8, 128.9, 129.0, 129.3, 129.7, 132.0, 134.0 (d, J = 3 Hz), 135.1, 135.2, 143.0 (d, J = 11 Hz), 161.4 (d, J = 250 Hz), 177.1, 196.2; FTIR (KBr) 3059, 2919, 1718, 1685, 1599, 1485, 1361, 1293, 751, 701 cm⁻¹; HRMS (m/z): [M+H]⁺ calcd for C₃₀H₂₂NO₂FBr: 526.0818; found: 526.0828.

1-Benzyl-2'-(3-methoxyphenyl)-2',3'-dihydro-4'*H***-spiro[indoline-3,1'-naphthalene]-2,4'-dione (3l):** 211 mg, 92% yield; 88:12 dr (*anti:syn*); Major: white solid; mp 71-73 °C; R_f 0.38 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 3.01 (dd, J = 18.0, 4.2 Hz, 1H), 3.45 (s, 3H), 3.50 (dd, J = 18.0, 14.4 Hz, 1H), 4.21 (dd, J = 14.4, 4.2 Hz, 1H),

4.57 (d, J = 16.0 Hz, 1H), 4.97 (d, J = 16.0 Hz, 1H), 6.27 (t, J = 2.0 Hz, 1H), 6.48-6.56 (m, 2H), 6.62-6.69 (m, 2H), 6.75-6.81 (m, 1H), 6.93 (dd, J = 7.6, 0.8 Hz, 1H), 6.96-7.07 (m, 2H), 7.09-7.24 (m, 5H), 7.44 (td, J = 7.6, 1.4 Hz, 1H), 7.49 (td, J = 7.6, 1.4 Hz, 1H), 8.18-8.25 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 40.9, 44.1, 47.5, 55.1, 58.7, 110.2, 112.9, 114.7, 121.3, 122.7, 125.1, 126.8, 127.4, 127.5, 128.0, 128.3, 128.9 (2C), 129.4, 130.4, 132.0, 135.0, 135.1, 139.2, 142.8, 143.6, 159.4, 177.8, 196.8; FTIR (KBr) 3060, 2953, 1685, 1603, 1715, 1363, 1295, 789 cm⁻¹; HRMS (*m/z*): [M+Na]⁺ calcd for C₃₁H₂₅NO₃Na: 482.1732; found: 482.1712.

1-Benzyl-2'-(3-fluorophenyl)-2',3'-dihydro-4'H-spiro[indoline-3,1'naphthalene]-2,4'-dione (3m): 177 mg, 79% yield; 90:10 dr (*anti:syn*); Major: white solid; mp 118-120 °C; R_f 0.39 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 3.00 (dd, J = 18.0, 4.4 Hz, 1H), 3.48 (dd, J =18.0, 14.4 Hz, 1H), 4.23 (dd, J = 14.4, 4.4 Hz, 1H), 4.63 (d, J = 15.8 Hz,

1H), 4.88 (d, J = 15.8 Hz, 1H), 6.46-6.53 (m, 1H), 6.55 (d, J = 7.6 Hz, 1H), 6.68 (d, J = 7.6 Hz, 1H), 6.73-6.80 (m, 2H), 6.86-6.95 (m, 2H), 7.00 (td, J = 7.6, 0.8 Hz, 1H), 7.02-7.25 (m, 6H), 7.45 (td, J = 7.4, 1.6 Hz, 1H), 7.50 (td, J = 7.4, 1.6 Hz, 1H), 8.22 (dd, J = 7.6, 1.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 40.5, 44.1, 47.1, 58.5, 110.2, 115.0 (d, J = 21 Hz), 115.4 (d, J = 22 Hz), 122.9, 124.5 (d, J = 2 Hz), 125.1, 126.9, 127.4, 127.6, 128.0, 128.4, 128.9, 129.2, 129.7 (d, J = 9 Hz), 129.8, 131.8, 135.1, 140.1, 140.2, 142.6, 143.3, 162.5 (d, J = 245 Hz), 177.7, 196.3; FTIR (KBr) 3060, 2921, 1714, 1687, 1608, 1485, 1364, 1295, 733, 699 cm⁻¹; HRMS (m/z): [M+Na]⁺ calcd for C₃₀H₂₂NO₂FNa: 470.1532; found: 470.1507.

1-Benzyl-2'-(3-chlorophenyl)-2',3'-dihydro-4'H-spiro[indoline-3,1'naphthalene]-2,4'-dione (3n): 174 mg, 75% yield; 90:10 dr (*anti:syn*); Major: white solid; mp 81-83 °C; R_f 0.38 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 2.98 (dd, J = 18.0, 4.0 Hz, 1H), 3.48 (dd, J = 18.0, 14.6 Hz, 1H), 4.19 (dd, J = 14.6, 4.0 Hz, 1H), 4.62 (d, J = 15.8 Hz,

1H), 4.89 (d, J = 15.8 Hz, 1H), 6.56 (d, J = 8.0 Hz, 1H), 6.69-6.82 (m, 4H), 6.92 (d, J = 7.2 Hz, 1H), 6.96-7.05 (m, 2H), 7.08-7.25 (m, 6H), 7.44 (td, J = 7.4, 1.2 Hz, 1H), 7.50 (td, J = 7.4, 1.2 Hz, 1H), 8.22 (dd, J = 7.6, 1.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 40.5, 44.1, 47.1, 58.5, 110.3, 122.9, 125.1, 126.8 (2C), 127.4, 127.6, 128.0, 128.2, 128.5, 128.7, 128.9, 129.2, 129.6, 129.7, 131.8, 134.1, 135.0, 135.1, 139.7, 142.5, 143.2, 177.6, 196.3; FTIR (KBr) 3062, 2978, 1714, 1686, 1607, 1485, 1363, 1295, 754, 699 cm⁻¹; HRMS (m/z): [M+Na]⁺ calcd for C₃₀H₂₂NO₂NaCl: 486.1237; found: 486.1268.

1-Benzyl-2'-(3-nitrophenyl)-2',3'-dihydro-4'*H*-spiro[indoline-3,1'naphthalene]-2,4'-dione (30): 183 mg, 77% yield; 90:10 dr (*anti:syn*); Major: white solid; mp 162-164 °C; $R_f 0.32$ (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 3.00 (dd, J = 18.0, 3.8 Hz, 1H), 3.46-3.61 (m, 1H), 4.33 (dd, J = 14.4, 3.8 Hz, 1H), 4.61 (d, J = 15.6 Hz, 1H), 4.77 (d,

J = 15.6 Hz, 1H), 6.61 (d, J = 7.6 Hz, 1H), 6.80 (d, J = 7.2 Hz, 2H), 6.92 (t, J = 7.6 Hz, 1H), 7.06 (t, J = 7.4 Hz, 1H), 7.12-7.28 (m, 7H), 7.43-7.59 (m, 3H), 7.96-8.04 (m, 1H), 8.23 (d, J = 7.6 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 40.2, 44.1, 46.9, 58.2, 110.2, 123.0, 123.1, 123.3, 125.2, 127.2, 127.4, 128.0, 128.1, 128.6, 128.9 (2C), 129.2, 129.6, 131.8, 135.0, 135.1, 135.2, 139.5, 142.3, 142.8, 147.8, 177.4, 195.6; FTIR (KBr) 3066, 2941, 1712, 1686, 1607, 1529, 1467, 1349, 1295, 754, 694 cm⁻¹; HRMS (m/z): [M+Na]⁺ calcd for C₃₀H₂₂N₂O₄Na: 497.1477; found: 497.1468.

1-Benzyl-2'-(*o***-tolyl)-2',3'-dihydro-4'***H***-spiro[indoline-3,1'-naphthalene]-2,4'-dione (3p):** 155 mg, 70% yield; 95:05 dr (*anti:syn*); Major: white solid; mp 137-139 °C; $R_f 0.44$ (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 2.39 (s, 3H), 2.98 (dd, J = 18.4, 4.4 Hz, 1H), 3.40 (dd, J = 18.4, 13.6 Hz, 1H), 4.44 (d, J = 16.0 Hz, 1H), 4.64 (dd, J = 13.6, 4.4 Hz, 1H), 5.16 (d, J

= 16.0 Hz, 1H), 6.32 (d, J = 7.6 Hz, 1H), 6.49-6.57 (m, 3H), 6.70-6.79 (m, 1H), 6.90-6.95 (m, 1H), 6.99 (td, J = 7.4, 0.8 Hz, 1H), 7.03-7.22 (m, 7H), 7.45 (td, J = 7.6, 1.6Hz, 1H), 7.50 (td, J = 7.6, 1.6 Hz, 1H), 8.21-8.28 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 20.4, 41.3, 41.8, 44.0, 58.2, 110.2, 122.8, 125.4, 125.8, 126.6, 126.7, 127.1, 127.4, 127.5, 128.1, 128.3, 128.9, 129.0, 130.5, 131.0, 132.0, 135.0 (2C), 136.8, 137.4, 142.8, 144.1, 178.2, 197.2; FTIR (KBr) 3056, 2924, 2853, 1714, 1684, 1608,

1466, 1363, 1294, 756, 736 cm⁻¹; HRMS (m/z): [M+Na]⁺ calcd for C₃₁H₂₅NO₂Na: 466.1783; found: 466.1773.

