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Derivation of the generalized orthogonality in the full

space limit

The energies of the coupled cluster model are equal to the eigenvalues of the matrix

(A + E0 I)µν = 〈Φµ |e−T H eT |Φν〉, E0 = 〈Φ0 |e−T H eT |Φ0〉, (S1)

where T has been determined from the amplitude equations (see, e.g., Purvis and Bartlett1),

and where µ, ν ≥ 0. In the limit where µ and ν run over all excitations, the identity operator

can be written I =
∑

µ≥0 |Φµ〉〈Φµ|, where we assume that {|Φµ〉}µ is an orthonormal basis.

Inserting this resolution of I before and after H leads to the following expression for A+E0 I:

(A + E0 I)µν =
∑
τσ≥0

〈Φµ |e−T |Φτ 〉〈Φτ |H |Φσ〉〈Φσ |eT |Φν〉

=
∑
τσ≥0

Q−1µτ HτσQσν

= (Q−1H Q)µν .

(S2)

That Q−1 is the inverse of Q is straightforwardly verified:

(Q−1Q)µν =
∑
τ≥0

〈Φµ |e−T |Φτ 〉〈Φτ |eT |Φν〉 = 〈Φµ |e−T eT |Φν〉 = δµν . (S3)

It follows from equation (S2) that the left and right eigenvectors of A + E0 I, and therefore

of A, satisfy (up to normalization)

lTk (QTQ)−1ll = δkl, rTkQTQ rl = δkl, (S4)

because the eigenvectors of the symmetric matrix H are orthogonal.
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System size scaling properties

For a non-interacting only system AB with a conical intersection on the A system, the

cluster operator has the form T = TA + TB, where TA and TB only contains excitations

within the subsystems A and B, respectively. As a consequence, the similarity transformed

Hamiltonian separates in the usual size-extensive manner, H̄ = H̄A + H̄B. The energy is

E = 〈RA |H̄A |RA〉 + 〈RB |H̄B |RB〉 = EA + EB and the ground state equations reduce to

the amplitude equations for each subsystem. The size-intensive compound block structure

of the Jacobian A then follows from the amplitude equations (see p. 683 in Helgaker et al.2),

providing excitation energies and excited state vectors belonging to the correct blocks of A,

i.e. AA,A and AB,B.

However, the metric QTQ contains a non-zero AB coupling term. An implication is that,

while the energy, the wavefunction, and the excited states contain no coupling terms, the

energies for an isolated A system are not identical to those obtained for the AB system.

Note that the energies of the B system remain unchanged. Asymptotically, the AB coupling

term becomes independent of the number of B fragments, giving a constant error for the

A system in the limit of an infinite number of B fragments. There are many alternative

approximations of QTQ without AB terms. For instance, QTQ could be approximated by

QTP Q, where P is a projection matrix onto the space of the reference and the two excited

states of interest, {|R〉, |r1〉, |r2〉}. In practice, the effect of the AB term appears to be small,

however. By positioning a Helium-atom at a distance of 100 Å from HOF, we obtained

energy changes that are negligible compared to CISD (see Table S1).

Implementation

The model was implemented in a local version of the Dalton quantum chemistry suite,3 and

a local coupled cluster program currently in the initial phases of development.
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Table S1: Differences in SCCSD and CISD energies of HOF compared to energies
obtained when a He atom is positioned 100 Å from HOF. We list the absolute
errors, in Hartrees, of the ground state and first two A′ excited state energies,
∆E0(HOF), ∆E1(HOF), and ∆E2(HOF). A convergence threshold of 10−10 has been
used. The HOF geometry is ROH = 1.14 Å, ROF = 1.32 Å, and ϑHOF = 91.0◦.

