Supporting Information

A Tunable Cyclization Strategy for the Synthesis of Zizaene, allo-Cedrane, seco-Kaurane and seco-Atesane type Skeletons

Qianqian Yang, Wenjing Ma, Gaopeng Wang, Wenli Bao, Xiaoshu Dong, Xuefeng Liang, Lizhi Zhu* and Chi-Sing Lee*
Laboratory of Chemical Genomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen University Town, Xili, Shenzhen 518055, China, e-mail: lizc@szpku.edu.cn

Table of Contents

Generation information...S2
Synthetic Procedures..S2-S11
X-ray structures..S12-S16
NMR spectra..S17-S35
References.. S 36

General Information

All air and water sensitive reactions were carried out under a nitrogen atmosphere with dry solvents under anhydrous conditions, unless otherwise noted. All the chemicals were purchased commercially and used without further purification. Anhydrous THF and was distilled from sodium-benzophenone, toluene was distilled from sodium, and dichloromethane was distilled from calcium hydride. Yields refer to chromatographically, unless otherwise stated. Reactions were monitored by thin-layer chromatography (TLC) carried out on 0.25 mm silica gel plates ($60 \mathrm{~F}-254$) that were analyzed by staining with $\mathrm{KMnO}_{4}\left(200 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}\right.$ of $1.5 \mathrm{~g} \mathrm{KMnO}_{4}, 10 \mathrm{~g} \mathrm{~K}_{2} \mathrm{CO}_{3}$ and 1.25 mL of 10% aq NaOH), fluorescence upon 254 nm irradiation or by staining with anisaldehyde $\left(450 \mathrm{~mL}\right.$ of $95 \% \mathrm{EtOH}, 25 \mathrm{~mL}$ of conc. $\mathrm{H}_{2} \mathrm{SO}_{4}, 15 \mathrm{~mL}$ of acetic acid, and 25 mL of anisaldehyde). Silica gel (60 , particle size $0.040-0.063 \mathrm{~mm}$) was used for flash chromatography. IR spectra were obtained using FT-IR Spectrometer. NMR spectra were recorded on either a $300\left({ }^{1} \mathrm{H}: 300 \mathrm{MHz},{ }^{13} \mathrm{C}: 75 \mathrm{MHz}\right), 400\left({ }^{1} \mathrm{H}: 400\right.$ $\mathrm{MHz},{ }^{13} \mathrm{C}: 100 \mathrm{MHz}$), or $500\left({ }^{1} \mathrm{H}: 500 \mathrm{MHz},{ }^{13} \mathrm{C}: 125 \mathrm{MHz}\right)$. The following abbreviations were used to explain the multiplicities: $\mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{doublet}, \mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{b}=$ broad. High resolution mass spectra were obtained from a MALDI-TOF mass spectrometer. Crystallographic data were obtained from a single crystal X-ray diffractometer.

Synthetic Procedures

General procedure for synthesis of dienes $2,{ }^{1} 6,{ }^{2} 8,{ }^{3} 10$ and 12