1-Benzyl-2'-(2-iodophenyl)-2',3'-dihydro-4'*H***-spiro[indoline-3,1'-naphthalene]-2,4'-dione (3q):** 178 mg, 64% yield; 89:11 dr (*anti:syn*); Major: white solid; mp 99-101 °C; R_f 0.39 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 3.15 (dd, J = 18.5, 11.0 Hz, 1H), 3.30 (dd, J = 18.5, 5.2 Hz, 1H), 4.56 (d, J = 15.5 Hz, 1H), 4.69 (dd, J = 11.0, 5.2 Hz, 1H),

5.11 (d, J = 15.5 Hz, 1H), 6.42 (dd, J = 7.5, 2.0 Hz, 1H), 6.67 (d, J = 8.0 Hz, 1H), 6.71 (d, J = 7.5 Hz, 1H), 6.82-6.97 (m, 6H), 7.13-7.23 (m, 4H), 7.41-7.50 (m, 2H), 7.83 (dd, J = 7.5, 1.5 Hz, 1H), 8.23-8.29 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 41.1, 44.1, 50.0, 57.3, 103.6, 110.1, 122.8, 125.7, 127.1, 127.3, 127.6, 128.1, 128.3, 128.4, 128.9 (2C), 129.1, 129.4, 129.9, 132.3, 134.9, 135.4, 140.4, 141.6, 142.8, 143.2, 177.0, 196.4; FTIR (KBr) 3061, 2904, 1718, 1683, 1608, 1467, 1361, 1294, 755, 735 cm⁻¹; HRMS (*m*/*z*): [M+H]⁺ calcd for C₃₀H₂₃NO₂I: 556.0774; found: 556.0760.

1-Benzyl-2'-(naphthalen-2-yl)-2',3'-dihydro-4'H-spiro-[indoline-3,1'-naphthalene]-2,4'-dione (3r): 201 mg, 84% yield; 88:12 dr (*anti:syn*); Major: white solid; mp 159-161 °C; R_f 0.39 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 3.06 (dd, J = 18.0, 4.2 Hz, 1H), 3.66 (dd, J = 18.0, 14.4 Hz, 1H), 4.41 (d, J = 16.0 Hz, 1H), 4.43 (dd, J =

14.4, 4.2 Hz, 1H), 5.00 (d, J = 16.0 Hz, 1H), 6.31 (d, J = 7.2 Hz, 2H), 6.41 (d, J = 7.6 Hz, 1H), 6.56 (t, J = 7.8 Hz, 2H), 6.87 (dd, J = 8.4, 1.8 Hz, 1H), 6.89-6.98 (m, 2H), 7.03 (td, J = 7.6, 1.2 Hz, 1H), 7.13 (td, J = 7.6, 1.2 Hz, 1H), 7.21 (d, J = 7.6 Hz, 1H), 7.39-7.56 (m, 6H), 7.62 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 8.26 (dd, J = 7.8, 1.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 41.0, 44.0, 47.6, 58.8, 110.3, 122.8, 125.2, 126.0, 126.2, 126.3, 126.4, 127.2, 127.4, 127.7, 127.9, 128.0, 128.2, 128.3, 128.4 (2C), 129.0, 130.2, 131.9, 133.1, 133.3, 134.6, 135.1, 135.3, 142.6, 143.7, 177.9, 196.8; FTIR (KBr) 3058, 2910, 1715, 1685, 1606, 1486, 1362, 1294, 751, 736 cm⁻¹; HRMS (*m*/*z*): [M+H]⁺ calcd for C₃₄H₂₆NO₂: 480.1964; found: 480.1963.

1-Benzyl-2'-(thiophen-2-yl)-2',3'-dihydro-4'*H***-spiro[indoline-3,1'-naphthalene]-2,4'-dione (3s):** 187 mg, 86% yield; 92:08 dr (*anti:syn*); Major: white solid; mp 215-217 °C; R_f 0.43 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 3.16 (dd, J = 18.2, 4.5 Hz, 1H), 3.44 (dd, J = 18.2, 13.5 Hz, 1H), 4.56 (dd, J = 13.5, 4.5 Hz, 1H), 4.67 (d, J = 15.7 Hz, 1H), 5.04 (d, J = 13.5, 4.5 Hz, 1H), 4.67 (d, J = 15.7 Hz, 1H), 5.04 (d, J = 13.5, 4.5 Hz, 1H), 4.67 (d, J = 15.7 Hz, 1H), 5.04 (d, J = 13.5, 4.5 Hz, 1H), 4.67 (d, J = 15.7 Hz, 1H), 5.04 (d, J = 13.5, 4.5 Hz, 1H), 4.67 (d, J = 15.7 Hz, 1H), 5.04 (d, J = 13.5, 4.5 Hz, 1H), 4.67 (d, J = 15.7 Hz, 1H), 5.04 (d, J = 13.5, 4.5 Hz, 1H), 5.04 (d, J = 13.5, 4.5 Hz, 1H), 4.67 (d, J = 15.7 Hz, 1H), 5.04 (d, J = 13.5, 4.5 Hz, 1H), 4.67 (d, J = 15.7 Hz, 1H), 5.04 (d, J = 13.5, 4.5 Hz, 1H), 4.67 (d, J = 15.7 Hz, 1H), 5.04 (d, J = 13.5, 4.5 Hz, 1H), 4.67 (d, J = 15.7 Hz, 1H), 5.04 (d, J = 13.5, 4.5 Hz, 1H), 5

15.7 Hz, 1H), 6.60 (d, J = 8.0 Hz, 1H), 6.73 (dd, J = 8.5, 1.0 Hz, 1H), 6.78-6.84 (m, 3H), 6.92-6.96 (m, 1H), 6.99 (td, J = 7.5, 1.0 Hz, 1H), 7.03-7.09 (m, 2H), 7.17 (td, J = 7.7, 1.2 Hz, 1H), 7.19-7.25 (m, 3H), 7.44 (td, J = 7.5, 1.5 Hz, 1H), 7.49 (td, J = 7.5, 1.5 Hz, 1H), 8.18-8.24 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 42.7, 43.4, 44.1, 58.6, 110.2, 122.9, 125.0, 125.4, 126.3, 126.8, 126.9, 127.4,

127.5, 128.0, 128.4, 128.9, 129.1, 129.9, 131.8, 135.0, 135.1, 140.9, 143.0, 143.2, 177.7, 195.8; FTIR (KBr) 3066, 2952, 1715, 1684, 1606, 1465, 1295, 761 cm⁻¹; HRMS (m/z): [M+H]⁺ calcd for C₂₈H₂₂NO₂S: 436.1371; found: 436.1393.

1-Benzyl-2'-(furan-2-yl)-2',3'-dihydro-4'*H***-spiro[indoline-3,1'-naphthalene]-2,4'-dione (3t):** 109 mg, 52% yield; 85:15 dr (*anti:syn*) (93:07 dr from the ¹H NMR of purified compound); Major: white solid; mp 173-175 °C; R_f 0.41 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 3.28 (dd, *J* = 18.0, 5.0 Hz, 1H), 3.39 (dd, *J* = 18.0, 12.0 Hz, 1H), 4.26 (dd, *J* = 12.0, 5.0 Hz, 1H), 4.88-

4.98 (m, 2H), 5.79 (d, J = 3.5 Hz, 1H), 6.11 (dd, J = 3.5, 1.8 Hz, 1H), 6.70 (d, J = 7.5 Hz, 1H), 6.85 (dd, J = 7.5, 1.2 Hz, 2H), 6.92 (td, J = 7.5, 1.0 Hz, 1H), 7.05 (dd, J = 2.0, 0.5 Hz, 1H), 7.15 (td, J = 7.5, 1.0 Hz, 1H), 7.16-7.20 (m, 2H), 7.24-7.34 (m, 3H), 7.40-7.48 (m, 2H), 8.19-8.28 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 38.4, 41.2, 44.3, 57.2, 107.7, 109.8, 110.2, 125.2, 127.4, 127.5, 127.8, 127.9, 128.4, 128.8, 129.0 (2C), 130.7, 132.1, 134.9, 135.5, 141.8, 142.5, 142.6, 152.5, 177.8, 196.0; FTIR (KBr) 3060, 2915, 1714, 1687, 1608, 1485, 1363, 1295, 739, 700 cm⁻¹; [M+Na]⁺ calcd for C₂₈H₂₁NO₃Na: 442.1419; found: 442.1449.