∆E0(HOF) ∆E1(HOF) ∆E2(HOF)

CISD 0.00566816 0.03384339 0.03383982
SCCSD 2.9 · 10−9 5 · 10−10 6 · 10−10

The projection vector and the coupled cluster Jacobian

In similarity constrained CCSD (SCCSD), an additional triple excitation and amplitude is

added to the cluster operator, T . With this cluster operator, both the projection vector,

Ωµ = 〈Φµ |e−TH eT |Φ0〉, and the Jacobian matrix, Aµν = 〈Φµ |e−T [H, τν ] e
T |Φ0〉, are mod-

ified relative to CCSD. We refer to the literature for detailed expressions of Ω and A in

CCSD.1,4

First we introduce a spin-adapted biorthonormal excitation manifold in which to express

our matrices. We use the elementary basis (see p. 691-692 in Helgaker et al.2)

∣∣∣ a
i

〉
= Eai |Φ0〉,

∣∣∣ ab
ij

〉
= EaiEbj |Φ0〉 (S5)

as the right basis, where Eai = a†aαaiα + a†aβaiβ, and

〈 a
i

∣∣∣ =
1

2
〈Φ0|E†ai,

〈 ab
ij

∣∣∣ =
1

1 + δai,bj

(1

3
〈Φ0|E†aiE

†
bj +

1

6
E†ajE

†
bi

)
(S6)

as the left basis.

We may now list explicit expressions for the projection vector and the transformation

by the coupled cluster Jacobian, as well as its transpose: Ω, ρ = A c, and σ = AT b. Let
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T = T1 + T2 + T3, where T3 is general for now:

T1 =
∑
ai

tai Eai, T2 =
1

2

∑
aibj

tabij EaiEbj, T3 =
1

6

∑
aibjck

tabcijk EaiEbj Eck. (S7)

For ρ = A c we have ρai = ρCCSD
ai and

ρaibj − ρCCSD
aibj =

1

1 + δai,bj
Pab

ij

(∑
ck

(tabcijk − tabcikj)Xkc −
∑
ckl

(2 tbacjkl − tbaclkj − tbacjlk )Ylcki

+
∑
cdk

(2 tbcdjik − tbcdkij − tbcdjki)Zackd
)
,

(S8)

where

Xld =
∑
ck

Lkcld cck, Ykclj =
∑
d

gkcld cdj, Zacld = −
∑
k

gkcld cak. (S9)

In the above, we have introduced Pab
ij , whose effect is to add all permutations of the index

pairs (ai) and (bj), and gpqrs, the two-electron T1 transformed integrals associated with the

T1 transformed Hamiltonian Ĥ. The projection vector has the singles contribution

Ωai − ΩCCSD
ai =

∑
bjck

(tabcijk − tcbaijk)Ljbkc, Ljbkc = 2 gjbkc − gjckb. (S10)

The doubles contribution is identical to that of ρ, except that the X, Y , and Z intermediates

assume the altered definitions

Xkc = Fkc, Ylcki = glcki, Zackd = gackd. (S11)

We have denoted by Fpq the elements of the T1 transformed Fock operator, which is defined

as the ordinary Fock operator but with T1 transformed integrals. For σ = AT b we have
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σaibj = σCCSD
aibj and, finally,

σck − σCCSD
ck =

∑
dlemfn

(tdeflmn − t
def
lnm) bdlem Lkcnf

+
∑

dlemfn

(tdefmln + tdeflnm − 2 tdeflmn) bdlcn gmekf

+
∑

dlemfn

(tdeflnm + tdefnml − 2 tdeflmn) bdlek gmcnf .

(S12)

The expressions listed above are those of coupled cluster singles doubles triples (CCSDT)

and are also found in the literature.5 In the simiarity constrained formalism, one particular

triple excitation (τABCIJK ) is selected to be non-zero. We can therefore write

tabcijk = ζPABC
IJK δaibjck,AIBJCK , (S13)

where ζ is the magnitude of the chosen triple amplitude, and substitute this tabcijk in the above

expressions. Here we have introduced PABC
IJK , which permutes the index pairs (AI), (BJ),

and (CK). Doing the substitution results in

Ωai − ΩCCSD
ai = ζPABC

IJK (δai,AI LJBKC − δai,CI LJBKA) (S14)

for the singles part of Ω. The doubles part Ω is equal to that of ρ (with redefined X, Y ,

and Z). For ρ, we find ρai = 0 and

ρaibj − ρCCSD
aibj =

ζ

1 + δai,bj
Pab

ij PABC
IJK

(
δAIBJaibj XKC − δAIBKaibj XJC

− (2 δAIBbja YKCJi − δABKbaj YICJi − δAIBbja YJCKi)

+ 2 δAIJbji ZaBKC − δAJKbij ZaBIC − δAIKbji ZaBJC

)
.