To a stirred solution of the diketone (56.1 mmol) and TEA ($75 \mathrm{~mL}, 560 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mathrm{~mL})$ was added TMSOTf, TBSOTf or TIPSOTf $(145 \mathrm{mmol})$ at $0^{\circ} \mathrm{C}$. The resulting solution was stirred at rt for 11 h and the concentrated. The remaining brown liquid was diluted with hexanes (300 mL) and wait until the layers separated. The upper layer was decanted and the lower layer was extracted with hexanes ($300 \mathrm{~mL} \times$ 3). After reducing the volume of the combined organic extracts to about 100 mL , the
solution was filtered through a plug of silica gel and the silica gel was washed by hexanes ($300 \mathrm{~mL} \times 3$). The combined filtrates and washings were concentrated to give the product dienes. $\mathbf{2}^{1}$ (a colorless oil, $17.3 \mathrm{~g}, 55.0 \mathrm{mmol}, 98 \%$ from 2,3-butanedione). $\mathbf{6}^{2}$ (a colorless oil, $9.6 \mathrm{~g}, 42.1 \mathrm{mmol}, 75 \%$ from 2,3-butanedione). $\mathbf{8}^{3}$ (a colorless oil, $22.0 \mathrm{~g}, 55.1 \mathrm{mmol}, 98 \%$ from 2,3-butanedione). 10 (a colorless oil, $18.9 \mathrm{~g}, 55.5 \mathrm{mmol}$, 93% from 1,2-cyclohexanedione): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.00(\mathrm{~s}, 2 \mathrm{H}), 2.07$ (dd, $J=3.0,1.6 \mathrm{~Hz}, 4 \mathrm{H}), 0.95(\mathrm{~s}, 19 \mathrm{H}), 0.16(\mathrm{~s}, 12 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $146.9,105.2,26.0,25.7,22.5,-3.0,-4.5$. IR (neat, cm^{-1}): 2930, 2858, 1724, 1472, 1255, 1078, 837, 782; HRMS (ESI/[M+H] ${ }^{+}$) calcd. for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}_{2}$: 340.2254, found 340.2258. 12 (a colorless oil, $14.7 \mathrm{~g}, 43.1 \mathrm{mmol}, 78 \%$ from 3-methylcyclopentane-1,2-dione): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $84.97(\mathrm{~d}, J=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.59(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~s}, 3 \mathrm{H})$, $0.21(\mathrm{~s}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.02(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 152.1, 145.4, 116.9, 99.2, 73.5, 34.7, 26.0, 25.7, 18.5, 12.7, -2.9, -4.5. IR (neat, cm^{-1}): 2947, 2752, 1756, 1439, 1268, 1029, 857, 753; HRMS (ESI/[M+H ${ }^{+}$) calcd. for $\mathrm{C}_{18} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{Si}_{2}$: 340.2254 , found 340.2259 .

Synthesis of compd (\pm)-3

To a stirred mixture of $\mathbf{1}^{4}(1.07 \mathrm{~g}, 8.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added $\mathrm{Me}_{2} \mathrm{AlCl}$ $(9.8 \mathrm{~mL}, 8.8 \mathrm{mmol})$ dropwise at $0^{\circ} \mathrm{C}$ over 0.5 h . The mixture was then treated with a solution of $\mathbf{2}^{1}(7.55 \mathrm{~g}, 24.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ at $-78{ }^{\circ} \mathrm{C}$ over 1 h . After stirring at $-20^{\circ} \mathrm{C}$ for 1 h , the reaction was quenched by addition of a saturated NaHCO_{3} aq solution (20 mL), and the aq phase was extracted with ethyl acetate (100 $\mathrm{mL} \times 3$). The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. Silica gel flash column chromatography (hexanes/ethyl acetate $=200: 1)$ of the residue gave a yellow oil $(2.2 \mathrm{~g}, 4.9 \mathrm{mmol}, 61 \%)$ as the
product. $(\pm)-3:{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.79(\mathrm{dd}, J=16.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62-$ $2.43(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.23(\mathrm{~m}, 4 \mathrm{H}), 2.08-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 3 \mathrm{H}), 0.91(\mathrm{~s}$, $9 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.13-0.12$, (d, $J=3 \mathrm{~Hz}, 6 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 211.1,129.8,127.1,81.1,77.5,77.1,76.6,70.2,52.2,37.8,37.1,35.2,33.0$, 27.6, 26.3, 25.0, 24.5, 22.7, 18.2, -3.3, -3.8. IR (neat, cm^{-1}): 3289, 2963, 2930, 1707, 1251, 1219, 838, 780, 676; HRMS (ESI/[M+H] ${ }^{+}$) calcd. for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{Si}_{2}: 448.2829$, found 448.2835. If the reaction mixture is stirred at rt for 1 h , another white solid (1.5 g, $4.5 \mathrm{mmol}, 56 \%$) will be obtained as the major side-product. $(\pm)-4$: ${ }^{1} \mathrm{H}$ NMR (500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 2.62(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 4 \mathrm{H}), 2.03-2.01(\mathrm{t}, J=5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 1 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.72(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-$ $1.62(\mathrm{~m}, 3 \mathrm{H}), 1.40-1.48(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.79(\mathrm{~s}, 9 \mathrm{H}), 0.29(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}$, $3 \mathrm{H}), 0.09(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.6,89.6,84.9,80.3,69.8,45.8$, $44.1,37.0,32.5,27.0,26.2,25.8,24.3,18.4,18.4,18.3,17.9,-1.7,-2.1,-2.6,-3.2$. IR (neat, cm^{-1}): 2970, 2680, 1769, 1439, 1369, 1028, 718, 665; HRMS (ESI/[M+Na] ${ }^{+}$) calcd. for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{Si}_{2}: 448.2829$, found 448.2838 .

