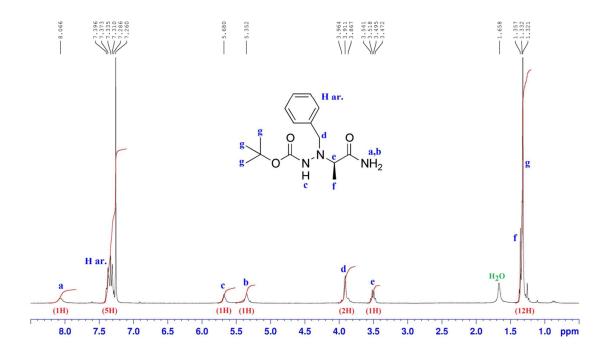
Supporting information

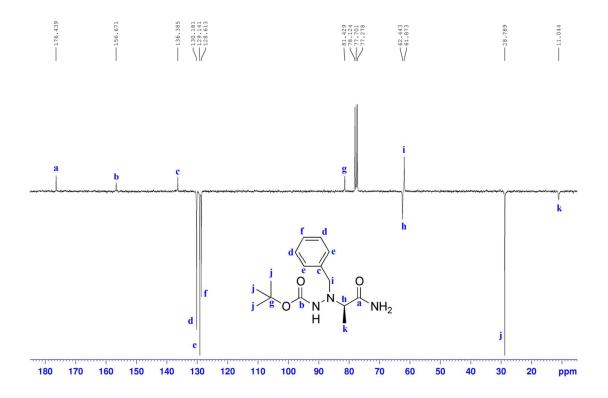
Self-organization ability of chiral N^{α} -substituted, N^{β} -Boc protected α -hydrazinoacetamides in the crystal and solution states.

Ralph-Olivier Moussodia, Eugénie Romero, Emmanuel Wenger, Brigitte Jamart-Grégoire,* and Samir Acherar*

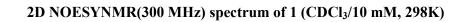
Corresponding author's names and complete contact information:

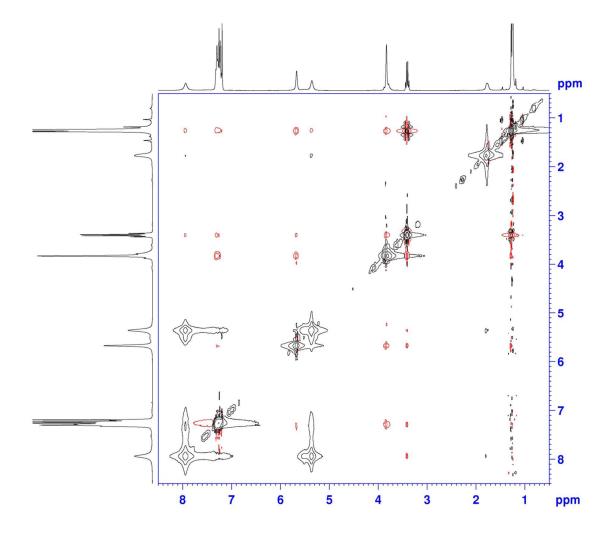

Dr Samir Acherar and Pr Brigitte Jamart-Grégoire

LCPM, Université de Lorraine-CNRS, UMR 7375 1 rue Grandville, BP 20451, 54001 Nancy Cedex, France E-mails: Samir.Acherar@univ-lorraine.fr and Brigitte.Jamart@univ-lorraine.fr Phone numbers: +33 (0)3 72743687 and +33 (0)3 72743901 Fax: +33 (0)3 83 37 99 77