1-Benzyl-2',6'-diphenyl-2',3'-dihydro-4'H-spiro[indoline-3,1'-

naphthalene]-2,4'-dione (3u): 173 mg, 76% yield; 65:35 dr (*anti:syn*); **Major**: white solid; mp 91-93 °C; R_f 0.42 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 2.99 (dd, J = 18.0, 4.8 Hz, 1H), 3.19 (dd, J =18.0, 13.2 Hz, 1H), 3.75-3.85 (m, 1H), 4.72 (d, J = 15.6 Hz, 1H), 5.27 (d, J =

15.6 Hz, 1H), 5.59 (dd, J = 15.6, 9.2 Hz, 1H), 6.57 (d, J = 15.6 Hz, 1H), 6.76 (d, J = 7.6 Hz, 1H), 6.87-6.94 (m, 3H), 6.98 (td, J = 7.6, 0.8 Hz, 1H), 7.03-7.15 (m, 4H), 7.17-7.27 (m, 6H), 7.42 (td, J = 7.4, 1.6 Hz, 1H), 7.47 (td, J = 7.4, 1.6 Hz, 1H), 8.17-8.22 (m, 1H);¹³C NMR (CDCl₃, 100 MHz) δ 40.2, 44.5, 45.8, 110.2, 122.9, 125.1, 126.1, 126.7, 127.3, 127.4, 127.7, 127.8, 128.0, 128.1, 128.7 (2C), 128.8, 128.9, 130.2, 132.0, 134.1, 134.9, 135.2, 136.4, 142.6, 143.3, 178.3, 196.3; FTIR (KBr) 3030, 2925, 1715, 1687, 1605, 1461, 1357, 1295, 969, 752, 697 cm⁻¹; HRMS (*m*/*z*): [M+Na]⁺ calcd for C₃₂H₂₅NO₂Na: 478.1782; found: 478.1773.

Minor (**3u**'): white solid; mp 147-149 °C; R_f 0.46 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 2.85 (dd, J = 17.0, 4.2 Hz, 1H), 3.64 (dddd, J = 13.8, 7.2, 4.2, 1.0 Hz, 1H), 3.95 (dd, J = 17.0, 13.8 Hz, 1H), 4.66 (d, J = 16.0 Hz, 1H), 5.09 (d, J = 16.0 Hz, 1H), 5.83 (dd, J = 15.6, 7.4 Hz, 1H), 6.26 (d, J = 15.6 Hz, 1H), 6.61-6.67 (m, 1H), 6.74 (d, J = 7.6 Hz, 1H), 6.95-7.06 (m, 4H), 7.10-7.28 (m, 9H), 7.36-7.47 (m, 2H), 8.20-8.25 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 38.8, 44.2, 46.2, 56.2, 109.5, 123.6, 124.1, 126.1, 126.5, 127.2, 127.6, 127.8, 128.0, 128.4, 128.7, 128.9, 129.0, 132.6, 133.0, 133.5, 134.0, 135.5, 136.5, 142.4, 143.8, 175.7, 196.9; FTIR (KBr) 3029, 2929, 1706, 1689,

1609, 1490, 1357, 1295, 694 cm⁻¹; HRMS (m/z): [M+H]⁺ calcd for C₃₂H₂₆NO₂: 456.1963; found: 456.1968.

1-Benzyl-6'-bromo-2'-phenyl-2',3'-dihydro-4'*H***-spiro[indoline-3,1'-naphthalene]-2,4'-dione (3v):** 198 mg, 78% yield; 90:10 dr (*anti:syn*); Major: white solid; mp 168-170 °C; R_f 0.54 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 3.01 (dd, *J* = 18.0, 4.2 Hz, 1H), 3.51 (dd, *J* = 18.0, 14.4 Hz, 1H), 4.19 (dd, *J* = 14.4, 4.2 Hz, 1H), 4.57 (d, *J* = 15.8 Hz,

1H), 4.88 (d, J = 15.8 Hz, 1H), 6.49 (d, J = 8.0 Hz, 1H), 6.64 (d, J = 6.8 Hz, 2H), 6.76-6.87 (m, 3H), 7.00 (t, J = 7.6 Hz, 1H), 7.05-7.28 (m, 8H), 7.59 (dd, J = 8.4, 2.0 Hz, 1H), 8.34 (d, J = 2.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 40.5, 44.1, 47.3, 58.4, 110.3, 122.7, 122.9, 125.1, 126.8, 127.5, 128.1, 128.4, 128.6, 128.9, 129.2, 129.3, 129.6, 130.8, 133.5, 135.0, 137.3, 137.7, 142.3, 142.6, 177.5, 195.6; FTIR (KBr) 3060, 2946, 1713, 1689, 1608, 1468, 1353, 1293, 736, 701 cm⁻¹; HRMS (*m*/*z*): [M+Na]⁺ calcd for C₃₀H₂₂NO₂NaBr: 530.0732; found: 530.0726.

1-Benzyl-2',6'-diphenyl-2',3'-dihydro-4'*H***-spiro[indoline-3,1'-naphthalene]-2,4'-dione (3w):** 210 mg, 83% yield; 90:10 dr (*anti:syn*); Major: white solid; mp 196-198 °C; R_f 0.48 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 3.05 (dd, *J* = 18.0, 4.4 Hz, 1H), 3.59 (dd, *J* = 18.0, 14.4 Hz, 1H), 4.27 (dd, *J* = 14.4, 4.4 Hz, 1H), 4.61 (d, *J* = 15.8 Hz,

1H), 4.93 (d, J = 15.8 Hz, 1H), 6.50 (d, J = 8.0 Hz, 1H), 6.63-6.70 (m, 2H), 6.88 (d, J = 8.0 Hz, 2H), 7.00 (d, J = 8.0 Hz, 2H), 7.08-7.29 (m, 8H), 7.35-7.52 (m, 3H), 7.58-7.66 (m, 2H), 7.73 (dd, J = 8.0, 2.0 Hz, 1H), 8.46 (d, J = 2.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 40.8, 44.1, 47.5, 58.6, 110.2, 122.8, 125.2, 126.3, 126.8, 127.2, 127.5, 128.0, 128.1, 128.4, 128.7, 128.9, 129.0, 129.1, 130.1, 132.3, 133.5, 135.0, 137.6, 139.6, 141.3, 142.3, 142.6, 177.9, 196.9; FTIR (KBr) 3057, 2894, 1715, 1685, 1608, 1486, 1359, 1266, 756, 701 cm⁻¹; HRMS (*m*/*z*): [M+H]⁺ calcd for C₃₆H₂₈NO₂: 506.2120; found: 506.2137.

1-Benzyl-6'-phenyl-6',7'-dihydro-8'*H***-spiro[indoline-3,5'-naphtho[2,3***d***][1,3]dioxole]-2,8'-dione (3x):** 147 mg, 62% yield; 88:12 dr (*anti:syn*); Major: white solid; mp 223-225 °C; R_f 0.35 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 2.93 (dd, *J* = 18.0, 4.2 Hz, 1H), 3.46 (dd, *J* = 18.0, 14.2 Hz, 1H), 4.18 (dd, *J* = 14.4, 4.2 Hz, 1H), 4.55 (d, *J* = 16.0 Hz,

1H), 4.88 (d, J = 16.0 Hz, 1H), 5.98 (d, J = 14.2 Hz, 1H), 5.99 (d, J = 14.2 Hz, 1H), 6.28 (s, 1H), 6.46 (d, J = 8.0 Hz, 1H), 6.62 (d, J = 6.5 Hz, 2H), 6.83 (d, J = 7.5 Hz, 2H), 7.00 (td, J = 7.5, 1.0 Hz, 1H), 7.05-7.27 (m, 8H) 7.63 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 40.3, 44.0, 47.6, 58.9, 102.2, 106.6, 106.7, 110.2, 122.8, 125.1, 126.7, 127.4, 127.5, 127.9, 128.3, 128.6, 128.8, 129.0, 129.9, 135.0, 137.6, 140.2, 142.5, 148.3, 153.2, 177.8, 195.1; FTIR (KBr) 3059, 2904, 1713, 1674, 1611, 1483,

1363, 1295, 1268, 1038, 736, 701 cm⁻¹; HRMS (m/z): [M+H]⁺ calcd for C₃₁H₂₄NO₄: 474.1705; found: 474.1724.

