Supporting Information

A Tunable Cyclization Strategy for the Synthesis of Zizaene, allo-Cedrane, seco-Kaurane and seco-Atesane type Skeletons

Qianqian Yang, Wenjing Ma, Gaopeng Wang, Wenli Bao, Xiaoshu Dong, Xuefeng Liang, Lizhi Zhu* and Chi-Sing Lee*

Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China, e-mail: lizc@szpku.edu.cn

Table of Contents

Generation information	S2
Synthetic Procedures	S2–S11
X-ray structures	S12-S16
NMR spectra	S17-S35
References	S36

General Information

All air and water sensitive reactions were carried out under a nitrogen atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. All the chemicals were purchased commercially and used without further purification. Anhydrous THF and was distilled from sodium-benzophenone, toluene was distilled from sodium, and dichloromethane was distilled from calcium hydride. Yields refer to chromatographically, unless otherwise stated. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm silica gel plates (60F-254) that were analyzed by staining with KMnO₄ (200 mL H₂O of 1.5 g KMnO₄, 10 g K₂CO₃ and 1.25 mL of 10% aq NaOH), fluorescence upon 254 nm irradiation or by staining with anisaldehyde (450mL of 95% EtOH, 25 mL of conc.H₂SO₄, 15 mL of acetic acid, and 25 mL of anisaldehyde). Silica gel (60, particle size 0.040-0.063 mm) was used for flash chromatography. IR spectra were obtained using FT-IR Spectrometer. NMR spectra were recorded on either a 300 (¹H: 300 MHz, ¹³C: 75 MHz), 400 (¹H: 400 MHz, ¹³C: 100 MHz), or 500 (¹H: 500 MHz, ¹³C: 125 MHz). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t =triplet, q = quartet, m = multiplet, b = broad. High resolution mass spectra were obtained from a MALDI-TOF mass spectrometer. Crystallographic data were obtained from a single crystal X-ray diffractometer.

Synthetic Procedures

General procedure for synthesis of dienes 2, 1 6, 2 8, 3 10 and 12

To a stirred solution of the diketone (56.1 mmol) and TEA (75 mL, 560 mmol) in CH_2Cl_2 (300 mL) was added TMSOTf, TBSOTf or TIPSOTf (145 mmol) at 0 °C. The resulting solution was stirred at rt for 11 h and the concentrated. The remaining brown liquid was diluted with hexanes (300 mL) and wait until the layers separated. The upper layer was decanted and the lower layer was extracted with hexanes (300 mL × 3). After reducing the volume of the combined organic extracts to about 100 mL, the

solution was filtered through a plug of silica gel and the silica gel was washed by hexanes (300 mL × 3). The combined filtrates and washings were concentrated to give the product dienes. 2¹ (a colorless oil, 17.3 g, 55.0 mmol, 98% from 2,3-butanedione). 6² (a colorless oil, 9.6 g, 42.1 mmol, 75% from 2,3-butanedione). 8³ (a colorless oil, 22.0 g, 55.1 mmol, 98% from 2,3-butanedione). 10 (a colorless oil, 18.9 g, 55.5 mmol, 93% from 1,2-cyclohexanedione): ¹H NMR (400 MHz, CDCl₃) δ 5.00 (s, 2H), 2.07 (dd, J = 3.0, 1.6 Hz, 4H), 0.95 (s, 19H), 0.16 (s, 12H). ¹³C NMR (125 MHz, CDCl₃) δ 146.9, 105.2, 26.0, 25.7, 22.5, -3.0, -4.5. IR (neat, cm⁻¹): 2930, 2858, 1724, 1472, 1255, 1078, 837, 782; HRMS (ESI/[M+H]⁺) calcd. for C₁₈H₃₆O₂Si₂: 340.2254, found 340.2258. 12 colorless oil. 14.7 g, 43.1 mmol. 78% 3-methylcyclopentane-1,2-dione): ¹H NMR (300 MHz, CDCl₃) δ 4.97 (d, J = 2.1 Hz, 1H), 2.59 (d, J = 2.1 Hz, 2H), 1.84 (s, 3H), 0.99 (s, 9H), 0.96 (s, 9H), 0.87 (s, 3H), 0.21 (s, 3H), 0.15 (s, 3H), 0.02 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 152.1, 145.4, 116.9, 99.2, 73.5, 34.7, 26.0, 25.7, 18.5, 12.7, -2.9, -4.5. IR (neat, cm⁻¹): 2947, 2752, 1756, 1439, 1268, 1029, 857, 753; HRMS (ESI/[M+H] $^+$) calcd. for $C_{18}H_{36}O_2Si_2$: 340.2254, found 340.2259.