General procedures for carbocyclization of (\pm)-3 (Table 1)

To a stirred mixture of $(\pm)-\mathbf{3}(100 \mathrm{mg}, 0.22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added the indicated Lewis acid $(0.11 \mathrm{mmol})$ at the indicated temp. After stirring at the specified temp for the specified time, the reaction was quenched by addition of a saturated NaHCO_{3} aq solution (2 mL). The aq phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. Silica gel flash column chromatography (hexanes/ethyl acetate $=$ 15:1) of the residue gave a white solid as the cyclized product(s) in the indicated ratio. With $\mathrm{PtCl}_{2}\left(0.5\right.$ equiv) $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $-78{ }^{\circ} \mathrm{C}$, $52.8 \mathrm{mg}(0.16 \mathrm{mmol}, 72 \%)$ of a $7.8: 1$ mixture of $(\pm)-\mathbf{5 a} /(\pm)-\mathbf{5 b}$ was obtained (Table 1, entry 23). (\pm)-5a: ${ }^{1} \mathrm{H}$ NMR (500 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 5.14(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 3.55(\mathrm{dt}, J=17.9,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{q}$, $J=10,1 \mathrm{H}), 2.44-2.29(\mathrm{~m}, 4 \mathrm{H}), 2.25-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.12-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.89(\mathrm{dd}, J$ $=13.6,11.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.22(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 209.9, 205.7, 148.8, 108.6, 88.3, 54.6, 45.4, 43.2, 42.3, $38.8,35.9,29.3,25.8,18.4,-2.7,-2.9$. IR (neat, $\left.\mathrm{cm}^{-1}\right): 2953,2930,2856,1735,1710$, 1251, 1163, 1123, 893; HRMS (ESI/[M+H] $]^{+}$) calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}: 334.1964$, found 334.1968. (\pm)-5b (a white solid): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.39$ (dd, $J=3.5,2.3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=18.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dt}, J=17.7$, $2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{ddt}, J=17.7,3.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.38-2.31(\mathrm{~m}$, $1 \mathrm{H}), 2.25-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 1 \mathrm{H}), 2.19-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.10-2.04(\mathrm{~m}, 1 \mathrm{H}), 1.86$ (dd, $J=13.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.53(\mathrm{~m}, 3 \mathrm{H}), 0.92$ (s, 18H), $0.20(\mathrm{~s}, 6 \mathrm{H}), 0.09$ (s, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.6,206.6,142.7,110.3,82.0,48.0,42.4,41.2$, $40.4,38.2,36.7,30.1,26.1,25.6,18.8,-2.5$. IR (neat, cm^{-1}): 2926, 2854, 1733, 1706, 1245, 1202, 1174, 1139, 833, 776; HRMS (ESI/[M+Na] ${ }^{+}$) calcd. for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}$: 334.1964, found 334.1969 . The structure of $(\pm)-\mathbf{5 b}$ was also characterized by X-ray crystallography.

General procedure for the cascade cyclization reactions (Table 2)