1-Benzyl-5-methyl-2'-phenyl-2',3'-dihydro-4'*H***-spiro[indoline-3,1'-naphthalene]-2,4'-dione (3y):** 160 mg, 72% yield; 91:09 dr (*anti:syn*); Major: white solid; mp 194-196 °C; R_f 0.43 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 2.25 (s, 3H), 3.00 (dd, *J* = 18.0, 4.2 Hz, 1H), 3.55 (dd, *J* = 18.0, 14.4 Hz, 1H), 4.22 (dd, *J* = 14.4, 4.2 Hz, 1H), 4.55 (d, *J* = 16.0 Hz, 1H),

4.88 (d, J = 16.0 Hz, 1H), 6.36 (d, J = 8.4 Hz, 1H), 6.62 (d, J = 6.4 Hz, 2H), 6.86 (d, J = 7.2 Hz, 2H), 6.89-6.96 (m, 3H), 7.09-7.28 (m, 6H), 7.44 (td, J = 7.6, 1.4 Hz, 1H), 7.50 (td, J = 7.6, 1.4 Hz, 1H), 8.23 (dd, J = 7.8, 1.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 21.3, 40.7, 44.0, 47.4, 58.9, 109.9, 125.8, 126.7, 127.4 (2C), 127.9, 128.0, 128.3, 128.4, 128.7, 128.8, 129.3, 130.1, 131.9, 132.3, 135.0, 135.2, 137.8, 140.2, 143.8, 177.8, 197.1; FTIR (KBr) 3060, 3032, 2915, 1712, 1685, 1495, 1349, 1294, 736, 700 cm⁻¹; HRMS (m/z): [M+Na]⁺ calcd for C₃₁H₂₅NO₂Na: 466.1783; found: 466.1763.

1-Benzyl-2',5-diphenyl-2',3'-dihydro-4'*H***-spiro[indoline-3,1'-naphthalene]-2,4'-dione (3z):** 200 mg, 79% yield; 90:10 dr (*anti:syn*); Major: white solid; mp 169-171 °C; R_f 0.44 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 3.07 (dd, J = 18.0, 4.5 Hz, 1H), 3.60 (dd, J = 18.0, 14.0 Hz, 1H), 4.26 (dd, J = 14.0, 4.5 Hz, 1H), 4.64 (d, J = 16.0 Hz, 1H), 4.91 (d, J = 16.0 Hz, 1H),

6.55 (d, J = 8.5 Hz, 1H), 6.69 (d, J = 8.5 Hz, 2H), 6.90 (d, J = 7.5 Hz, 2H), 6.95 (dd, J = 7.2, 0.8 Hz, 1H), 7.12 (t, J = 7.7 Hz, 2H), 7.15-7.33 (m, 6H), 7.35-7.44 (m, 5H), 7.46 (td, J = 7.5, 1.2 Hz, 1H), 7.51 (td, J = 7.5, 1.2 Hz, 1H), 8.25 (dd, J = 8.0, 1.5 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 40.7, 44.2, 47.5, 58.9, 110.4, 123.9, 126.8, 126.9, 127.4, 127.5, 127.6, 127.8, 128.0, 128.1, 128.5 (2C), 128.7, 128.9, 129.0, 130.8, 132.0, 135.0, 135.1, 136.2, 137.7, 140.3, 142.0, 143.3, 177.9, 196.8; FTIR (KBr) 3028, 2904, 1714, 1685, 1612, 1482, 1294, 1348, 736, 699 cm⁻¹; HRMS (*m/z*): [M+H]⁺ calcd for C₃₆H₂₈NO₂: 506.2120; found: 506.2100.

1-Benzyl-5-fluoro-2'-phenyl-2',3'-dihydro-4'*H***-spiro[indoline-3,1'-naphthalene]-2,4'-dione (3aa)** 141 mg, 63% yield; 89:11 dr (*anti:syn*); Major: white solid; mp 166-168 °C; R_f 0.43 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 3.03 (dd, J = 18.0, 4.5 Hz, 1H), 3.49 (dd, J = 18.0, 14.5 Hz, 1H), 4.24 (dd, J = 14.5, 4.5 Hz, 1H), 4.57 (d, J = 16.0 Hz, 1H), 4.88 (d, J = 14.5, 4.5 Hz, 1H), 4.57 (d, J = 16.0 Hz, 1H), 4.88 (d, J = 18.0, 4.5 Hz, 1H), 4.88 (d, J = 18.0, 4.5 Hz, 1H), 4.88 (d, J = 18.0, 4.5 Hz, 1H), 4.88 (d, J = 16.0 Hz, 1H), 4.88 (d, J

16.0 Hz, 1H), 6.35-6.41 (m, 1H), 6.62 (d, J = 7.0 Hz, 2H), 6.82 (td, J = 8.7, 2.7 Hz, 1H), 6.86 (dd, J = 8.0, 2.5 Hz, 1H), 6.88-6.93 (m, 3H), 7.09-7.29 (m, 6H), 7.47 (td, J = 7.5, 1.5 Hz, 1H), 7.51 (td, J = 7.5, 1.5 Hz, 1H), 8.24 (dd, J = 7.5, 1.5 Hz, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 40.5, 44.2, 47.4, 59.2, 110.8 (d, J = 9 Hz), 113.2 (d, J = 25 Hz), 115.3 (d, J = 24 Hz), 126.7 (2C), 127.5 (d, J = 30 Hz), 128.1, 128.2, 128.5, 128.6, 128.7, 128.9, 131.7 (d, J = 8 Hz), 131.9, 134.7, 135.1, 137.4, 138.5, 142.8,

159.0 (d, J = 241 Hz), 177.7, 196.4; FTIR (KBr) 3057, 2926, 1715, 1688, 1601, 1489, 1345, 1294, 737, 702 cm⁻¹; HRMS (m/z): [M+H]⁺ calcd for C₃₀H₂₃NO₂F: 448.1713; found: 448.1692.

1-Benzyl-5-chloro-2'-phenyl-2',3'-dihydro-4'*H***-spiro[indoline-3,1'-naphthalene]-2,4'-dione (3ab)** 162 mg, 70% yield; 92:08 dr (*anti:syn*); Major: white solid; mp 189-191 °C; R_f 0.47 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 3.03 (dd, J = 18.0, 4.0 Hz, 1H), 3.50 (dd, J = 18.0, 14.4 Hz, 1H), 4.22 (dd, J = 14.4, 4.0 Hz, 1H), 4.57 (d, J = 15.6 Hz, 1H), 4.86 (d, J = 12.0 Hz, 1H), 4.22 (dd, J = 14.4, 4.0 Hz, 1H), 4.57 (d, J = 15.6 Hz, 1H), 4.86 (d, J = 12.0 Hz, 1H

15.6 Hz, 1H), 6.38 (d, J = 8.5 Hz, 1H), 6.62 (d, J = 7.2 Hz, 2H), 6.85-6.92 (m, 3H), 7.04-7.30 (m, 8H), 7.44-7.55 (m, 2H), 8.24 (dd, J = 7.6, 1.4 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 40.5, 44.2, 47.4, 59.0, 111.1, 125.4, 126.7 (2C), 127.3, 127.7, 128.1, 128.2, 128.5 (2C), 128.6, 128.7, 129.0 (2C), 131.9, 134.6, 135.1, 137.3, 141.2, 142.7, 177.5, 196.4; FTIR (KBr) 3066, 2956, 1717, 1687, 1604, 1483, 1343, 1294, 738, 698 cm⁻¹; HRMS (m/z): [M+Na]⁺ calcd for C₃₀H₂₂NO₂NaCl: 486.1237; found: 486.1225.

1-Benzyl-5-bromo-2'-phenyl-2',3'-dihydro-4'H-spiro[indoline-3,1'naphthalene]-2,4'-dione (3ac): 188 mg, 74% yield; 88:12 dr (*anti:syn*); Major: white solid; mp 196-198 °C; R_f 0.47 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 3.03 (dd, J = 18.0, 4.4 Hz, 1H), 3.50 (dd, J = 18.0, 14.4 Hz, 1H), 4.22 (dd, J = 14.4, 4.4 Hz, 1H), 4.57 (d, J = 16.0 Hz, 1H), 4.85 (d, J =

16.0 Hz, 1H), 6.33 (d, J = 8.4 Hz, 1H), 6.62 (d, J = 6.8 Hz, 2H), 6.84-6.92 (m, 3H), 7.10-7.29 (m, 8H), 7.44-7.55 (m, 2H), 8.22-8.28 (m, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 40.5, 44.1, 47.5, 58.9, 111.6, 115.4, 126.7, 127.4, 127.7, 128.0, 128.1, 128.2, 128.5, 128.6, 128.7, 129.0, 131.8, 131.9, 132.2, 134.5, 135.1, 137.3, 141.7, 142.7, 177.4, 196.4; FTIR (KBr) 3058, 2911, 1718, 1686, 1602, 1480, 1344, 1295, 741, 699 cm⁻¹; HRMS (m/z): [M+Na]⁺ calcd for C₃₀H₂₂NO₂NaBr: 530.0732; found: 530.0745.