Synthesis of compd (\pm) -3

To a stirred mixture of $\mathbf{1}^4$ (1.07 g, 8.0 mmol) in CH₂Cl₂ (40 mL) was added Me₂AlCl (9.8 mL, 8.8 mmol) dropwise at 0 °C over 0.5 h. The mixture was then treated with a solution of $\mathbf{2}^1$ (7.55 g, 24.0 mmol) in CH₂Cl₂ (15 mL) at -78 °C over 1 h. After stirring at -20 °C for 1 h, the reaction was quenched by addition of a saturated NaHCO₃ aq solution (20 mL), and the aq phase was extracted with ethyl acetate (100 mL × 3). The combined organic extracts were washed with brine, dried over Na₂SO₄, filtered and concentrated. Silica gel flash column chromatography (hexanes/ethyl acetate = 200:1) of the residue gave a yellow oil (2.2 g, 4.9 mmol, 61%) as the

product. (\pm)-3: ¹H NMR (300 MHz, CDCl₃) δ 2.79 (dd, J = 16.6, 2.6 Hz, 1H), 2.62 – 2.43 (m, 2H), 2.43 – 2.23 (m, 4H), 2.08 – 1.72 (m, 4H), 1.70 – 1.61 (m, 3H), 0.91 (s, 9H), 0.89 (s, 9H), 0.13 – 0.12, (d, J = 3 Hz, 6H), 0.11 (s, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 211.1, 129.8, 127.1, 81.1, 77.5, 77.1, 76.6, 70.2, 52.2, 37.8, 37.1, 35.2, 33.0, 27.6, 26.3, 25.0, 24.5, 22.7, 18.2, -3.3, -3.8. IR (neat, cm⁻¹): 3289, 2963, 2930, 1707, 1251, 1219, 838, 780, 676; HRMS (ESI/[M+H]⁺) calcd. for C₂₅H₄₄O₃Si₂: 448.2829, found 448.2835. If the reaction mixture is stirred at rt for 1 h, another white solid (1.5 g, 4.5 mmol, 56%) will be obtained as the major side-product. (\pm)-4: ¹H NMR (500 MHz, CDCl₃) δ 2.62 (d, J = 15.0 Hz, 1H), 2.31 – 2.22 (m, 4H), 2.03 – 2.01 (t, J = 5.0 Hz, 1H), 1.94 (s, 1H), 1.89 – 1.81 (m, 2H), 1.76 – 1.72 (t, J = 10.0 Hz, 1H), 1.70 – 1.62 (m, 3H), 1.40 – 1.48 (m, 1H), 0.93 (s, 9H), 0.79 (s, 9H), 0.29 (s, 3H), 0.10 (s, 3H), 0.09 (s, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 210.6, 89.6, 84.9, 80.3, 69.8, 45.8, 44.1, 37.0, 32.5, 27.0, 26.2, 25.8, 24.3, 18.4, 18.4, 18.3, 17.9, -1.7, -2.1, -2.6, -3.2. IR (neat, cm⁻¹): 2970, 2680, 1769, 1439, 1369, 1028, 718, 665; HRMS (ESI/[M+Na]⁺) calcd. for C₂₅H₄₄O₃Si₂: 448.2829, found 448.2838.

General procedures for carbocyclization of (\pm) -3 (Table 1)

To a stirred mixture of (\pm)-3 (100 mg, 0.22 mmol) in CH₂Cl₂ (4 mL) was added the indicated Lewis acid (0.11 mmol) at the indicated temp. After stirring at the specified temp for the specified time, the reaction was quenched by addition of a saturated NaHCO₃ aq solution (2 mL). The aq phase was extracted with CH₂Cl₂ (5 mL × 3). The combined organic extracts were washed with brine, dried over Na₂SO₄, filtered and concentrated. Silica gel flash column chromatography (hexanes/ethyl acetate = 15:1) of the residue gave a white solid as the cyclized product(s) in the indicated ratio. With PtCl₂ (0.5 equiv)/CH₂Cl₂ at -78 °C, 52.8 mg (0.16 mmol, 72%) of a 7.8:1 mixture of (\pm)-5a/(\pm)-5b was obtained (Table 1, entry 23). (\pm)-5a: ¹H NMR (500 MHz,