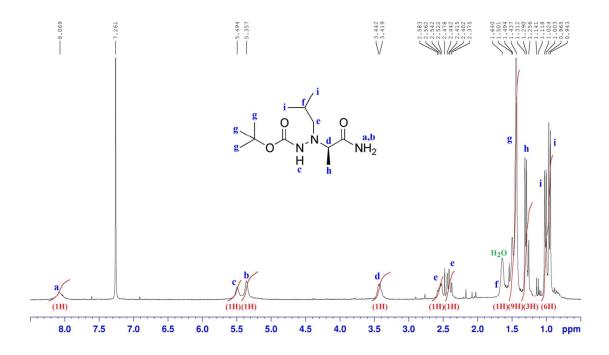

Table of contents

¹ H NMR (300 MHz) spectrum of 1 (CDCl₃/10 mM, 298K)	S2
<i>J</i> mod ¹³ C NMR (75 MHz) spectrum of 1 (CDCI ₃ , 298K)	S2
2D NOESY NMR(300 MHz) spectrum of 1 (CDCI ₃ /10 mM, 298K)	S 3
¹ H NMR (300 MHz) spectrum of 2 (CDCl₃/10 mM, 298K)	S4
<i>J</i> mod ¹³ C NMR (75 MHz) spectrum of 2 (CDCI ₃ , 298K)	S4
2D NOESY NMR(300 MHz) spectrum of 2 (CDCI ₃ /10 mM, 298K)	S5
¹ H NMR (300 MHz) spectrum of 3 (CDCl₃/10 mM, 298K)	S6
<i>J</i> mod ¹³ C NMR (75 MHz) spectrum of 3 (CDCI ₃ , 298K)	S6
2D NOESY NMR(300 MHz) spectrum of 3 (CDCI ₃ /10 mM, 298K)	S 7
General information for X-ray diffraction data	S8
ORTEP view of 1	S10
ORTEP view of 2	S11
ORTEP view of 3	S12

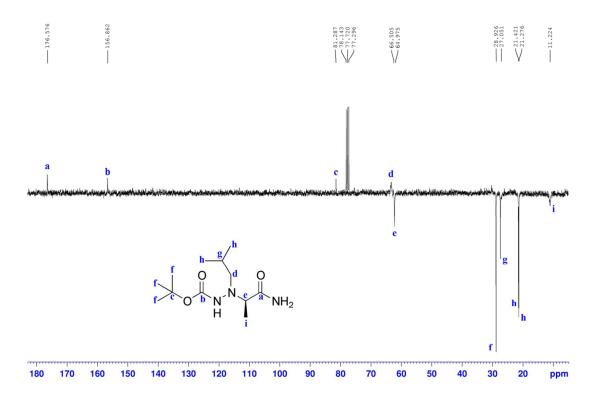

¹H NMR (300 MHz) spectrum of 1 (CDCl₃/10 mM, 298K)

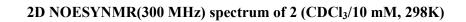


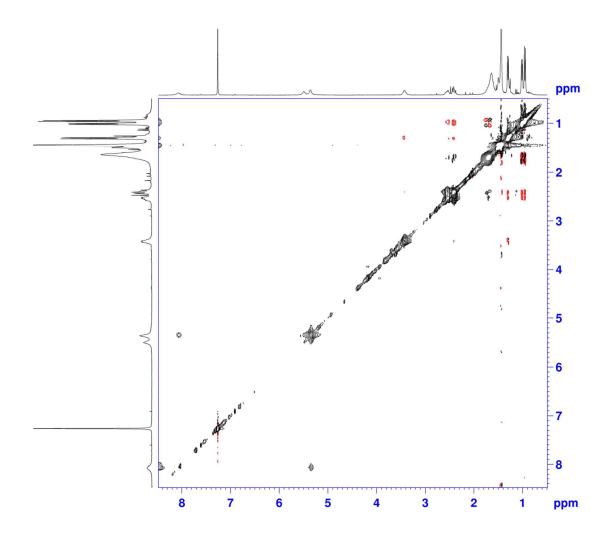
J mod¹³C NMR (75 MHz) spectrum of 1 (CDCl₃, 298K)(C and CH₂ up; CH₃ and CH down)

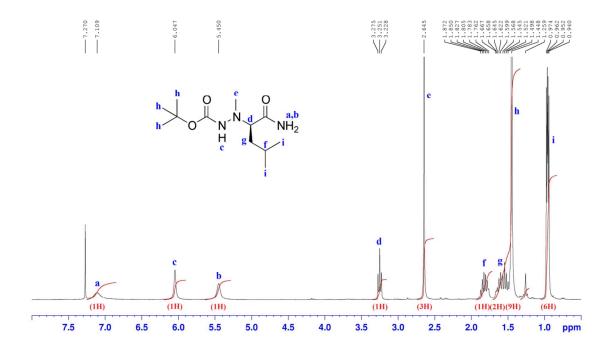


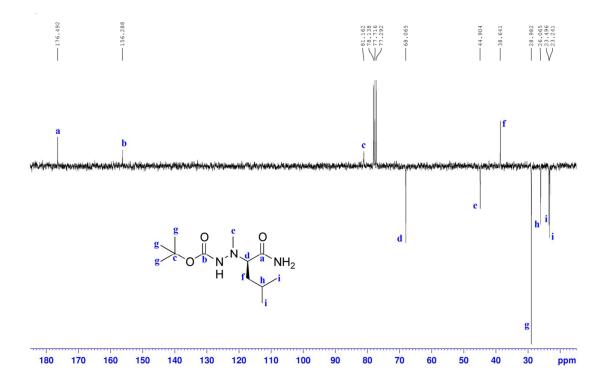
(d and e are interchangeable carbon chemical shift assignments)