(S15)
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Finally, for σ we find σaibj = σCCSD
aibj and

σck − σCCSD
ck = ζ PABC

IJK (bAIBJLkcKC − bAIBKLkcJC

+ bAJcKgIBkC + bAIcJgKBkC − 2 bAIcKgJBkC

+ bAIBkgKcJC + bAKBkgJcIC − 2 bAIBkgJcKC).

(S16)

The equations we have implemented are (S14), for Ω1, (S15), for Ω2 and ρ, and (S16), for

σ. For completeness, we note that expressions for energy E and the η vector are unchanged:

E = 〈Φ0 |e−TH eT |Φ0〉 = ECCSD, (S17)

ην = 〈Φ0 |e−T [H, τν ] e
T |Φ0〉 = ηCCSD

ν . (S18)

Algorithm 1 The SCCSD algorithm

1: Select two states k and l and a triple excitation τABCIJK .
2: Set tABCIJK = 0.
3: For the given tABCIJK , solve Ωµ1 = 0 and Ωµ2 = 0 for tµ1 and tµ2 .

4: Solve the multiplier equation t
T
A = −ηT for the multipliers t.

5: Solve the eigenvalue equation A ri = ωi ri for the excited states ri.
6: Evaluate the generalized overlap f(T ).
7: if f(T ) = 0 then
8: Stop.
9: else
10: Estimate ∂f(T )/∂tABCIJK by numerical differentiation.
11: Perform a Newton-Raphson step: tABCIJK = tABCIJK − f(T )/(∂f(T )/∂tABCIJK ).
12: Go to 3.
13: end if
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The generalized overlap

For notational purposes, we denote full space quantities (i.e., with µ, ν ≥ 0) by caligraphic

font, X , reserving X for the excited-excited block (µ, ν > 0). Then we can write

A =

0 ηT

0 A

 (S19)

and

Q =

1 0

q Q

 , qµ = 〈Φµ |eT |Φ0〉, Qµν = 〈Φµ |eT |Φν〉. (S20)

Note that since we use a biorthonormal basis for Q and A, the elementary overlap matrix

S (the overlap of the |Φµ〉) enters the expression for the generalized overlap f :

A + E0 I = Q−1S−1H Q, (S21)

where H is H expressed in the elementary basis (the kets |Φµ〉). With this notation, the

generalized overlap f between the state vectors Rk and Rl reads

f(T ) = RT
kQTSQRl, (S22)

an overlap over the positive definite matrix QTSQ. In block-form, we moreover have

S =

1 0

0 S

 . (S23)

To derive a useful expression for f , we separate the reference and excited contributions.
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Note that the left and right excited states satisfy

ARn = ωnRn, LT
nA = ωnLT

n , (S24)

where the the left ground state vector is determined from the multiplier equation4

LT
0 = (1 t

T
), t

T
A = −ηT . (S25)

From this it is straight-forward to show that

LT
n = (0 lTn ), Rn =

−t
T
rn

rn

 , A rn = ωn rn, lTn A = ωn lTn , n > 0. (S26)

Substituting the block forms of Q and Rn into the expression for f gives

f(T ) = rTk (N t t
T

+ QTS Q−QTS q t
T − t qTS Q) rl = 0, (S27)

where N = 1 + qTS q. This is the implemented expression for the generalized overlap. The

vector q can be evaluated as

qai = tai , qaibj =
1

1 + δai,bj
(tabij + tai t

b
j). (S28)

The transformation y = Q x is

yai = xai, yaibj = xaibj +
1

1 + δai,bj
(tbj xai + tai xbj). (S29)

The transformation y = QT x can be written

yai = xai +
∑
ck

tck xaick, yaibj = xaibj. (S30)
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Finally, y = S x can be written

yai = 2xai, yaibj = 2 (1 + δai,bj)(2xaibj − xajbi). (S31)

Implementation tests

The following tests were performed.

• For a given value of ζ, the excitation energies ωn derived from the left and right

eigenvalue problems are identical. Thus, A and AT are internally consistent.