To a stirred solution of enone $\left(\mathbf{1},{ }^{4}(\pm)-\mathbf{1 4}^{4}, \mathbf{1 6}^{5}\right.$ or $\left.\mathbf{1 8}^{6}\right)(1.0 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added anhydrous $\mathrm{ZnBr}_{2}(0.22 \mathrm{~g}, 1.0 \mathrm{mmol})$ at rt and diene $\left(\mathbf{2},{ }^{1} \mathbf{6},{ }^{2} \mathbf{8},{ }^{3} \mathbf{1 0}\right.$ or $\left.\mathbf{1 2}\right)$ (2.0 mmol). The resulting mixture was stirred at rt for 3 h , and the reaction was quenched by addition of a saturated NaHCO_{3} aq solution. The aq phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. Silica gel flash column chromatography (hexanes/ethyl acetate $=100: 1$) of the residue provided the cascade cyclized product(s). (\pm)-5b (a white solid, $0.31 \mathrm{~g}, 0.93 \mathrm{mmol}, 93 \%$ from 1 and $\mathbf{2}$): see the above characterization data. (\pm)-7a and (\pm)-7b (a white solid, $77.1 \mathrm{mg}, 0.35 \mathrm{mmol}, 35 \%$ from 1 and 6, a 1:2 mixture): ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.32(\mathrm{~d}, J=2.9 \mathrm{~Hz}$, 0.7 H), $5.13(\mathrm{t}, J=2.7 \mathrm{~Hz}, 0.3 \mathrm{H}), 5.06(\mathrm{~s}, 0.3 \mathrm{H}), 5.02(\mathrm{~s}, 0.7 \mathrm{H}), 3.51(\mathrm{dt}, J=18.0,2.8$ $\mathrm{Hz}, 0.3 \mathrm{H}), 3.31(\mathrm{t}, J=1.5 \mathrm{~Hz}, 0.7 \mathrm{H}), 3.17(\mathrm{dd}, J=19.0,3.5 \mathrm{~Hz}, 0.7 \mathrm{H}), 2.88(\mathrm{q}, J=10$
$\mathrm{Hz}, 0.3 \mathrm{H}), 2.81$ (dt, $J=17.7,2.5 \mathrm{~Hz}, 0.7 \mathrm{H}), 2.68-2.58(\mathrm{~m}, 1.4 \mathrm{H}), 2.55-2.43(\mathrm{~m}$, 0.7 H), 2.45 (dd, $J=18.0,2.1 \mathrm{~Hz}, 0.3 \mathrm{H}), 2.27-2.15(\mathrm{~m}, 3.5 \mathrm{H}), 2.07-2.06(\mathrm{~m}, 0.9 \mathrm{H})$, $1.95-1.89(\mathrm{~m}, 0.3 \mathrm{H}), 1.83(\mathrm{dd}, J=11.7,1.6 \mathrm{~Hz}, 0.9 \mathrm{H}), 1.77-1.62(\mathrm{~m}, 1.8 \mathrm{H}), 1.57$ (d, $J=6.4 \mathrm{~Hz}, 0.7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 211.6,210.7,208.2,206.9$, $149.0,143.2,108.4,107.0,85.8,79.1,53.9,45.5,42.5,41.5,41.0,40.8,38.8,38.2$, 37.7, 36.4, 35.9, 29.3, 28.8. IR (neat, cm^{-1}): 3474, 2930, 1730, 1707, 1437, 1123, 1064, 898; HRMS (ESI/[M+Na] ${ }^{+}$) calcd. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{3}: 220.1099$, found 220.1102. (\pm)-9a and (\pm)-9b (a white solid, $0.29 \mathrm{~g}, 0.78 \mathrm{mmol}, 78 \%$ from $\mathbf{1}$ and $\mathbf{8}$, a $1: 16$ mixture, only the signals of $(\pm)-9 b$ were listed). ${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.40(\mathrm{~d}$, $J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=18.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dt}, J=$ 17.7, 2.5 Hz, 1H), 2.61 (ddt, $J=17.7,3.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.41$ (m, 1H), 2.36-2.29 $(\mathrm{m}, 1 \mathrm{H}), 2.22-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.18-2.10(\mathrm{~m}, 1 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.81$ $(\mathrm{m}, 1 \mathrm{H}), 1.69-1.66,(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.20-1.12(\mathrm{~m}, 3 \mathrm{H}), 1.02(\mathrm{dd}, J=7.4$, $1.3 \mathrm{~Hz}, 18 \mathrm{H}$) ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 210.8,206.4,142.5,110.4,81.9,77.3$, 77.1, 76.8, 47.9, 42.4, 41.0, 40.4, 38.2, 36.8, 30.0, 25.6, 18.6, 13.8. IR (neat, cm^{-1}): 2940, 2864, 1706, 1462, 1246, 1198, 996, 883, 669, 641; HRMS (ESI/[M+H ${ }^{+}$) calcd. for $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}: 376.2434$, found 376.2439. (\pm)-11a (a white solid, $0.28 \mathrm{~g}, 0.79 \mathrm{mmol}$, 79% from 1 and 10): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.39(\mathrm{dd}, J=3.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}$), 5.13 (dd, $J=2.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{q}, ~ J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.58(\mathrm{~m}, 1 \mathrm{H}), 2.58-$ $2.54(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.25(\mathrm{q}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.00(\mathrm{~m}, 2 \mathrm{H}), 2.01$ $-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.60-1.47(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H})$, $0.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 213.2,211.9,146.4,113.2,87.0,77.2$, $76.8,76.5,52.6,49.1,47.9,46.0,40.8,37.8,25.6,20.9,19.1,18.1,13.9,-2.9,-3.4$. IR (neat, cm^{-1}): 2941, 2865, 1735, 1696, 1465, 1199, 1174, 882, 665; HRMS ($\mathrm{ESI} /[\mathrm{M}+\mathrm{H}]^{+}$) calcd. for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}: 360.2121$, found 360.2129. The structure of (\pm)-11a were also characterized by X-ray crystallography. 13: (a white solid, 0.13 g , $0.35 \mathrm{mmol}, 35 \%$ from $\mathbf{1}$ and $\mathbf{1 2}$, a single diastereomer, relative configurations were not determined): ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.30-3.11(\mathrm{~m}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=17.2$ Hz, 1H), $2.71-2.59$ (m, 2H), 2.53 (ddd, $J=17.2,5.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.43$ (dd, $J=14.0$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ (td, $J=13.7,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, 2.19-2.11 (m, 2H), 2.06 - 1.98 (m, 1H),