CDCl₃) δ 5.14 (t, J = 2.6 Hz, 1H), 5.02 (s, 1H), 3.55 (dt, J = 17.9, 2.7 Hz, 1H), 2.79 (q, J = 10, 1H), 2.44 - 2.29 (m, 4H), 2.25 - 2.20 (m, 2H), 2.12 - 2.05 (m, 2H), 1.89 (dd, J= 13.6, 11.1 Hz, 1H), 1.75 - 1.65 (m, 2H), 0.88 (s, 9H), 0.22 (s, 3H), 0.06 (s, 3H). 13 C NMR (125 MHz, CDCl₃) δ 209.9, 205.7, 148.8, 108.6, 88.3, 54.6, 45.4, 43.2, 42.3, 38.8, 35.9, 29.3, 25.8, 18.4, -2.7, -2.9. IR (neat, cm⁻¹): 2953, 2930, 2856, 1735, 1710, 1251, 1163, 1123, 893; HRMS (ESI/ $[M+H]^+$) calcd. for $C_{19}H_{30}O_3Si$: 334.1964, found 334.1968. (±)-**5b** (a white solid): ¹H NMR (500 MHz, CDCl₃) δ 5.39 (dd, J = 3.5, 2.3 Hz, 1H), 5.00 (d, J = 1.3 Hz, 1H), 2.95 (dd, J = 18.6, 3.6 Hz, 1H), 2.86 (dt, J = 17.7, 2.4 Hz, 1H), 2.61 (ddt, J = 17.7, 3.8, 2.1 Hz, 1H), 2.52 – 2.40 (m, 1H), 2.38 – 2.31 (m, 1H), 2.25 - 2.21 (m, 1H), 2.20 (s, 1H), 2.19 - 2.11 (m, 1H), 2.10 - 2.04 (m, 1H), 1.86(dd, J = 13.1, 2.2 Hz, 1H), 1.74 - 1.53 (m, 3H), 0.92 (s, 18H), 0.20 (s, 6H), 0.09 (s, 18H)6H). ¹³C NMR (125 MHz, CDCl₃) δ 210.6, 206.6, 142.7, 110.3, 82.0, 48.0, 42.4, 41.2, 40.4, 38.2, 36.7, 30.1, 26.1, 25.6, 18.8, -2.5. IR (neat, cm⁻¹): 2926, 2854, 1733, 1706, 1245, 1202, 1174, 1139, 833, 776; HRMS $(ESI/[M+Na]^+)$ calcd. for $C_{19}H_{30}O_3Si$: 334.1964, found 334.1969. The structure of (\pm) -5b was also characterized by X-ray crystallography.

General procedure for the cascade cyclization reactions (Table 2)

To a stirred solution of enone ($\mathbf{1}$, 4 (\pm)- $\mathbf{14}$, $\mathbf{16}$ or $\mathbf{18}$) (1.0 mmol) in CH₂Cl₂ (5 mL) was added anhydrous ZnBr₂ (0.22 g, 1.0 mmol) at rt and diene ($\mathbf{2}$, 1 6, 2 8, 3 10 or 12) (2.0 mmol). The resulting mixture was stirred at rt for 3 h, and the reaction was quenched by addition of a saturated NaHCO₃ aq solution. The aq phase was extracted with CH₂Cl₂ (50 mL × 3). The combined organic extracts were washed with brine, dried over Na₂SO₄, filtered and concentrated. Silica gel flash column chromatography (hexanes/ethyl acetate = 100:1) of the residue provided the cascade cyclized product(s). (\pm)-5b (a white solid, 0.31 g, 0.93 mmol, 93% from 1 and 2): see the above characterization data. (\pm)-7a and (\pm)-7b (a white solid, 77.1 mg, 0.35 mmol, 35% from 1 and 6, a 1:2 mixture): 1 H NMR (500 MHz, CD₃OD) δ 5.32 (d, J = 2.9 Hz, 0.7H), 5.13 (t, J = 2.7 Hz, 0.3H), 5.06 (s, 0.3H), 5.02 (s, 0.7H), 3.51 (dt, J = 18.0, 2.8 Hz, 0.3H), 3.31 (t, J = 1.5Hz, 0.7H), 3.17 (dd, J = 19.0, 3.5 Hz, 0.7H), 2.88 (q, J = 10