• For a given value of ζ, the identity4

Aµν =
∂Ωµ

∂tν
, (S32)

evaluated by numerical differentiation and by transformation of elementary basis vec-

tors, is satisfied for the LiH molecule. Thus, Ω and A are internally consistent. More-

over, by the previous test, Ω, A, and AT are internally consistent.

• We confirmed that

t
T

=
qTS Q

1 + qT S q
, (S33)

is satisfied for H2, indicating that the implementation of q and Q are correct. This

identity can be shown to be valid from the completeness of T = T1 + T2.

• For two states of the same symmetry in H2, we confirmed that

RT
kQT SQRl = 0 (S34)

is correct to the accuracy that the amplitudes and eigenvectors are converged.
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• Noting that

Qµν = Qµν(T ) = 〈Φµ |eT |Φν〉, Q−1µν = 〈Φµ |e−T |Φν〉 = Qµν(−T ), (S35)

we confirmed that Q(T ) Q(−T ) and QT (T ) QT (−T ) equal the identity matrix I for

the implemented Q and QT transformations.

• We confirmed that qTS Q x and xTQTS q are equal, indicating that Q and QT are

internally consistent.

The algorithm

We adopt a self-consistent approach. For a fixed triple amplitude, tµ3 , the ground state

amplitude equations, Ω = 0, are first solved for tµ1 and tµ2 . Given the converged singles

and doubles amplitudes, the excited states ri are found and the overlap f(T ) evaluated. A

Newton-Raphson algorithm, designed to locate a zero of the overlap function f(T ), then

provides the next triple amplitude tµ3 . These steps are repeated until both the ground state

equations are satisfied and f(T ) = 0. See Algorithm 1.

The cluster operator

In the similarity constrained theory, a particular triple excitation is used. In Table S2, we

list the energies obtained for hypofluorous acid using twelve different triple excitations.

Left generalized orthogonality

We have chosen to enforce orthogonality of the right eigenvectors in the present study, but,

for completeness, we list the equations necessary to enforce orthogonality among the left
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eigenvectors here. The left overlap fL can be written

fL(T ) = LT
k (QTSQ)−1Ll. (S36)

By block inversion of Q and S, we have

Q−1 =

 1 0

−Q−1q Q−1

 , S−1 =

1 0

0 S−1

 . (S37)

and therefore

(QTSQ)−1 =

 1 0

−Q−1q Q−1


1 0

0 S−1


1 −qTQ−T

0 Q−T


=

 1 −qTQ−T

−Q−1q Q−1(S−1 + q qT )Q−T

 .

(S38)

Now, because the reference term of Lk is zero (it is orthogonal to R0), we can write

fL(T ) = lTk Q−1(S−1 + q qT )Q−T ll. (S39)

Hypoflorous acid: intersection point, normal modes,

seam, and branching plane vectors

Intersection point

The studied intersection geometry hypofluorous acid is

ROH = 1.1400000 Å, ROF = 1.3184215 Å, ϑHOF = 91.0585000◦, (S40)
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where the triple amplitude is ζ = 1.6178960762. For this geometry and amplitude, the

overlap is below 10−6 and the energies degenerate to 10−6:

ω1 = 0.3163264850 Hartrees, ω2 = 0.3163274291 Hartrees. (S41)

Normal modes

We specify the nuclear cartesian coordinates as

R = (Ox, Oy, Oz, Hx, Hy, Hz, Fx, Fy, Fz) (S42)

in the following. From a vibrational Hartree-Fock calculation using the Cfour program,6 we

obtained a set of normal modes,

Q1 = (0.7370,−0.0071, 0.0000,−0.0070, 0.0211, 0.0000,−0.6750, 0.0017, 0.0000), (S43)

Q2 = (0.0749,−0.2371, 0.0000,−0.7773, 0.5604, 0.0000, 0.1103, 0.0885, 0.0000), (S44)

Q3 = (0.0773, 0.1431, 0.0000,−0.5890,−0.7874, 0.0000, 0.0647, 0.0500, 0.0000). (S45)

The cartesian coordinate vector at the intersection point is

R0 = (− 1.308090861096777, 0.135129007453069, 0.000000000000000,

− 1.470679327231972,−2.013015024947860, 0.000000000000000,

1.179309062794356,−0.006980060310293,−0.000000000000000).