$1.96(\mathrm{~s}, 3 \mathrm{H}), 1.91(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.68(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.48(\mathrm{~m}, 1 \mathrm{H})$, 1.40 (ddd, $J=24.8,12.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.95$ (s, 9H), 0.17 (d, $J=1.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.5,204.2,149.6,81.8,77.3,77.0,76.8,69.5,50.2$, $43.6,42.0,41.3,33.3,25.7,24.9,18.3,15.6,14.7,-4.0$. IR (neat, cm^{-1}): 3292, 2930, 1706, 1710, 1645, 1391, 1340, 1220, 841; HRMS (ESI/[M+H $]^{+}$) calcd. for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{3} \mathrm{Si}: 360.2121$, found 360.2125 . (\pm)-15b (a white solid, $0.36 \mathrm{~g}, 0.79 \mathrm{mmol}, 79 \%$ from $(\pm) \mathbf{- 1 4}$ and $\mathbf{2}$, a single diastereomer, the relative configuration of the OTBS was not determined): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.60(\mathrm{~s}, 1 \mathrm{H}), 5.28(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}$, 1H), $2.96-2.90(\mathrm{~m}, 1 \mathrm{H}), 2.71(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{dd}, J=$ $19.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 2,06-1.91(\mathrm{~m}, ~, 1 \mathrm{H}), 1.87(\mathrm{dd}, J=12.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{dd}, J=$ $12.9,6.0 \mathrm{~Hz}, 10 \mathrm{H}), 1.26(\mathrm{~s}, 2 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 0.19(\mathrm{~s}, 6 \mathrm{H}), 0.10(\mathrm{~d}, J=$ $4.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 209.5,206.1,147.4,115.0,81.6,77.5$, $77.0,76.6,71.3,53.5,40.1,39.7,38.4,31.9,29.7,28.3,26.1,23.4,18.7,18.3,-2.5$, -3.9, -4.4. IR (neat, cm^{-1}): 2930, 2955, 2856, 1741, 1713, 1253, 1148, 1092, 858; HRMS (ESI/[M+Na] ${ }^{+}$) calcd. for $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si}_{2}$: 464.2778, found 464.2779. (\pm)-17a (a yellow oil, $0.18 \mathrm{~g}, 0.57 \mathrm{mmol}, 57 \%$ from 16 and 2). ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $5.26(\mathrm{dd}, J=3.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 3.10(\mathrm{dt}, J=16.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J$ $=18.7,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53-2.45(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=18.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.19$ (m, 4H), $2.06(\mathrm{dd}, J=11.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{dd}, J=11.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.68$ $(\mathrm{m}, 1 \mathrm{H}) .0 .89(\mathrm{~s}, 9 \mathrm{H}), 0.16(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.125 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 217.3$, 206.1, 147.6, 111.2, 86.9, 54.1, 41.3, 40.7, 40.2, 38.5, 37.7, 27.9, 25.8, 18.3, -2.9. IR (neat, cm^{-1}): 2955, 2928, 2855, 1769, 1735, 1463, 1247, 1167, 1053, 837, 778; HRMS ($\mathrm{ESI} /[\mathrm{M}+\mathrm{H}]^{+}$) calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$: 320.1808, found 320.1818. (\pm)-17b (a yellow oil, $44.8 \mathrm{mg}, 0.14 \mathrm{mmol}, 14 \%$ from 16 and 2): ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.49(\mathrm{~s}, 1 \mathrm{H})$, $5.07(\mathrm{~s}, 1 \mathrm{H}), 2.71(\mathrm{dt}, J=16.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\mathrm{dd}, J=18.6,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.57-$ $2.46(\mathrm{~m}, 2 \mathrm{H}), 2.41-2.13(\mathrm{~m}, 5 \mathrm{H}), 1.86(\mathrm{dd}, J=13.0,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.63(\mathrm{~m}, 1 \mathrm{H})$, $0.93(\mathrm{~s}, 9 \mathrm{H}), 0.21(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 216.2, 206.8, $142.5,112.2,82.1,48.2,40.5,40.2,39.3,37.8,36.0,26.5,26.1,18.8,-2.5$. IR (neat, cm^{-1}): 2950, 2855, 1743, 1471, 1248, 1154, 1051, 837, 776, 672; HRMS (ESI/[M+H] $)$ calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{Si}$: 320.1808 , found 320.1812 . The structure of (\pm)-17b was also
characterized by X-ray crystallography. (\pm)-19a (a yellow oil, $0.16 \mathrm{~g}, 0.45 \mathrm{mmol}, 45 \%$ from 18 and 2 , single isomer, the geometry of the alkene was not determined): ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.77-5.75(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{q}, 1 \mathrm{H}), 3.00(\mathrm{dt}, J=18.0,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.61-2.50(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{~d}, J=15.0,1 \mathrm{H}), 2.29-2.13(\mathrm{~m}, 3 \mathrm{H}), 1.88(\mathrm{dd}, J=19.5$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.67(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{t}, J=7.2,3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $217.0,211.4,142.3,123.8,73.5,51.0,46.2,38.3,37.6,36.0,32.8,29.7,25.2,23.4$, 12.3. IR (neat, cm^{-1}): 3201, 2984, 1749, 1398, 1204, 1003, 932, 869, 790, 621; HRMS (ESI/[M+Na] ${ }^{+}$) calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{3}: 234.1256$, found 234.1263.