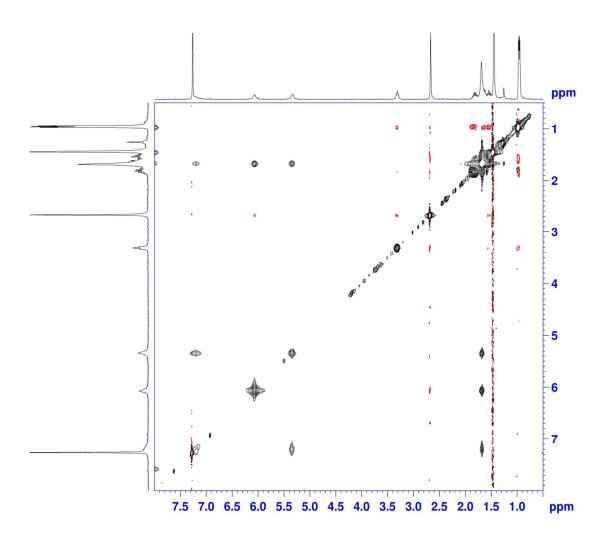





¹H NMR (300 MHz) spectrum of 2 (CDCl₃/10 mM, 298K)


J mod¹³C NMR (75 MHz) spectrum of 2 (CDCl₃, 298K)(C and CH₂ up; CH₃ and CH down)





¹H NMR (300 MHz) spectrum of 3 (CDCl₃/10 mM, 298K)

J mod¹³C NMR (75 MHz) spectrum of 3 (CDCl₃, 298K)(C and CH₂ up; CH₃ and CH down)

2D NOESYNMR(300 MHz) spectrum of 3 (CDCl₃/10 mM, 298K)

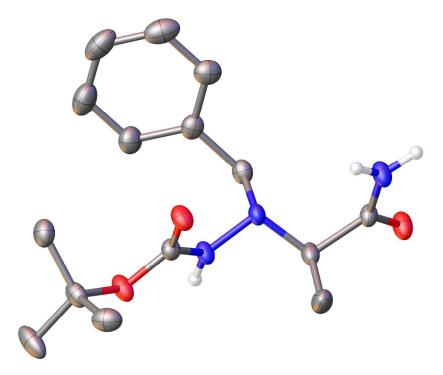
General information for X-ray diffraction data

- ✓ X-ray data from single crystals of compounds **1** and **3** were collected at 110K with a Rigaku Oxford Diffraction SuperNovadiffractometer equipped with a copper microfocus source (λ = 1.54184 Å) and an Atlas CCD detector. Diffraction data were processed using CrysAlis PRO (Rigaku Oxford Diffraction, 2014).
- X-ray data from a single crystal of compound 2 were collected at 100 K with a D8 Venture Bruker-AXS diffractometer equipped with a molybdenum microfocus source (λ = 0.71073 Å) with a PHOTON100 detector.
- ✓ Diffraction data were processed with the Bruker"SAINT"software package.
- ✓ The three structures were solved by direct methods with SIR2014 (M. C. Burla, R. Caliandro, B. Carrozzini, G. L. Cascarano, C. Cuocci, C. Giacovazzo, M. Mallamo, A. Mazzone, G. Polidori*J. Appl. Cryst.* 2015, 48, 306-309).
- ✓ The structures models refinements were conducted using a spherical atom model with ShelXle (C. B. Hübschle, G. M. Sheldrick, B. Dittrich J. Appl. Cryst. 2011, 44, 1281-1284).
- ✓ All X-ray diffraction data for each compound (1-3) are deposited in CCDC database under accession numbers: 1484989, 1484990 and 1484991 respectively.