(S46)
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The seam and branching plane vectors

By performing small displacements in the normal modes Qi, we found the basis {g,h} of

the branching plane and the seam s. In the basis of the normal modes,

g = (0.972636,−0.160489, 0.167996), (S47)

s = (0.220983, 0.407941,−0.885862), (S48)

h = (0.073639, 0.898745, 0.432243). (S49)

Note that these vectors are expected to have some numerical imprecision, arising from the

finite number of fixed-point calculations on which they are based (s and g are nearly but

not perfectly orthogonal, 89.96◦) and that the Qi is given to four decimal places.

References

1. Purvis III, G. D.; Bartlett, R. J. A Full Coupled-Cluster Singles and Doubles Model: The

Inclusion of Disconnected Triples. J. Chem. Phys. 1982, 76, 1910–1918.

2. Helgaker, T.; Jørgensen, P.; Olsen, J. Molecular Electronic-Structure Theory ; John Wiley

& Sons, 2014.

3. Aidas, K.; Angeli, C.; Bak, K. L.; Bakken, V.; Bast, R.; Boman, L.; Christiansen, O.;

Cimiraglia, R.; Coriani, S.; Dahle, P. et al. The Dalton Quantum Chemistry Program

System. WIREs Comput. Mol. Sci. 2014, 4, 269–284.

4. Koch, H.; Jørgensen, P. Coupled Cluster Response Functions. J. Chem. Phys. 1990, 93,

3333–3344.

5. Koch, H.; Christiansen, O.; Jørgensen, P.; Sanchez de Merás, A. M.; Helgaker, T. The

CC3 Model: An Iterative Coupled Cluster Approach Including Connected Triples. J.

Chem. Phys. 1997, 106, 1808–1818.

S14



6. Stanton, J.; Gauss, J.; Harding, M.; Szalay, P.; Auer, A.; Bartlett, R.; Benedikt, U.;

Berger, C.; Bernholdt, D.; Bomble, Y. et al. CFOUR, a quantum chemical program

package.

S15



Table S2: Energies obtained by various triple excitations τABCIJK for the geometry
ROH = 1.14 Å, ROF = 1.32 Å, and ϑHOF = 91.0◦. We list CC2, SCCSD, CCSD, and
CC3 energies given in Hartrees and the aug-cc-pVDZ basis. Dashes (–) denote
that we were unable to converge the SCCSD equations. The first excitation
listed in the table was used in the paper.(

A B C
I J K

)
E0 E1 E2 ω1 ω2 ζ(

10 2 2
7 5 8

)
−175.1605 −174.8452 −174.8440 0.3153 0.3165 1.6688(

10 2 8
7 5 8

)
−175.1619 −174.8445 −174.8435 0.3174 0.3184 −0.6551(

10 2 10
7 5 8

)
−175.1611 −174.8467 −174.8431 0.3144 0.3180 2.2880(

8 2 2
7 5 8

)
−175.1605 −174.8448 −174.8434 0.3157 0.3170 1.6531(

8 2 8
7 5 8

)
– – – – – –(

8 2 10
7 5 8

)
−175.1613 −174.8448 −174.8436 0.3165 0.3176 0.4853(

3 1 1
8 8 5

)
−175.1623 −174.8455 −174.8430 0.3168 0.3193 2.7638(

10 1 1
7 5 8

)
−175.1639 −174.8445 −174.8416 0.3195 0.3223 −1.3795(

10 1 2
7 5 8

)
−175.1616 −174.8451 −174.8441 0.3165 0.3175 −0.4178(

10 1 3
7 5 8

)
−175.1639 −174.8438 −174.8428 0.3201 0.3211 −1.0914(

8 1 1
7 5 8

)
−175.1597 −174.8469 −174.8453 0.3127 0.3144 1.7677(

8 1 2
7 5 8

)
– – – – – –

CC2 −175.1590 −174.8600 −174.8440 0.2990 0.3150 –
CCSD −175.1619 −174.8451 −174.8437 0.3168 0.3181 –
CC3 −175.1745 −174.8585 −174.8558 0.3160 0.3187 –
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