2.2. Procedure for one-synthesis of α -tetralone-fused spirooxindoles 3 from isatin

To a rapidly stirred suspension of tosylhydrazide (0.3 mmol) in CH₃CN (1 mL), *N*-benzylisatin (0.3 mmol) was added and the mixture was stirred at 60 °C for 1 h. After brought into room temperature, *E*-2'-iodochalcone **1** (0.2 mmol), $[Pd(allyl)Cl]_2$ (0.02 mmol), PPh₃ (0.06 mmol), TBAB 0.05 mmol), DIPEA (0.6 mmol) and CH₃CN (1 mL) were successively added. The reaction tube was then immersed in a 50 °C pre-heated oil bath with stirring (500 rpm) till complete consumption of 2'-iodochalcone. Upon cooling down to room temperature, the solvent was removed under reduced pressure. Water (approx.10 mL) was added to the reaction mixture and extracted with dichloromethane (3×5 mL). Brine wash (1×5 mL) was given to the combined organic extractions and dried over anhydrous Na₂SO₄. The dr was determined by ¹H NMR analysis of the crude reaction

mixture and was subsequently purified by silica gel column separation using hexanes and ethylacetate mixture (8:2, v/v) as mobile phase afforded the corresponding spirooxindoles **3**.

3. General procedure for the synthesis of spiroacenaphthylenes 7

Under open atmosphere, *E*-2'-iodochalcone **1** (167 mg, 0.5 mmol), acenaphthenequinone-derived tosylhydrazones **6** (263 mg, 0.75 mmol), [Pd(allyl)Cl]₂ (18.5 mg, 0.05 mmol), PPh₃ (39.5 mg, 0.15 mmol), TBAB (40 mg, 0.125 mmol) and DIPEA (262 μ L, 1.5 mmol) were successively added to oven-dried reaction tube. CH₃CN (3 mL) was added and closed with a glass-stopper. The reaction tube was then immersed in a 50 °C pre-heated oil bath with stirring (500 rpm) till complete consumption of 2'-iodochalcone. Upon cooling down to room temperature, the solvent was removed under reduced pressure. Water (approx.10 mL) was added to the reaction mixture and extracted with dichloromethane (3×5 mL). Brine wash (1×5 mL) was given to the combined organic extractions and dried over anhydrous Na₂SO₄. The dr was determined by ¹H NMR analysis of the crude reaction mixture and extracted with generative and extracted with generative and was subsequently purified by silica gel column separation using hexanes and ethylacetate mixture (8:2, v/v) as mobile phase afforded the corresponding spiroacenaphthylenes **7**.

2'-Phenyl-2',3'-dihydro-2*H*,**4'***H*-**spiro**[acenaphthylene-1,1'-naphthalene]-**2,4'-dione (7a):** 135 mg, 72% yield; 80:20 dr (*anti:syn*) (80:20 dr from the ¹H NMR of purified compound); Major: white solid; mp 186-188 °C; R_f 0.46 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 500 MHz) δ 3.10 (dd, *J* = 18.0, 4.2 Hz, 1H), 3.60 (dd, *J* = 18.0, 13.0 Hz, 1H), 4.24 (dd, *J* = 13.0, 4.2 Hz, 1H),

6.63-6.69 (m, 2H), 6.73 (dd, J = 8.0, 1.0 Hz, 1H), 6.78-6.90 (m, 3H), 7.23 (d, J = 7.0 Hz, 1H), 7.37 (dd, J = 7.5, 1.5 Hz, 1H), 7.42 (td, J = 7.5, 1.5 Hz, 1H), 7.52-7.63 (m, 2H), 7.79-7.83 (m, 2H), 7.99 (d, J = 8.0 Hz, 1H), 8.24-8.29 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 41.1, 47.7, 63.1, 122.2, 122.4, 125.0, 127.4, 127.6, 127.8, 128.0, 128.1, 128.2, 128.3, 128.4, 130.9, 131.9, 132.5, 133.4, 134.6, 138.1, 139.9, 142.1, 144.4, 197.2, 205.8; FTIR (KBr) 3060, 2952, 1719, 1686, 1451, 1598, 1294, 764, 702 cm⁻¹; HRMS (*m*/*z*): [M+H]⁺ calcd for C₂₇H₁₉O₂: 375.1385; found: 375.1380.

2'-(*o***-tolyl)-2',3'-dihydro-2***H***,4'***H***-spiro[acenaph-thylene-1,1'-naphthalene]-2,4'-dione (7b):** 115 mg, 59% yield; 85:15 dr (*anti:syn*) (93:07 dr from the ¹H NMR of purified compound); Major: white solid; mp 143-145 °C; R_f 0.49 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 2.16 (s, 3H), 2.81 (dd, *J* = 17.6, 4.0 Hz, 1H), 4.01 (dd, *J* = 17.6, 14.4 Hz, 1H), 4.57 (dd, *J* = 14.4, 4.0 Hz, 1H), 6.45 (d, *J* = 8.0 Hz, 1H), 6.64-6.76 (m, 3H), 7.15 (d, *J* = 7.6

Hz, 1H), 7.26-7.32 (m, 1H), 7.42 (t, J = 7.6 Hz, 1H), 7.48 (d, J = 7.2 Hz, 1H), 7.59 (t, J = 7.6 Hz, 1H), 7.67 (t, J = 7.6 Hz, 1H), 7.77 (d, J = 8.4 Hz, 1H), 7.93 (d, J = 6.8 Hz, 1H), 7.99 (d, J = 8.0 Hz, 1H), 8.29 (d, J = 8.0 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 20.0, 41.6, 41.9, 62.5, 122.5, 122.8,

125.0, 125.4, 126.4, 127.1, 127.8, 127.9, 128.1, 128.4, 128.5, 130.6, 130.9, 132.0, 132.7 (2C), 134.5, 136.6, 137.8, 140.1, 142.3, 144.1, 197.5, 204.6; FTIR (KBr) 3018, 2923, 1713, 1682, 1598, 1462, 1341, 1294, 785, 726 cm⁻¹; HRMS (m/z): [M+Na]⁺ calcd for C₂₈H₂₀O₂Na: 411.1361; found: 411.1359.

2'-(3-Fluorophenyl)-2',3'-dihydro-2H,4'H-spiro[acenaph-thylene-1,1'naphthalene]-2,4'-dione (7c): 122 mg, 62% yield; 87:13 dr (*anti:syn*); Major: white solid; mp 208-210 °C; R_f 0.41 (20% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 3.09 (dd, J = 17.6, 3.8 Hz, 1H), 3.55 (dd, J = 17.6, 13.6 Hz, 1H), 4.23 (dd, J = 13.6, 3.8 Hz, 1H), 6.28-6.36 (m, 1H),

6.50 (d, J = 7.6 Hz, 1H), 6.57 (t, J = 8.2 Hz, 1H), 6.73 (d, J = 7.6 Hz, 1H), 6.76-6.86 (m, 1H), 7.22-7.28 (m, 1H), 7.34-7.46 (m, 2H), 7.57 (t, J = 7.6 Hz, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.78-7.89 (m, 2H), 8.03 (d, J = 8.4 Hz, 1H), 8.25 (d, J = 7.2 Hz, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 40.9, 47.3, 62.9, 114.4 (d, J = 21 Hz), 115.2 (d, J = 22 Hz), 122.3, 122.4, 124.3 (d, J = 3 Hz), 125.2, 127.8, 128.0, 128.2, 128.5(2C), 129.3 (d, J = 8 Hz), 130.9, 132.2, 132.4, 133.2, 134.7, 139.5, 140.7 (d, J = 7 Hz), 142.1, 144.2, 162.0 (d, J = 245 Hz), 196.7, 205.5; FTIR (KBr) 3029, 2968, 1718, 1688, 1591, 1488, 1342, 1294, 782 cm⁻¹; HRMS (m/z): [M+Na]⁺ calcd for C₂₇H₁₇O₂FNa: 415.1110; found: 415.1108.

4.0 Synthetic transformations of product 3b

4.1 Procedure for synthesis of 8:

The compound **3b** (43 mg, 0.1 mmol) was taken in oven dried 10 mL RB flask and dissolved in 1 mL of EtOH. NH₂OH.HCl (0.5 mmol) and sodium acetate (0.4 mmol) were added successively and stirred at rt till complete consumption of **3b** as monitored by TLC. After 2 h, solvent was removed under vaccum and the resulting crude product was purified by silica gel column chromatography using hexanes and ethylacetate mixture (7:3, v/v) afforded pure oxime **8**.

1-benzyl-4'-(hydroxyimino)-2'-phenyl-3',4'-dihydro-2'H-spiro[indoline-3,1'-naphthalen]-2-one (8): 43 mg, 96% yield; white solid; mp 159-161 °C; R_f 0.61 (30% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 3.32 (dd, J = 18.8, 14.0 Hz, 1H), 3.49 (dd, J = 18.8, 5.2 Hz, 1H), 3.89 (dd, J = 14.0, 5.2 Hz, 1H), 4.51 (d, J = 16.0 Hz, 1H), 4.96 (d, J = 16.0 Hz, 1H), 6.45 (d, J = 8.0

Hz, 1H), 6.56 (d, J = 6.8 Hz, 2H), 6.84-6.92 (m, 3H), 6.98 (td, J = 7.6, 1.0 Hz, 1H), 7.05-7.19 (m, 7H), 7.21-7.35 (m, 3H), 8.05-8.12 (m, 1H), 8.55 (br s, 1H); ¹³C NMR (CDCl₃, 100 MHz) δ 27.1, 43.9, 45.9, 58.8, 109.9, 122.8, 124.8, 125.1, 126.7, 127.1, 127.3, 127.8, 128.0, 128.3, 128.6, 128.8 (2C), 130.0, 130.5, 130.7, 135.2, 138.6, 139.3, 142.4, 154.7, 178.2; FTIR (KBr) 3483, 3014, 2883, 1605, 1702, 1455, 1352, 959, 756 cm⁻¹; HRMS (m/z): $[M+H]^+$ calcd for C₃₀H₂₅N₂O₂: 445.1916; found: 445.1910.

