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Figure S1. XRD patterns of the as-grown TiO2 nanotube arrays before and after annealing in air at 450，550 and 600 oC for 2

h. The samples obtained by anodic oxidation were amorphous without annealing in air. If the samples annealed in air at

600 oC, the rutile phase appears. In this study, the annealed temperature was 450 oC for obtaining a single-phase anatase

TiO2.
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Figure S2. Effect of sulfite ions on photocurrent density versus potential curves for TiO2 nanotube electrodes. Electrolyte:

(a) 1 M NaOH solution, pH 13.6, (b) phosphate buffer solution, pH 7.0, (c) 0.5 M H2SO4 solution, pH 1.0. Scan rate 20 mV s-1.

The hole scavenger SO3
2- was oxidized more easily than water. In the alkaline and neutral electrolytes, in presence of the

SO3
2-, the photocurrent increased, indicating that the SO3

2- is the effective hole scavenger. However, in acidic solution, after

adding of SO3
2-, the photocurrent decreased slightly due to that the SO3

2- decomposition in strong acid into SO2, probably

affecting the adsorption of H2O on TiO2.
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Figure S3. Effect of hydrogen peroxide on photocurrent density versus potential curves for compact TiO2 plate electrodes.

Electrolyte: (a) 1 M NaOH solution, pH 13.6, (b) phosphate buffer solution, pH 7.0, (c) 0.5 M H2SO4 solution, pH 1.0. Scan

rate 20 mV s-1. The compact TiO2 film was obtained by oxidizing the chemically polished Ti sheets in air at 450 oC for 2 h. In

alkaline solution the hydrogen peroxide makes the saturated photocurrent of the compact TiO2 plate electrodes decrease

dramatically. It indicates that the surface states also exist on the compact TiO2 plate electrode. An obvious difference is

that the saturated photocurrent on compact TiO2 plate electrodes is lower than that on TiO2 nanotube electrodes, due to

the significant difference in their semiconductor-electrolyte contact area. Therefore, we can believe that the H2O2-related

saturated photocurrent decrease is dependent on the surface states of electrodes, independent on the microstructure of

electrodes.
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Figure S4. Impedance diagrams (Nyquist representation) of the TiO2 nanotube electrodes in the dark (a,b) in 1 M NaOH

and (c,d) 0.5 M H2SO4 electrolytes. The solid lines were the fitting curves according to the equivalent circuit. Performing in

potentiostatic conditions, frequencies ranging from 0.1 Hz to 100 KHz, using a 10 mV sinusoidal potential modulation.
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Figure S5. (a) Mott-Schottky plots collected at frequency of 1 kHz for the TiO2 electrode in the dark in different pH

electrolytes. (b) Dependence of initial potential for occurrence of surface states for TiO2 nanotube electrodes on pH of

electrolytes (black line). The dependence of theoretical flat band potential on pH for TiO2 electrode was also shown for

comparison (red line). The theoretical flat band potential should increase by ~59 mV per pH in accord with the Nernst

equation. However, the increase step of initial potential for occurrence of surface states is about 74 mV per pH, probably

resulting from the effect of surface states on the potential-determining ions.
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Figure S6. Cyclic voltammogram of TiO2 nanotube electrodes in (a) 1 M NaOH solution (pH 13.6) with and without H2O2, (b)

0.5 M H2SO4 solution (pH 1.0) with and without H2O2. Cyclic voltammogram of Pt electrode in (c) 1 M NaOH solution (pH

13.6) with and without H2O2, (d) 0.5 M H2SO4 solution (pH 1.0) with and without H2O2. Scan rate 500 mV s-1. The cathodic

current increased dramatically, when adding hydrogen peroxide into 1 M NaOH solution. From Figurea and b, we can know

that the hydrogen peroxide was reduced more easily in alkaline solution than in acidic solution at TiO2 nanotube

electrodes. We also do the experiments at Pt electrode. However the phenomenon at Pt electrode is different with that at

TiO2 nanotube electrodes. From Figure c and d, it seems that hydrogen peroxide shows almost the same reduction

property both in alkaline and acidic solution, indicating that the mechanism of the reduction of H2O2 at Pt and TiO2

nanotube electrodes are very different.



S-8

Table S1.The values of standard electrode potentials are given below in volts relative to the standard hydrogen electrode

Legend: (aq) – aqueous; (s) – solid

Table S2. Fitting parameters obtained by using the equivalent circuit proposed in Figure 4c and d.

Electrolytes
Potential

(V vs .Ag/AgCl)

CPE
Rs

(Ω)

Rs + Rtrap

(Ω)

Rct,bulk

(KΩ)

Rct,trap

(KΩ)Q

(μΩ-1 sn)

n

1 M NaOH

-0.9 1400 0.94 3.02 10.6

-0.7 388 0.93 4.00 13.3

-0.3 7.87 0.96 3.00 367.5

-0.1 6.44 0.98 3.06 2002.3

0 6.21 0.98 3.07 2481.1

0.5 M H2SO4

-0.2 3330 0.98 3.08 20.4

0 1320 0.98 3.11 31.5

0.2 469 0.98 3.40 69.7

0.6 11.1 0.93 2.96 98.7

0.8 6.69 0.98 3.15 1839.2

Oxidant ⇌ Reductant Eo (V)

2 H+ + 2 e− ⇌ H2(g) 0.0000

SO4
2− + 2 H+ + 2 e− ⇌ SO3

2-(aq) +  H2O +0.17

O2(g) + 2 H+ + 2 e− ⇌ H2O2(aq) +0.68

O2(g) + 4 H+ + 4 e− ⇌ 2 H2O +1.229

H2O2(aq) + 2 H+ + 2 e− ⇌ 2 H2O +1.78

https://en.wikipedia.org/wiki/Volt
https://en.wikipedia.org/wiki/Standard_hydrogen_electrode
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