Hz, 0.3H), 2.81 (dt, J = 17.7, 2.5 Hz, 0.7H), 2.68 – 2.58 (m, 1.4H), 2.55 – 2.43 (m, 0.7H), 2.45 (dd, J = 18.0, 2.1 Hz, 0.3H), 2.27 - 2.15 (m, 3.5H), 2.07 - 2.06 (m, 0.9H), 1.95 - 1.89 (m, 0.3H), 1.83 (dd, J = 11.7, 1.6 Hz, 0.9H), 1.77 - 1.62 (m, 1.8H), 1.57 (d, J = 6.4 Hz, 0.7H). ¹³C NMR (125 MHz, CD₃OD) δ 211.6, 210.7, 208.2, 206.9, 149.0, 143.2, 108.4, 107.0, 85.8, 79.1, 53.9, 45.5, 42.5, 41.5, 41.0, 40.8, 38.8, 38.2, 37.7, 36.4, 35.9, 29.3, 28.8. IR (neat, cm⁻¹): 3474, 2930, 1730, 1707, 1437, 1123, 1064, 898; HRMS (ESI/[M+Na] $^+$) calcd. for C₁₃H₁₆O₃: 220.1099, found 220.1102. (\pm)-9a and (\pm)-9b (a white solid, 0.29 g, 0.78 mmol, 78% from 1 and 8, a 1:16 mixture, only the signals of (\pm)-9b were listed). ¹H NMR (500 MHz, CDCl₃) δ 5.40 (d, J = 0.8 Hz, 1H), 5.01 (d, J = 1.3 Hz, 1H), 2.94 (dd, J = 18.6, 3.6 Hz, 1H), 2.82 (dt, J = 18.6, 3.6 Hz, 1H), 3.82 (dt, J = 18.6, 3.6 Hz, 1H), 3.82 (dt, J = 18.6, 3.6 Hz, 1H), 3.82 (dt, J = 18.6, 3.8 Hz, 17.7, 2.5 Hz, 1H), 2.61 (ddt, J = 17.7, 3.7, 2.0 Hz, 1H), 2.49-2.41 (m, 1H), 2.36 – 2.29 (m, 1H), 2.22 - 2.18 (m, 2H), 2.18 - 2.10 (m, 1H), 2.08 - 2.01 (m, 1H), 1.87 - 1.81(m, 1H), 1.69-1.66, (m, 1H), 1.66-1.50 (m, 2H), 1.20-1.12 (m, 3H), 1.02 (dd, <math>J = 7.4, 1.3 Hz, 18H). ¹³C NMR (125 MHz, CDCl₃) δ 210.8, 206.4, 142.5, 110.4, 81.9, 77.3, 77.1, 76.8, 47.9, 42.4, 41.0, 40.4, 38.2, 36.8, 30.0, 25.6, 18.6, 13.8. IR (neat, cm⁻¹): 2940, 2864, 1706, 1462, 1246, 1198, 996, 883, 669, 641; HRMS (ESI/[M+H]⁺) calcd. for $C_{22}H_{36}O_3Si$: 376.2434, found 376.2439. (±)-11a (a white solid, 0.28 g, 0.79 mmol, 79% from 1 and 10): ¹H NMR (400 MHz, CDCl₃) δ 5.39 (dd, J = 3.2, 1.6 Hz, 1H), 5.13 (dd, J = 2.7, 1.4 Hz, 1H), 2.65 (q, J = 2.4 Hz, 1H), 2.63 – 2.58 (m, 1H), 2.58 – 2.54 (m, 1H), 2.39 - 2.28 (m, 2H), 2.25 (q, J = 2.9 Hz, 1H), 2.17 - 2.00 (m, 2H), 2.01-1.82 (m, 2H), 1.75 - 1.61 (m, 3H), 1.60 - 1.47 (m, 2H), 0.88 (s, 9H), 0.21 (s, 3H), 0.03 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 213.2, 211.9, 146.4, 113.2, 87.0, 77.2, 76.8, 76.5, 52.6, 49.1, 47.9, 46.0, 40.8, 37.8, 25.6, 20.9, 19.1, 18.1, 13.9, -2.9, -3.4. IR (neat, cm⁻¹): 2941, 2865, 1735, 1696, 1465, 1199, 1174, 882, 665; HRMS $(ESI/[M+H]^{+})$ calcd. for $C_{21}H_{32}O_{3}Si$: 360.2121, found 360.2129. The structure of (±)-11a were also characterized by X-ray crystallography. 13: (a white solid, 0.13 g, 0.35 mmol, 35% from 1 and 12, a single diastereomer, relative configurations were not determined): ¹H NMR (400 MHz, CDCl₃) δ 3.30 – 3.11 (m, 1H), 2.83 (d, J = 17.2Hz, 1H), 2.71 - 2.59 (m, 2H), 2.53 (ddd, J = 17.2, 5.6, 2.6 Hz, 1H), 2.43 (dd, J = 14.0, 1.3 Hz, 1H), 2.28 (td, J = 13.7, 6.3 Hz, 1H), 2.19-2.11 (m, 2H), 2.06 – 1.98 (m, 1H),