Synthesis of compd (\pm)-20

To a stirred mixture of 3-(trimethylsilyl) propiolaldehyde ${ }^{4}$ ($5 \mathrm{~g}, 39.6 \mathrm{mmol}$), imidazole ($3.6 \mathrm{~g}, 52.8 \mathrm{mmol}$) in THF (50 mL) and a 1 N aq solution of $\mathrm{NaHCO}_{3}(50$ mL) was added 2-cyclopentenone ($2.2 \mathrm{~mL}, 26.4 \mathrm{mmol}$) dropwise at rt . The resulting mixture was stirred at rt for 1.5 h , and the reaction was quenched by addition of a 1 N HCl aq solution (50 mL). The aq phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. To a stirred solution of the residue in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ was added imidazole ($1.5 \mathrm{~g}, 22.2 \mathrm{mmol}$) and $\operatorname{TBSCl}(2.5 \mathrm{~g}, 16.5 \mathrm{mmol})$. The resulting mixture was stirred at rt for 3 h , and the reaction was quenched by addition of a saturated NaHCO_{3} aq solution $(20 \mathrm{~mL})$. The aq phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL} \times 3)$ and the combined organic extracts were washed with brine, dried over MgSO_{4}, filtered and concentrated. Silica gel flash column chromatography (hexanes/ethyl acetate $=20: 1$) of the residue gave a yellow oil ($3.3 \mathrm{~g}, 13.2 \mathrm{mmol}, 50 \%$ in 2 steps) as the product. (\pm)-20: ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.56(\mathrm{~m}, 1 \mathrm{H}), 5.13-5.12$ $(\mathrm{m}, 1 \mathrm{H}), 2.61-2.60(\mathrm{~m}, 2 \mathrm{H}), 2.50-2.42(\mathrm{~m}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 10 \mathrm{H}), 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 206.4,159.7,146.0,82.7,72.9,57.4,35.3,26.4$,
25.7, 18.2, -4.8, -5.2. IR (neat, cm^{-1}): 3309, 2930, 2857, 1709, 1251, 1078, 839, 780; HRMS (ESI/[M+H] ${ }^{+}$) calcd. for $\mathrm{C}_{14} \mathrm{H}_{22} \mathrm{O}_{2} \mathrm{Si}: 250.1389$, found 250.1392.