4.2 Procedure for synthesis of 9:

The compound **3b** (43 mg, 0.1 mmol) was taken in oven dried 10 mL RB flask and dissolved in 1 mL of MeOH. The solution was brought to 0 °C by means of ice-bath, then NaBH₄ (0.15 mmol) was added in two portions and stirred at same temperature for 10 mins led to the completion of reaction (TLC). Water was added slowly to quench the reaction and extracted with dichloromethane (3×5 mL). Brine wash (1×5 mL) was given to the combined organic extractions and dried over anhydrous Na₂SO₄. The dr was determined by ¹H NMR analysis of the crude reaction mixture, and was subsequently purified by silica gel column separation using hexanes and ethylacetate mixture (7:3, v/v) as mobile phase afforded the corresponding alcohol **9**.

1-Benzyl-4'-hydroxy-2'-phenyl-3',4'-dihydro-2'*H*-spiro[indoline-3,1'naphthalen]-2-one (9): 42 mg, 97% yield; \geq 95:05 dr; white solid; mp 165-167 °C; R_f 0.36 (30% ethyl acetate in hexanes); ¹H NMR (CDCl₃, 400 MHz) δ 2.38-2.50 (m, 2H), 2.65-2.78 (m, 1H), 3.81 (dd, *J* = 13.6, 2.0 Hz, 1H), 4.69 (d, *J* = 15.8 Hz, 1H), 4.79 (d, *J* = 15.8 Hz, 1H), 5.22 (dd, *J* = 10.4, 6.4 Hz,

1H), 6.39 (d, J = 7.6 Hz, 1H), 6.61 (dd, J = 7.6, 0.8 Hz, 1H), 6.73-6.80 (m, 2H), 6.86 (d, J = 7.2 Hz, 2H), 6.94 (td, J = 7.6, 0.8 Hz, 1H), 7.00-7.07 (m, 3H), 7.09-7.21 (m, 5H), 7.24-7.34 (m, 2H), 7.73 (d, J = 8.0 Hz, 1H). ¹³C NMR (CDCl₃, 100 MHz) δ 35.6, 44.0, 46.5, 59.4, 69.2, 109.5, 122.6, 125.7, 127.0, 127.2, 127.4, 127.8, 127.9, 128.0 (2C), 128.2, 128.4, 128.6, 128.8, 133.5, 135.4, 136.5, 139.3, 1397, 142.3, 179.6; FTIR (KBr) 3404, 3057, 2945, 1696, 1609, 1488, 1364, 1267, 734, 700 cm⁻¹; [M+H]⁺ calcd for C₃₀H₂₆NO₂: 432.1964; found: 432.1948. Relative configuration was determined by NOE and 2D NMR.

Compound **10**: ¹H NMR (CDCl₃, 400 MHz) δ 3.01 (dd, J = 18.0, 4.4 Hz, **0.4H**), 3.48-3.60 (m, **0.75H**), 4.18-4.28 (m, 1H), 4.58 (d, J = 15.8 Hz, 1H), 4.90 (d, J = 15.8 Hz, 1H), 6.43-6.50 (m, 1H), 6.60-6.67 (m, 2H), 6.85 (d, J = 7.6 Hz, 2H), 6.89-6.95 (m, 1H), 6.99 (td, J = 7.6, 0.8 Hz, 1H), 7.06-7.26 (m, 8H), 7.44 (td, J = 7.6, 1.6 Hz, 1H), 7.49 (td, J = 7.6, 1.6 Hz, 1H), 8.19-8.25 (m, 1H).

Compound **11**: ¹H NMR (CDCl₃, 500 MHz) δ 3.01 (dd, J = 18.0, 4.5 Hz, **0.9H**), 3.54 (dd, J = 18.0, 14.5 Hz, **0.38H**), 4.18-4.28 (m, 1H), 4.59 (d, J = 16.0 Hz, 1H), 4.89 (d, J = 16.0 Hz, 1H), 6.45-6.50 (m, 1H), 6.62-6.68 (m, 2H), 6.92 (d, J = 8.0 Hz, 2H), 6.90-6.94 (m, 1H), 6.98 (td, J = 7.5, 1.0 Hz, 1H), 7.07-7.26 (m, 8H), 7.44 (td, J = 7.5, 1.3 Hz, 1H), 7.49 (td, J = 7.5, 1.3 Hz, 1H), 8.23 (dd, J = 7.8, 1.8 Hz, 1H).

5.0 Preliminary asymmetric results^{*a*}

^aReaction condition: 0.2 mmol of **1a**.

6.0 Control experiments

7.0 General procedure for the preparation of 2'-iodochalcone

2'-Iodochalcones 1 were prepared according to our previous reported procedure.¹

7.1. General procedure for the synthesis of isatin-derived N-tosylhydrazone

Isatin-derived N-tosylhydrazone 2 were prepared according to slightly modified reported procedure.²

A solution of $TsNHNH_2$ (1.02 g, 5.5 mmol) in methanol (5 mL) was stirred at 60 °C until the $TsNHNH_2$ was completely dissolved. The mixture was cooled to room temperature and then *N*-benzyl isatin was added in small portions. After 5-10 minutes, a yellow precipitation was observed. Then the

reaction was stirred at 60 °C for about 8 h. The mixture was cooled to 0 °C, and the precipitates was filtered out and washed with cold methanol to afford the pure *N*-tosylhydrazones.

N'-(**1-Benzyl-2-oxoindolin-3-ylidene**)-**4-methylbenzenesulfonohydrazide** (**2a**): Yellow solid; yield 89 %; ¹H NMR (400 MHz, CDCl₃) δ 2.41 (s, 3H), 4.88 (s, 2H), 6.73 (d, *J* = 8.0 Hz, 1H), 7.07 (t, *J* = 7.6 Hz, 1H), 7.19-7.36 (m, 8H), 7.59 (d, *J* = 7.6 Hz, 1H), 7.90 (d, *J* = 8.4 Hz, 2H), 12.5 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.8, 43.4, 110.0, 119.6, 121.4, 123.5, 127.5, 128.0, 128.2, 129.1, 129.9, 131.3, 134.9, 135.2, 135.6, 142.6, 144.7, 161.2.

Compound **6a** was prepared according to the above mentioned procedure and data was in good agreement with the reported literature.³

8.0 Procedure for the synthesis of α-deuterated 2'-iodochalcone

A reported literature procedure was followed to synthesize $1a-(D_1)^4$

A solution of 2'-iodoacetophenone (1.0 mmol), pyrrolidine (0.1 mmol) and D_2O (99% D, 1.5 mL) was stirred at room temperature for 60 h under nitrogen. The reaction mixture was concentrated under vacuum to get crude D_3 -2'-iodoacetophenone which was taken to next step without further purifications.

 D_3 -2'-Iodoacetophenone (230 mg, 0.93 mmol) was dissolved in CD₃OD (1.5 mL) which was cooled to 0 °C. A solution of NaOH (55 mg, 1.39 mmol) in D₂O (0.2 mL) was added followed by the slow addition of benzaldehyde (94 µL, 0.93 mmol). The reaction mixture was then allowed to warm to room temperature. After 30 min, solvents were removed under vacuum and the crude material was purified by short pad of silica gel column chromatography (hexane/EtOAc 9:1 v/v) to yield the desired product D₁-2'-iodochalcone (90% D-atom) as yellow semi-solid (78% yield).

9. References:

- 1. Arunprasath, D.; Muthupandi, P.; Sekar, G. Org. Lett. 2015, 17, 5448-5451.
- 2. Marti, C.; Carreira, E. M. J. Am. Chem. Soc. 2005, 127, 11505-11515.
- 3. McMahon, R. J.; Chapman, O. L.; Hayes, R. A.; Hess, T. C.; Krimmer, H. P. J. Am. Chem. Soc. 1985, 107, 7597-606.