1.96 (s, 3H), 1.91 (t, J = 2.6 Hz, 1H), 1.68 (d, J = 13.1 Hz, 1H), 1.63 – 1.48 (m, 1H), 1.40 (ddd, J = 24.8, 12.5, 3.0 Hz, 1H), 0.95 (s, 9H), 0.17 (d, J = 1.9 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 209.5, 204.2, 149.6, 81.8, 77.3, 77.0, 76.8, 69.5, 50.2, 43.6, 42.0, 41.3, 33.3, 25.7, 24.9, 18.3, 15.6, 14.7, -4.0. IR (neat, cm⁻¹): 3292, 2930, 1706, 1710, 1645, 1391, 1340, 1220, 841; HRMS (ESI/[M+H]⁺) calcd. for $C_{21}H_{32}O_3Si: 360.2121$, found 360.2125. (±)-15b (a white solid, 0.36 g, 0.79 mmol, 79%) from (±)-14 and 2, a single diastereomer, the relative configuration of the OTBS was not determined): ¹H NMR (300 MHz, CDCl₃) δ 5.60 (s, 1H), 5.28 (s, 1H), 4.86 (s, 1H), 2.96 - 2.90 (m, 1H), 2.71 (d, J = 19.0 Hz, 1H), 2.39 - 2.20 (m, 2H), 2.10 (dd, J = 19.0 Hz, 1H), 2.39 - 2.20 (m, 2H), 2.10 (dd, J = 19.0 Hz, 1H), 2.39 - 2.20 (m, 2H), 2.10 (dd, J = 19.0 Hz, 1H), 2.39 - 2.20 (m, 2H), 2.10 (dd, J = 19.0 Hz, 1H), 2.39 - 2.20 (m, 2H), 2.10 (dd, J = 19.0 Hz, 1H), 2.39 - 2.20 (m, 2H), 2.10 (dd, J = 19.0 Hz, 1H), 2.39 - 2.20 (m, 2H), 2.10 (dd, J = 19.0 Hz, 1H), 2.39 - 2.20 (m, 2H), 2.10 (dd, J = 19.0 Hz, 1H), 2.39 - 2.20 (m, 2H), 2.10 (dd, J = 19.0 Hz, 1H), 2.39 - 2.20 (m, 2H), 2.10 (dd, J = 19.0 Hz, 1H), 2.39 - 2.20 (m, 2H), 2.10 (dd, J = 19.0 Hz), 2.10 (dd, 19.0, 1.2 Hz, 1H), 2.06 - 1.91 (m, 1H), 1.87 (dd, J = 12.9, 3.5 Hz, 1H), 1.55 (dd, J = 12.9), 3.5 Hz, 12.9, 6.0 Hz, 10H), 1.26 (s, 2H), 0.92 (s, 9H), 0.86 (s, 9H), 0.19 (s, 6H), 0.10 (d, J =4.4 Hz, 6H). ¹³C NMR (75 MHz, CDCl₃) δ 209.5, 206.1, 147.4, 115.0, 81.6, 77.5, 77.0, 76.6, 71.3, 53.5, 40.1, 39.7, 38.4, 31.9, 29.7, 28.3, 26.1, 23.4, 18.7, 18.3, -2.5, -3.9, -4.4. IR (neat, cm⁻¹): 2930, 2955, 2856, 1741, 1713, 1253, 1148, 1092, 858; HRMS (ESI/ $[M+Na]^+$) calcd. for $C_{25}H_{44}O_4Si_2$: 464.2778, found 464.2779. (±)-17a (a yellow oil, 0.18 g, 0.57 mmol, 57% from **16** and **2**). ¹H NMR (500 MHz, CDCl₃) δ 5.26 (dd, J = 3.2, 1.9 Hz, 1H), 5.12 (s, 1H), 3.10 (dt, J = 16.6, 3.0 Hz, 1H), 2.81 (dd, J = 16.6, 3.0 Hz, 1H)= 18.7, 9.2 Hz, 1H, 2.53 - 2.45 (m, 1H), 2.41 (dd, J = 18.7, 3.8 Hz, 1H), 2.36 - 2.19(m, 4H), 2.06 (dd, J = 11.4, 2.1 Hz, 1H), 1.88 (dd, J = 11.5, 0.9 Hz, 1H), 1.73 – 1.68 (m, 1H). 0.89 (s, 9H), 0.16 (s, 3H), 0.01 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 217.3, 206.1, 147.6, 111.2, 86.9, 54.1, 41.3, 40.7, 40.2, 38.5, 37.7, 27.9, 25.8, 18.3, -2.9. IR (neat, cm⁻¹): 2955, 2928, 2855, 1769, 1735, 1463, 1247, 1167, 1053, 837, 778; HRMS $(ESI/[M+H]^{+})$ calcd. for $C_{18}H_{28}O_{3}Si: 320.1808$, found 320.1818. (\pm)-17b (a yellow oil, 44.8 mg, 0.14 mmol, 14% from **16** and **2**): ¹H NMR (500 MHz, CDCl₃) δ 5.49 (s, 1H), 5.07 (s, 1H), 2.71 (dt, J = 16.6, 2.5 Hz, 1H), 2.65 (dd, J = 18.6, 3.5 Hz, 1H), 2.57 – 2.46 (m, 2H), 2.41 - 2.13 (m, 5H), 1.86 (dd, J = 13.0, 7.9 Hz, 1H), 1.74-1.63 (m, 1H),0.93 (s, 9H), 0.21 (s, 3H), 0.09 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 216.2, 206.8, 142.5, 112.2, 82.1, 48.2, 40.5, 40.2, 39.3, 37.8, 36.0, 26.5, 26.1, 18.8, -2.5. IR (neat, cm⁻¹): 2950, 2855, 1743, 1471, 1248, 1154, 1051, 837, 776, 672; HRMS (ESI/[M+H]⁺) calcd. for $C_{18}H_{28}O_3Si$: 320.1808, found 320.1812. The structure of (±)-17b was also