Synthesis of compd (\pm)-21

The general procedures of the cascade cyclization reaction were followed. (\pm)-21 (a yellow oil, $0.25 \mathrm{~g}, 0.55 \mathrm{mmol}, 55 \%$) : ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 5.30$ (d, $J=2.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.78$ (dd, $J=18.4,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ (dd, $J=18.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.16-$ $2.10(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{~d}, J=11.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.82(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.65-1.52(\mathrm{~m}$, $1 \mathrm{H}), 0.88(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 18 \mathrm{H}), 0.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 6 \mathrm{H}), 0.00(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 217.2,205.8,151.0,112.9,84.3,74.4,59.1,40.0,38.9$, $37.3,31.4,27.8,25.8,18.2,17.9,-2.87,-2.88,-4.58,-4.60$. IR (neat, cm^{-1}): 2956, 2857, 1743, 1472, 1254, 1111, 838; HRMS (ESI/[M+H $]^{+}$) calcd. for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{Si}_{2}$: 450.2622 , found 450.2629 .

Synthesis of compd (\pm)-22

To a stirred solution of (\pm)-21 ($100 \mathrm{mg}, 0.22 \mathrm{mmol}$) in THF $(2.5 \mathrm{~mL})$ was added TBAF (0.45 mL of a 1 M solution in THF, 0.44 mmol) at $0^{\circ} \mathrm{C}$. The resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and the reaction was quenched by addition of water (3 mL). The aq phase was extracted with ethyl acetate $(5 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. Silica gel flash column chromatography (hexanes/ethyl acetate $=1: 1$) of the residue gave a yellow oil ($64 \mathrm{mg}, 0.19 \mathrm{mmol}, 86 \%$) as the product. $(\pm)-22:{ }^{1} \mathrm{H}$ NMR (500 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 5.40(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.38(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 2.87-2.80(\mathrm{~m}$, $1 \mathrm{H}), 2.77$ (dd, $J=9.5 \mathrm{~Hz}, 2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.49$ (dd, $J=9.0 \mathrm{~Hz}, 3.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.35 (dt, $J=$ $7.0 \mathrm{~Hz}, 2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-1.01(\mathrm{~m}, 2 \mathrm{H}), 2.05(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 1 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.15(\mathrm{~s}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (125 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 217.1,205.5,150.6,113.0,84.5,74.0,58.9,39.9,38.4,37.4,31.2$, 31.0, 29.6, 27.8, 25.7, 18.2, 1.0, -2.8, -2.9. IR (neat, cm^{-1}): 2950, 1749, 1523, 1109, 1003, 812, 716, 629; HRMS (ESI/[M+Na] ${ }^{+}$) calcd. for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{Si}: 336.1757$, found 336.1759. The structure of $(\pm)-\mathbf{2 2}$ was also characterized by X-ray crystallography.

Synthesis of compd (\pm)-23

To a stirred solution of $\mathbf{2 1}(1.0 \mathrm{~g}$ g, 2.22 mmol$)$ in THF (25 mL) was added MeLi (8.9 mL of a 2.5 M solution in THF, 22.2 mmol) dropwise at rt . The resulting mixture was stirred at rt for 2 h , and the reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$. The aq phase was extracted with ethyl acetate $(50 \mathrm{~mL} \times 3)$. The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. Silica gel flash column chromatography (hexanes/ethyl acetate $=2: 1$) of the residue gave a yellow oil ($0.60 \mathrm{~g}, 1.6 \mathrm{mmol}, 73 \%$), single diastereomer, the relative configurations were not determined) as the product. (\pm)-23: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.40(\mathrm{~d}, J=1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.34(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~s}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=17.7,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-$ $1.92(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.56-1.49(\mathrm{~m}, 1 \mathrm{H}), 1.36(\mathrm{~s}$, $3 \mathrm{H}), 1.22(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 13 \mathrm{H}), 0.07(\mathrm{~s}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 153.4$, $112.1,82.8,82.3,76.0,72.9,57.2,40.1,37.0,36.5,35.2,26.3,26.0,25.6,23.4,18.4$, $-2.4,-2.5$. IR (neat, cm^{-1}): 2859, 1633, 1459, 1257, 1129, 824, 745, 669; HRMS (ESI/[M+Na] ${ }^{+}$) calcd. for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{Si}: 340.2070$, found 340.2075.