4. Zhan, M.; Zhang, T.; Huang, H.; Xie, Y.; Chen, Y. J. Labelled Compd. Radiopharm. 2014, 57, 533-539.

10. ¹H and ¹³C spectra for all compounds

Figure 1: 400 MHz ¹H-NMR spectrum of **3b** in CDCl₃

Figure 2: 100 MHz ¹³C-NMR spectrum of **3b** in CDCl₃

Figure 3: 400 MHz ¹H-NMR spectrum of **3b'** in CDCl₃

Figure 4: 100 MHz ¹³C-NMR spectrum of **3b'** in CDCl₃

Figure 5: 500 MHz ¹H-NMR spectrum of **3c** in CDCl₃

Figure 6: 125 MHz ¹³C-NMR spectrum of **3c** in CDCl₃

Figure 7: 400 MHz ¹H-NMR spectrum of **3d** in CDCl₃

Figure 8: 100 MHz ¹³C-NMR spectrum of **3d** in CDCl₃

Figure 9: 400 MHz ¹H-NMR spectrum of **3e** in CDCl₃

Figure 10: 100 MHz ¹³C-NMR spectrum of **3e** in CDCl₃

Figure 11: 400 MHz ¹H-NMR spectrum of **3f** in CDCl₃

Figure 12: 100 MHz ¹³C-NMR spectrum of **3f** in CDCl₃

Figure 13: 500 MHz ¹H-NMR spectrum of **3g** in CDCl₃

Figure 14: 125 MHz ¹³C-NMR spectrum of **3g** in CDCl₃

Figure 15: 400 MHz ¹H-NMR spectrum of **3h** in CDCl₃

Figure 16: 100 MHz ¹³C-NMR spectrum of **3h** in CDCl₃

Figure 17: 400 MHz ¹H-NMR spectrum of **3i** in CDCl₃

Figure 18: 100 MHz ¹³C-NMR spectrum of **3i** in CDCl₃

Figure 19: 400 MHz ¹H-NMR spectrum of **3j** in CDCl₃

Figure 20: 100 MHz ¹³C-NMR spectrum of **3j** in CDCl₃

Figure 21: 400 MHz ¹H-NMR spectrum of **3k** in CDCl₃

Figure 22: 100 MHz ¹³C-NMR spectrum of **3k** in CDCl₃

Figure 23: 400 MHz ¹H-NMR spectrum of **3l** in CDCl₃

Figure 24: 125 MHz ¹³C-NMR spectrum of **3I** in CDCl₃

Figure 25: 400 MHz ¹H-NMR spectrum of **3m** in CDCl₃

Figure 26: 100 MHz ¹³C-NMR spectrum of **3m** in CDCl₃

Figure 27: 400 MHz ¹H-NMR spectrum of **3n** in CDCl₃

Figure 28: 100 MHz ¹³C-NMR spectrum of **3n** in CDCl₃

Figure 29: 400 MHz ¹H-NMR spectrum of **30** in CDCl₃

Figure 30: 100 MHz ¹³C-NMR spectrum of **30** in CDCl₃

Figure 31: 400 MHz ¹H-NMR spectrum of **3p** in CDCl₃

Figure 32: 100 MHz ¹³C-NMR spectrum of **3p** in CDCl₃

Figure 33: 500 MHz ¹H-NMR spectrum of **3q** in CDCl₃

Figure 34: 125 MHz ¹³C-NMR spectrum of **3q** in CDCl₃

Figure 35: 400 MHz ¹H-NMR spectrum of **3r** in CDCl₃

Figure 36: 100 MHz ¹³C-NMR spectrum of **3r** in CDCl₃

Figure 38: 125 MHz ¹³C-NMR spectrum of **3s** in CDCl₃

Figure 39: 500 MHz ¹H-NMR spectrum of **3t** in CDCl₃

Figure 40: 125 MHz ¹³C-NMR spectrum of **3t** in CDCl₃

Figure 41: 400 MHz ¹H-NMR spectrum of **3u** in CDCl₃

Figure 42: 100 MHz ¹³C-NMR spectrum of **3u** in CDCl₃

Figure 43: 400 MHz ¹H-NMR spectrum of **3u'** in CDCl₃

Figure 44: 100 MHz ¹³C-NMR spectrum of **3u'** in CDCl₃

Figure 45: 400 MHz ¹H-NMR spectrum of **3v** in CDCl₃

Figure 46: 100 MHz ¹³C-NMR spectrum of **3v** in CDCl₃

Figure 47: 400 MHz ¹H-NMR spectrum of **3w** in CDCl₃

Figure 48: 100 MHz ¹³C-NMR spectrum of **3w** in CDCl₃

Figure 49: 500 MHz ¹H-NMR spectrum of **3x** in CDCl₃

Figure 50: 125 MHz ¹³C-NMR spectrum of **3x** in CDCl₃

Figure 51: 400 MHz ¹H-NMR spectrum of **3y** in CDCl₃

Figure 52: 100 MHz ¹³C-NMR spectrum of **3y** in CDCl₃

Figure 53: 500 MHz ¹H-NMR spectrum of **3z** in CDCl₃

Figure 54: 125 MHz ¹³C-NMR spectrum of **3z** in CDCl₃

Figure 55: 500 MHz ¹H-NMR spectrum of **3aa** in CDCl₃

Figure 56: 125 MHz 13 C-NMR spectrum of **3aa** in CDCl₃

Figure 57: 400 MHz ¹H-NMR spectrum of **3ab** in CDCl₃

Figure 58: 100 MHz ¹³C-NMR spectrum of **3ab** in CDCl₃

Figure 59: 400 MHz ¹H-NMR spectrum of **3ac** in CDCl₃

Figure 60: 100 MHz ¹³C-NMR spectrum of **3ac** in CDCl₃

Figure 61: 500 MHz ¹H-NMR spectrum of **7a** in CDCl₃

Figure 62: 125 MHz ¹³C-NMR spectrum of **7a** in CDCl₃

Figure 63: 400 MHz ¹H-NMR spectrum of **7b** in CDCl₃

Figure 64: 100 MHz ¹³C-NMR spectrum of **7b** in CDCl₃

Figure 65: 400 MHz ¹H-NMR spectrum of **7c** in CDCl₃

Figure 66: 100 MHz 13 C-NMR spectrum of **7c** in CDCl₃

Figure 67: 400 MHz ¹H-NMR spectrum of **8** in CDCl₃

Figure 68: 100 MHz ¹³C-NMR spectrum of **8** in CDCl₃

Figure 69: 400 MHz ¹H-NMR spectrum of **9** in CDCl₃

Figure 70: 100 MHz ¹³C-NMR spectrum of **9** in CDCl₃

Figure 71: 400 MHz ¹H-NMR spectrum of **10** in CDCl₃

Figure 72: 500 MHz ¹H-NMR spectrum of **11** in CDCl₃

11. Single crystal XRD data

XRD Data for Compound 3b (CCDC No. 1558658)

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) spiro

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: spiro

Bond precision: C-C = 0.0067 AWavelength=0.71073 Cell: a=10.9070(3) b=11.8602(3) c = 12.5989(3)alpha=114.5329(10) beta=105.8396(10) gamma=100.6194(10) Temperature: 296 K Calculated Reported Volume 1341.35(6) 1341.35(6)Space group P -1 P -1 Hall group -P 1 -P 1 Moiety formula C30 H23 N O2, C H Cl3 ? Sum formula C31 H24 Cl3 N O2 C31 H24 Cl3 N O2 Mr 548.86 548.86 1.359 1.359 Dx,g cm-3 Ζ 2 2 Mu (mm-1) 0.371 0.371 F000 568.0 568.0 F000′ 569.09 h,k,lmax 12,14,14 12,14,14 Nref 4716 4715 0.911,0.942 Tmin,Tmax 0.913,0.943 Tmin' 0.911 Correction method= # Reported T Limits: Tmin=0.913 Tmax=0.943 AbsCorr = MULTI-SCAN Data completeness= 1.000 Theta(max) = 24.998R(reflections) = 0.0801(3627)wR2(reflections) = 0.2135(4715) S = 0.941Npar= 334

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level.
Click on the hyperlinks for more details of the test.