characterized by X-ray crystallography. (\pm)-**19a** (a yellow oil, 0.16 g, 0.45 mmol, 45% from **18** and **2**, single isomer, the geometry of the alkene was not determined): ¹H NMR (300 MHz, CDCl₃) δ 5.77-5.75 (m, 1H), 3.12 (q, 1H), 3.00 (dt, J = 18.0, 3.0 Hz, 1H), 2.61-2.50 (m, 2H), 2.43 (d, J = 15.0, 1H), 2.29 – 2.13 (m, 3H), 1.88 (dd, J = 19.5, 1.8 Hz, 1H), 1.81-1.67(m, 1H), 0.92 (t, J = 7.2, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 217.0, 211.4, 142.3, 123.8, 73.5, 51.0, 46.2, 38.3, 37.6, 36.0, 32.8, 29.7, 25.2, 23.4, 12.3. IR (neat, cm⁻¹): 3201, 2984, 1749, 1398, 1204, 1003, 932, 869, 790, 621; HRMS (ESI/[M+Na]⁺) calcd. for C₁₄H₁₈O₃: 234.1256, found 234.1263.

Synthesis of compd (\pm) -20

To a stirred mixture of 3-(trimethylsilyl) propiolaldehyde⁴ (5 g, 39.6 mmol), imidazole (3.6 g, 52.8 mmol) in THF (50 mL) and a 1 N aq solution of NaHCO₃ (50 mL) was added 2-cyclopentenone (2.2 mL, 26.4 mmol) dropwise at rt. The resulting mixture was stirred at rt for 1.5 h, and the reaction was quenched by addition of a 1 N HCl aq solution (50 mL). The aq phase was extracted with CH_2Cl_2 (100 mL× 3). The combined organic extracts were washed with brine, dried over Na₂SO₄, filtered and concentrated. To a stirred solution of the residue in CH₂Cl₂ (50 mL) was added imidazole (1.5 g, 22.2 mmol) and TBSCl (2.5 g, 16.5 mmol). The resulting mixture was stirred at rt for 3 h, and the reaction was quenched by addition of a saturated NaHCO₃ aq solution (20 mL). The aq phase was extracted with CH₂Cl₂ (50 mL × 3) and the combined organic extracts were washed with brine, dried over MgSO₄, filtered and concentrated. Silica gel flash column chromatography (hexanes/ethyl acetate = 20:1) of the residue gave a yellow oil (3.3 g, 13.2 mmol, 50% in 2 steps) as the product. (\pm)-20: ¹H NMR (500 MHz, CDCl₃) δ 7.80 – 7.56 (m, 1H), 5.13 – 5.12 (m, 1H), 2.61 - 2.60 (m, 2H), 2.50 - 2.42 (m, 3H), 0.87 (s, 10H), 0.14 (s, 3H), 0.10 (s, 2H), 0.103H). ¹³C NMR (125 MHz, CDCl₃) δ 206.4, 159.7, 146.0, 82.7, 72.9, 57.4, 35.3, 26.4,

25.7, 18.2, -4.8, -5.2. IR (neat, cm⁻¹): 3309, 2930, 2857, 1709, 1251, 1078, 839, 780; HRMS (ESI/[M+H]⁺) calcd. for C₁₄H₂₂O₂Si: 250.1389, found 250.1392.

Synthesis of compd (\pm) -21

The general procedures of the cascade cyclization reaction were followed. (\pm)-**21** (a yellow oil, 0.25 g, 0.55 mmol, 55%): ¹H NMR (500 MHz, CDCl₃) δ 5.30 (d, J = 2.8 Hz, 1H), 5.24 (d, J = 2.3 Hz, 1H), 4.92 (t, J = 2.4 Hz, 1H), 2.89 – 2.85 (m, 1H), 2.78 (dd, J = 18.4, 9.3 Hz, 1H), 2.44 (dd, J = 18.6, 7.8 Hz, 1H), 2.34 – 2.29 (m, 2H), 2.16 – 2.10 (m, 1H), 1.99 (d, J = 11.9 Hz, 1H), 1.82 (d, J = 11.8 Hz, 1H), 1.65 – 1.52 (m, 1H), 0.88 (d, J = 2.6 Hz, 18H), 0.14 (d, J = 8.2 Hz, 6H), 0.00 (d, J = 7.9 Hz, 6H). ¹³C NMR (125 MHz, CDCl₃) δ 217.2, 205.8, 151.0, 112.9, 84.3, 74.4, 59.1, 40.0, 38.9, 37.3, 31.4, 27.8, 25.8, 18.2, 17.9, -2.87, -2.88, -4.58, -4.60. IR (neat, cm⁻¹): 2956, 2857, 1743, 1472, 1254, 1111, 838; HRMS (ESI/[M+H]⁺) calcd. for C₂₄H₄₂O₄Si₂: 450.2622, found 450.2629.