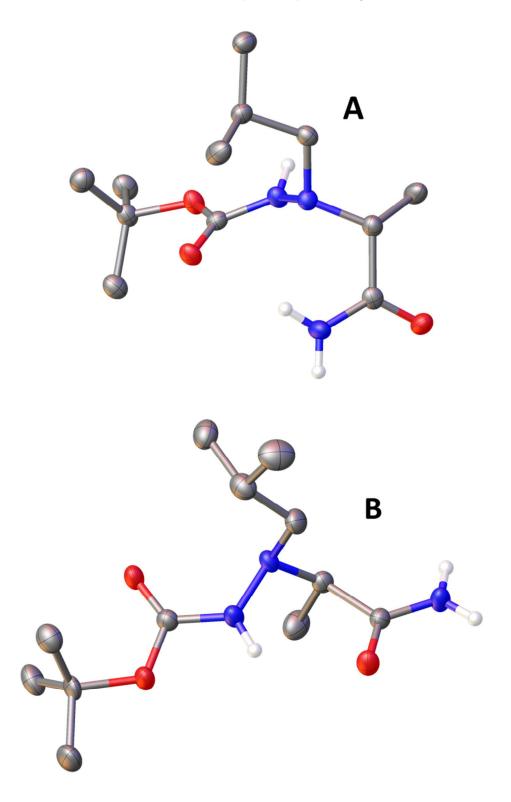
Crystallographic parameters of 1-3

Compound 1-3 were recrystallized from a mixture petroleum ether/dichloromethane, by slow evaporation.

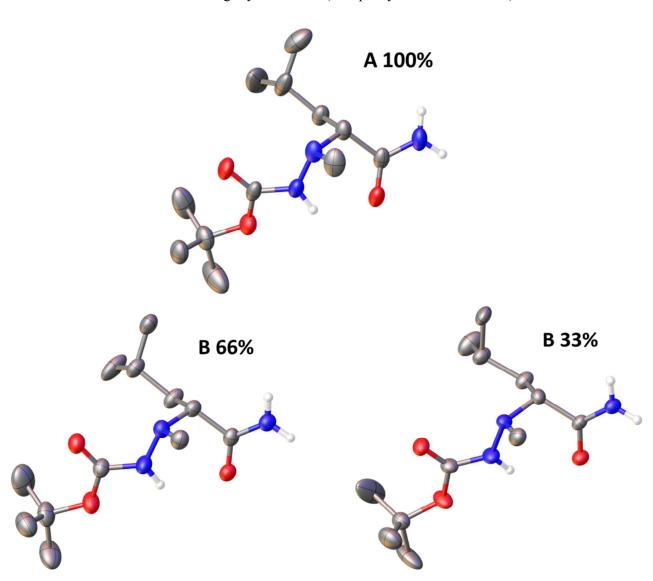
✓ Crystal structure determination of compound 1:


 $C_{15}H_{23}N_3O_3$, M = 293.36, orthorhombic, a = 5.14336(16), b = 16.7956(5), c = 18.7002(6) Å, U = 1615.43(9) Å³, T = 110 K, space group $P2_12_12_1$ (no.19), Z = 4, 13322 reflections measured, 3385 unique (*R*int = 0.0473), which were used in all calculations. The final w*R*(*F*²) was 0.0905 (all data)

✓ Crystal structure determination of compound 2:


 $C_{24}H_{50}N_6O_6$, M = 518.70, monoclinic, a = 10.5287(4), b = 9.9246(4), c = 14.8794(6) Å³ = 104.141(2) °, U = 1507.68(10) Å³, T = 100 K, space group $P2_1$ (no.4), Z = 2, 25270 reflections measured, 5125 unique (*R*int = 0.0450), which were used in all calculations. The final w*R*(F^2) was 0.0869 (all data).

✓ Crystal structure determination of compound 3:


 $C_{12}H_{25}N_3O_3$, M = 259.35, orthorhombic, a = 9.787(5), b = 12.007(5), c = 27.226(5) Å, U = 3199(2) Å³, T = 100 K, space group $P2_12_12_1$ (no.19), Z = 8, 33994 reflections measured, 6686 unique (*R*int = 0.0232), which were used in all calculations. The final w $R(F^2)$ was 0.0986 (all data).

Displacement spheres are drawn at the 50% probability level Hydrogen atoms except NHs are omitted for clarity

A (hydrazinoturn conformation) and B (C₆ conformation) Displacement spheres are drawn at the 50% probability level. Hydrogen atoms except NHs are omitted for clarity

ORTEP view of the twomolecules(A and B) in the asymmetric unit of 3

✓ Molecule A is ordered (100% occupancy)
✓ Molecule B is slightly disordered (occupancy ratios of 0.66:0.33)

A and B (C₆ conformations) Displacement spheres are drawn at the 50% probability level. Hydrogen atoms except NHs are omitted for clarity