Alert level C PLAT244_ALERT_4_C Low 'Solvent' Ueq as Compared to Neighbors of PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds PLAT906_ALERT_3_C Large K value in the Analysis of Variance PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L= 0.595	C31 0.00673 2.244 2	Check Ang. Check Report
Alert level G PLAT066_ALERT_1_G Predicted and Reported Tmin&Tmax Range Identical PLAT154_ALERT_1_G The s.u.'s on the Cell Angles are Equal (Note) PLAT793_ALERT_4_G The Model has Chirality at C14 (Centro SPGR) PLAT793_ALERT_4_G The Model has Chirality at C15 (Centro SPGR) PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) Still PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density.	? 0.001 R R 51 11	Check Degree Verify Verify % Note Note
<pre>0 ALERT level A = Most likely a serious problem - resolve or expl 0 ALERT level B = A potentially serious problem, consider careful 4 ALERT level C = Check. Ensure it is not caused by an omission o 6 ALERT level G = General information/check it is not something u 2 ALERT type 1 CIF construction/syntax error, inconsistent or mis 1 ALERT type 2 Indicator that the structure model may be wrong or 4 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check</pre>	ain ly r oversig] nexpected sing data deficien	nt

XRD Data for Compound 3b' (CCDC No. 1558659)

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) spiro

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: spiro

Bond precision:	C-C = 0.0023	C-C = 0.0023 A Wavelength=0.71073			
Cell:	a=9.0802(3) alpha=90	b=9.9498(4 beta=98.81) 94(13)	c=24.9306(9) gamma=90	
Temperature:	296 K				
	Calculated		Reported		
Volume	2225.75(14)		2225.75(14	1)	
Space group	P 21/n		P 21/n		
Hall group	-P 2yn		-P 2yn		
Moiety formula	C30 H23 N O2		?		
Sum formula	C30 H23 N O2		C30 H23 N	02	
Mr	429.49		429.49		
Dx,g cm-3	1.282		1.282		
Z	4		4		
Mu (mm-1)	0.080		0.080		
F000	904.0		904.0		
F000′	904.38				
h,k,lmax	10,11,29		10,11,29		
Nref	3900		3899		
Tmin,Tmax	0.980,0.992				
Tmin'	0.980				
Correction method= Not given					
Data completeness= 1.000 Theta(max) = 24.998			3		
R(reflections) =	0.0360(2979)	wR2(ref	elections) =	0.0997(3899)	
S = 1.006	Npa	r= 299			

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level G PLAT793_ALERT_4_G The Model has Chirality at C9 (Centro SPGR) PLAT793_ALERT_4_G The Model has Chirality at C10 (Centro SPGR) PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) Still PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density) R Verify S Verify 50 % Note . 3 Note
<pre>0 ALERT level A = Most likely a serious problem - resolve or ex 0 ALERT level B = A potentially serious problem, consider cares 0 ALERT level C = Check. Ensure it is not caused by an omission 4 ALERT level G = General information/check it is not something</pre>	xplain fully n or oversight g unexpected
0 ALERT type 1 CIF construction/syntax error, inconsistent or r 1 ALERT type 2 Indicator that the structure model may be wrong 1 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check	missing data or deficient

XRD Data for Compound 3x (CCDC No. 1558660)

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) dioxy

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: dioxy

Bond precision:	C-C = 0.0030	А	Wavelength	n=0.71073	
Cell:	a=9.3618(4) alpha=90	b=10.5515(5 beta=96.256	5) 52(19)	c=24.1467(11) gamma=90	
Temperature:	296 K				
	Calculated		Reported		
Volume	2371.03(19)		2371.03(1	_9)	
Space group	P 21/c		P 21/c		
Hall group	-P 2ybc		-P 2ybc		
Moiety formula	C31 H23 N O4		C31 H23 N	1 04	
Sum formula	C31 H23 N O4		C31 H23 N	1 04	
Mr	473.50		473.50		
Dx,g cm-3	1.327		1.326		
Z Mu (mm 1)	4		4		
	0.088		0.088		
F000	992.0		992.0		
rooo h k lmax	11 12 29		11 12 29		
Nrof	11,12,20 A18A		11,12,20 4181		
Tmin Tmax	0 976 0 986		0 976 0 9	986	
Tmin'	0.976		0.970,019		
Correction method= # Reported T Limits: Tmin=0.976 Tmax=0.986 AbsCorr = MULTI-SCAN					
Data completeness= 0.999 Theta(max) = 24.999				99	
R(reflections) =	0.0454(3397)	wR2(ref	lections)=	= 0.1175(4181)	
S = 1.073	Npa	r= 325			

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level	C				
PLAT220_ALERT_2_C	Non-Solvent Resd 1	1 C	Ueq(max)/Ueq(min) Range	3.6	Ratio
PLAT241_ALERT_2_C	High 'MainMol' U	Ueq as	Compared to Neighbors of	01	Check
PLAT241_ALERT_2_C	High 'MainMol' U	Ueq as	Compared to Neighbors of	C28	Check
PLAT242_ALERT_2_C	Low 'MainMol' U	Ueq as	Compared to Neighbors of	C26	Check
PLAT906_ALERT_3_C	Large K value in t	the Ana	alysis of Variance	3.150	Check
PLAT911_ALERT_3_C	Missing # FCF Refl	l Betwe	een THmin & STh/L= 0.595	3	Report

Alert level G	
PLAT066_ALERT_1_G Predicted and Reported Tmin&Tmax Range Identical ?	Check
PLAT398_ALERT_2_G Deviating C-O-C Angle from 120 Deg for O1 106.8	Degree
PLAT398_ALERT_2_G Deviating C-O-C Angle from 120 Deg for O2 105.9	Degree
PLAT793_ALERT_4_G The Model has Chirality at C10 (Centro SPGR) R	Verify
PLAT793_ALERT_4_G The Model has Chirality at C11 (Centro SPGR) R	Verify
PLAT909_ALERT_3_G Percentage of Observed Data at Theta(Max) Still 56	% Note
PLAT978_ALERT_2_G Number C-C Bonds with Positive Residual Density. 9	Note

0 ALERT level A = Most likely a serious problem - resolve or explain 0 ALERT level B = A potentially serious problem, consider carefully 6 ALERT level C = Check. Ensure it is not caused by an omission or oversight 7 ALERT level G = General information/check it is not something unexpected 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 7 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

XRD Data for Compound 7a (CCDC No. 1558661)

checkCIF/PLATON report

Structure factors have been supplied for datablock(s) acenap

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary Interpreting this report

Datablock: acenap

Bond precision: C-C = 0.0049 A Wavelength=0.71073			gth=0.71073
Cell:	a=8.7392(3) alpha=73.1183(16)	b=10.6106(3) beta=78.1739(17)	c=11.8953(4) gamma=66.4494(15)
Temperature:	296 K		<u> </u>
	Calculated	Reporte	ed
Volume	962.60(6)	962.60	(6)
Space group	P -1	P -1	
Hall group	-P 1	-P 1	
Moiety formul	a C27 H18 O2	?	
Sum formula	C27 H18 O2	C27 H18	3 02
Mr	374.41	374.41	
Dx,g cm-3	1.292	1.292	
Z	2	2	
Mu (mm-1)	0.080	0.080	
F000	392.0	392.0	
F000′	392.17		
h,k,lmax	10,12,14	10,12,1	14
Nref	3394	3281	
Tmin,Tmax	0.977,0.987	0.975,0	.987
Tmin'	0.975		
Correction me AbsCorr = MUL	thod= # Reported T TI-SCAN	Limits: Tmin=0.97	75 Tmax=0.987
Data complete	ness= 0.967	Theta(max) = 24	.996
R(reflections)= 0.0706(2529)	wR2(reflections	s)= 0.2232(3281)
S = 1.071 Npar= 262			

The following ALERTS were generated. Each ALERT has the format test-name_ALERT_alert-type_alert-level. Click on the hyperlinks for more details of the test.

Alert level B PLAT230_ALERT_2_B Hirshfeld Test Diff for C6 -- C7 .. 7.3 s.u.

Author Response: This alarm is due to the elongated ADPs of carbon atoms which suggest that these are having high thermal motion. In particular, carbon atoms C6,C7,C8,C10 and C11 in the acenapthylene moiety may be disordered. The crystal data was collected in room temp.

Alert level C

DIFMX02_ALERT_1_C The maximum difference density is > 0.1*ZMAX*0.75		
The relevant atom site should be identified.		
PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full value Low .	0.967	Note
PLAT094_ALERT_2_C Ratio of Maximum / Minimum Residual Density	2.91	Report
PLAT097_ALERT_2_C Large Reported Max. (Positive) Residual Density	0.73	eA-3
PLAT230_ALERT_2_C Hirshfeld Test Diff for 01 C1	5.5	s.u.

Author Response: This alarm is due to the elongated ADPs of carbon atoms which suggest that these are having high thermal motion. In particular, carbon atoms C6,C7,C8,C10 and C11 in the acenapthylene moiety may be disordered. The crystal data was collected in room temp.

PLAT230_ALERT_2_C Hirshfeld Test Diff for C7 -- C8 .. 6.0 s.u.

Author Response: This alarm is due to the elongated ADPs of carbon atoms which suggest that these are having high thermal motion. In particular, carbon atoms C6,C7,C8,C10 and C11 in the acenapthylene moiety may be disordered. The crystal data was collected in room temp.

PLAT230_ALERT_2_C Hirshfeld Test Diff for C10 -- C11 .. 7.0 s.u.

Author Response: This alarm is due to the elongated ADPs of carbon atoms which suggest that these are having high thermal motion. In particular, carbon atoms C6,C7,C8,C10 and C11 in the acenapthylene moiety may be disordered. The crystal data was collected in room temp.

 PLAT340_ALERT_3_C Low Bond Precision on C-C Bonds
 0.00487 Ang.

 PLAT911_ALERT_3_C Missing # FCF Refl Between THmin & STh/L=
 0.595

 113 Report

12. Crystal structures of 3a and 3a'