Synthesis of compd (\pm) -22

To a stirred solution of (\pm)-21 (100 mg, 0.22 mmol) in THF (2.5 mL) was added TBAF (0.45 mL of a 1 M solution in THF, 0.44 mmol) at 0 °C. The resulting mixture was stirred at 0 °C for 1 h and the reaction was quenched by addition of water (3 mL). The aq phase was extracted with ethyl acetate (5 mL × 3). The combined organic extracts were washed with brine, dried over Na₂SO₄, filtered and concentrated. Silica gel flash column chromatography (hexanes/ethyl acetate = 1:1) of the residue gave a yellow oil (64 mg, 0.19 mmol, 86%) as the product. (\pm)-22: ¹H NMR (500 MHz,

CDCl₃) δ 5.40 (d, J = 3.0 Hz, 1H), 5.38 (d, J = 3.0 Hz, 1H), 5.00 (s, 1H), 2.87-2.80 (m, 1H), 2.77 (dd, J = 9.5 Hz, 2.6 Hz, 1H), 2.49 (dd, J = 9.0 Hz, 3.0 Hz, 1H), 2.35 (dt, J = 7.0 Hz, 2.0 Hz, 1H), 2.29 – 1.01 (m, 2H), 2.05 (d, J = 12.0 Hz, 1H), 1.83 (d, J = 12.0 Hz, 1H), 1.72 – 1.65 (m, 1H), 0.89 (s, 9H), 0.15 (s, 3H), 0.01 (s, 3H). ¹³C NMR (125 MHz, CDCl₃) δ 217.1, 205.5, 150.6, 113.0, 84.5, 74.0, 58.9, 39.9, 38.4, 37.4, 31.2, 31.0, 29.6, 27.8, 25.7, 18.2, 1.0, -2.8, -2.9. IR (neat, cm⁻¹): 2950, 1749, 1523, 1109, 1003, 812, 716, 629; HRMS (ESI/[M+Na]⁺) calcd. for C₁₈H₂₈O₄Si: 336.1757, found 336.1759. The structure of (±)-22 was also characterized by X-ray crystallography.

Synthesis of compd (\pm) -23

To a stirred solution of **21** (1.0 g g, 2.22 mmol) in THF (25 mL) was added MeLi (8.9 mL of a 2.5 M solution in THF, 22.2 mmol) dropwise at rt. The resulting mixture was stirred at rt for 2 h, and the reaction was quenched by addition of H₂O (10 mL). The aq phase was extracted with ethyl acetate (50 mL × 3). The combined organic extracts were washed with brine, dried over Na₂SO₄, filtered and concentrated. Silica gel flash column chromatography (hexanes/ethyl acetate = 2:1) of the residue gave a yellow oil (0.60 g, 1.6 mmol, 73%), single diastereomer, the relative configurations were not determined) as the product. (\pm)-**23**: ¹H NMR (400 MHz, CDCl₃) δ 5.40 (d, J = 1.9 Hz, 1H), 5.34 (d, J = 2.8 Hz, 1H), 4.56 (s, 1H), 2.73 (dd, J = 17.7, 8.7 Hz, 1H), 2.01 – 1.92 (m, 1H), 1.90 – 1.75 (m, 3H), 1.75 – 1.65 (m, 3H), 1.56 – 1.49 (m, 1H), 1.36 (s, 3H), 1.22 (s, 3H), 0.90 (s, 13H), 0.07 (s, 7H). ¹³C NMR (100 MHz, CDCl₃) δ 153.4, 112.1, 82.8, 82.3, 76.0, 72.9, 57.2, 40.1, 37.0, 36.5, 35.2, 26.3, 26.0, 25.6, 23.4, 18.4, -2.4, -2.5. IR (neat, cm⁻¹): 2859, 1633, 1459, 1257, 1129, 824, 745, 669; HRMS (ESI/[M+Na]⁺) calcd. for C₁₈H₃₂O₄Si: 340.2070, found 340.2075.