Synthesis of compd (\pm)-24

$(\pm)-23$
$(\pm)-24$
To a stirred mixture of $(\pm) \mathbf{- 2 3}(50 \mathrm{mg}, 0.14 \mathrm{mmol})$ in toluene $(1.5 \mathrm{~mL})$ was added an aq solution of $\mathrm{TsOH}(0.5 \mathrm{~mL}$ of a 1.8 M aq solution, 0.91 mmol$)$ at rt . The reaction mixture was stirred at $110^{\circ} \mathrm{C}$ for 2 h , and the reaction was quenched by addition of a saturated NaHCO_{3} aq solution (2 mL). The aq phase was extracted with ethyl acetate ($10 \mathrm{~mL} \times 3$). The combined organic extracts were washed with brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated. Silica gel flash column chromatography (hexanes/ethyl acetate $=10: 1$) of the residue gave a yellow oil $(21.6 \mathrm{mg}, 0.1 \mathrm{mmol}$, 71%) as the product. (\pm)-24: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.50(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, $5.46(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~s}, 1 \mathrm{H}), 2.60-2.47(\mathrm{~m}, 1 \mathrm{H})$, $2.46-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.37(\mathrm{~d}, J=19.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{dd}, J=18.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.01-$ $1.92(\mathrm{~m}, 1 \mathrm{H}), 1.89(\mathrm{dd}, J=13.3,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.68(\mathrm{~m}$, $1 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 211.3,151.3,141.9,128.1,113.1$, $72.2,55.3,51.7,40.0,38.5,35.6,34.8,16.4,13.1$. IR (neat, cm^{-1}): 2898, 1635, 1705, 1425, 1139, 1039, 796; HRMS (ESI/[M+Na] ${ }^{+}$) calcd. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{2}: 218.1307$, found 218.1309. The structure of $(\pm)-\mathbf{2 4}$ was also characterized by X-ray crystallography.

X-ray structures

Crystals of $(\pm) \mathbf{- 5 b}$ (CCDC-1563450) were obtained by recrystallization from n-hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Crystals of (\pm)-11a (CCDC-1563462) were obtained by recrystallization from n-hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Crystals of (\pm)-17b (CCDC-1563456) were obtained by recrystallization from n-hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

Crystals of (\pm)-22 (CCDC-1563454) were obtained by recrystallization from n-hexane and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

$(\pm)-22$

Crystals of (\pm)-24 (CCDC-1563457) were obtained by recrystallization from n-hexane.

(\pm-24

NMR Spectra

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (\pm) - 3 in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $(\pm)-4$ in CDCl_{3}

${ }^{1} \mathrm{H}$ an ${ }^{13} \mathrm{C}$ NMR spectra of $(\pm)-5 \mathrm{a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $(\pm)-5 \mathrm{~b}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $(\pm)-7 \mathrm{a}$ and $(\pm)-7 \mathrm{~b}$ (a 1:2 mixture) in $\mathrm{CD}_{3} \mathrm{OD}$

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (\pm)-9b (a $\mathbf{1 : 1 6}$ mixture) in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 10 in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (\pm) - $\mathbf{1 1} \mathrm{a}$ in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of 12 in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $\mathbf{1 3}$ (a single diastereomer) in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (\pm) - $\mathbf{1 5 b}$ (a single diastereomer) in CDCl_{3}

11

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (\pm) - 17 a in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (\pm) - 17 b in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (\pm)-19a (single isomer) in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $(\pm)-20$ in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $(\pm)-21$ in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $(\pm)-22$ in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of (\pm) - 23 (single diastereomer) in CDCl_{3}

${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of $(\pm)-24$ in CDCl_{3}

References

(1) Faron, K. L.; Wulff, W. D. J. Am. Chem. Soc. 1988, 110, 8727-8729.
(2) Bergman, J.; Pelcman, B. J. Org. Chem. 1989, 54, 824-828.
(3) Horino, Y.; Kimura, M.; Tanaka, S.; Okajima, T.; Tamaru, Y. Chem. Eur. J. 2003, 9, 2419-2438.
(4) Zhu, L.; Han, Y.; Du, G.; Lee, C. S. Org. Lett. 2013, 15, 524-527.
(5) Torii, Sigeru; Tanaka, Hideo; Kudai, Toshihiro; Watanabe, S. Chem. Lett. 1979, 147-150.
(6) Schick, H. e-EROS Encycl. Reag. Org. Synth. 2001, 1-2.