Synthesis of compd (±)-24

To a stirred mixture of (\pm)-23 (50 mg, 0.14 mmol) in toluene (1.5 mL) was added an aq solution of TsOH (0.5 mL of a 1.8 M aq solution, 0.91 mmol) at rt. The reaction mixture was stirred at 110°C for 2 h, and the reaction was quenched by addition of a saturated NaHCO₃ aq solution (2 mL). The aq phase was extracted with ethyl acetate (10 mL× 3). The combined organic extracts were washed with brine, dried over Na₂SO₄, filtered and concentrated. Silica gel flash column chromatography (hexanes/ethyl acetate = 10:1) of the residue gave a yellow oil (21.6 mg, 0.1 mmol, 71%) as the product. (\pm)-24: ¹H NMR (500 MHz, CDCl₃) δ 5.50 (d, J = 1.2 Hz, 1H), 5.46 (d, J = 2.0 Hz, 1H), 5.26 (d, J = 2.4 Hz, 1H), 4.31 (s, 1H), 2.60 – 2.47 (m, 1H), 2.46 – 2.40 (m, 1H), 2.37 (d, J = 19.0 Hz, 1H), 2.14 (dd, J = 18.9, 1.1 Hz, 1H), 2.01 – 1.92 (m, 1H), 1.89 (dd, J = 13.3, 9.7 Hz, 1H), 1.77 – 1.74 (m, 3H), 1.72 – 1.68 (m, 1H), 1.14 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 211.3, 151.3, 141.9, 128.1, 113.1, 72.2, 55.3, 51.7, 40.0, 38.5, 35.6, 34.8, 16.4, 13.1. IR (neat, cm⁻¹): 2898, 1635, 1705, 1425, 1139, 1039, 796; HRMS (ESI/[M+Na]⁺) calcd. for C₁₄H₁₈O₂: 218.1307, found 218.1309. The structure of (\pm)-24 was also characterized by X-ray crystallography.

X-ray structures

Crystals of (\pm) -5b (CCDC-1563450) were obtained by recrystallization from n-hexane and CH_2Cl_2 .

Crystals of (\pm) -11a (CCDC-1563462) were obtained by recrystallization from n-hexane and CH_2Cl_2 .

Crystals of (\pm)-17b (CCDC-1563456) were obtained by recrystallization from n-hexane and CH₂Cl₂.

Crystals of (\pm)-22 (CCDC-1563454) were obtained by recrystallization from *n*-hexane and CH₂Cl₂.

Crystals of (\pm) -24 (CCDC-1563457) were obtained by recrystallization from n-hexane.

NMR Spectra

^{1}H and ^{13}C NMR spectra of (±)-3 in CDCl $_{3}$

^{1}H and ^{13}C NMR spectra of (±)-4 in CDCl₃

¹H an ¹³C NMR spectra of (±)-5a in CDCl₃

¹H and ¹³C NMR spectra of (±)-5b in CDCl₃

^{1}H and ^{13}C NMR spectra of (±)-7a and (±)-7b (a 1:2 mixture) in $CD_{3}OD$

¹H and ¹³C NMR spectra of (±)-9b (a 1:16 mixture) in CDCl₃

 1H and ^{13}C NMR spectra of 10 in CDCl $_3$

¹H and ¹³C NMR spectra of (±)-11a in CDCl₃

¹H and ¹³C NMR spectra of 12 in CDCl₃

¹H and ¹³C NMR spectra of 13 (a single diastereomer) in CDCl₃

¹H and ¹³C NMR spectra of (±)-15b (a single diastereomer) in CDCl₃

¹H and ¹³C NMR spectra of (±)-17a in CDCl₃

¹H and ¹³C NMR spectra of (±)-17b in CDCl₃

¹H and ¹³C NMR spectra of (±)-19a (single isomer) in CDCl₃

^{1}H and ^{13}C NMR spectra of (±)-20 in CDCl $_{3}$

¹H and ¹³C NMR spectra of (±)-21 in CDCl₃

 1H and ^{13}C NMR spectra of (±)-22 in CDCl $_3$

^{1}H and ^{13}C NMR spectra of (±)-23 (single diastereomer) in CDCl₃

¹H and ¹³C NMR spectra of (±)-24 in CDCl₃

References

- (1) Faron, K. L.; Wulff, W. D. J. Am. Chem. Soc. 1988, 110, 8727-8729.
- (2) Bergman, J.; Pelcman, B. J. Org. Chem. 1989, 54, 824-828.
- (3) Horino, Y.; Kimura, M.; Tanaka, S.; Okajima, T.; Tamaru, Y. *Chem. Eur. J.* **2003**, *9*, 2419-2438.
- (4) Zhu, L.; Han, Y.; Du, G.; Lee, C. S. Org. Lett. 2013, 15, 524-527.
- (5) Torii, Sigeru; Tanaka, Hideo; Kudai, Toshihiro; Watanabe, S. *Chem. Lett.* **1979**, 147-150.
- (6) Schick, H. e-EROS Encycl. Reag. Org. Synth. 2001, 1-2.