SUPPORTING INFORMATION

A Classic, Azo-Dye Agglomeration System: Evidence for Slow, Continuous Nucleation, Autocatalytic Agglomerative Growth, Plus the Effects of Dust-Removal by Microfiltration on the Kinetics

Saim Özkar,^{*a*} Richard G. Finke^{*,*b*}

^a Department of Chemistry, Middle East Technical University, 06800 Ankara, Turkey

^b Department of Chemistry, Colorado State University, Fort Collins, CO 80523 USA

S1 Derivation of the Kinetic Equations Employed in the Main Text

The kinetics derivation which follows refers back to Scheme 3 of the main text. The relevant kinetic equations, derived based on the mechanism provided in Scheme 3, are the following:

$$-\frac{d[A]}{dt} = \frac{d[B]}{dt} = \frac{1}{1/n} \frac{d[B_n]}{dt} = k_1[A] + k_2[A][B]$$
(S1)

Since the concentration of water does practically not change during the reaction the constant $[H_2O]$ is absorbed into the apparent rate constants k_1 and k_2 .

What is actually monitored is the absorbance at 475 nm, A_{475} , assigned in the original 1978 publication¹ to the agglomerated dye, B_n . By Beer's law we can write the following equations: What we need are expressions for $[A]_t$, $[B]_t$, and $[B]_{\infty}$ in terms of A_{475} measurable.

$$A_{475} = \varepsilon_{475} b [B_n]$$
, but since $[B] = \frac{1}{n} [B_n]$, that is, $[B_n] = n [B]$ (S2a)

$$A_{475} = \varepsilon_{475} b n[B], or$$
 (S2b)

$$[B]_t = \frac{1}{nb\varepsilon_{475}} (A_{475})_t \tag{S2c}$$

and since $n[B]_{\infty} = [B_n]_{\infty}$ and for a reaction with single product by mass balance in eq 5 of Scheme 3 in the main text, $[B]_{\infty} = [A]_{o}$

$$[A]_o = [B]_{\infty} = \frac{1}{nb\varepsilon_{475}} (A_{475})_{\infty}$$
(S2d)

Next we need expressions for $[A]_o$ and $[A]_t$ in terms of A_{475} measurable. Our mass balance and initial reactant, $[A]_o$, vs final product, $[B]_{\infty}$, equations give us the needed results:

$$[\mathbf{A}]_{o} = [\mathbf{A}]_{t} + [\mathbf{B}]_{t}$$
(S3a)

$$[A]_{o} = [B]_{\infty} \text{ so}$$
(S3b)

$$[\mathbf{A}]_t = [\mathbf{B}]_{\infty} - [\mathbf{B}]_t \tag{S3c}$$

Now combining eqs (S8c), (S7c) and (S7d) yields eq (S4):

$$[A]_t = \frac{1}{nb\varepsilon_{475}} \left((A_{475})_{\infty} - (A_{475})_t \right)$$
(S4)

We can now combine eq (S4) with eq (S1) to yield eqs (S5)

$$\frac{d[B]}{dt} = \frac{1}{nb\varepsilon_{475}} \frac{d(A_{475})}{dt} = \frac{1}{nb\varepsilon_{475}} k_1 [(A_{475})_{\infty} - (A_{475})_t] + \left(\frac{1}{nb\varepsilon_{475}}\right)^2 k_2 (A_{475})_t [(A_{475})_{\infty} - (A_{475})_t]$$
(S5a)

Eq (S5a) simplifies to eq (S5b) by substituting (A_{475}) for $(A_{475})_t$

$$\frac{d(A_{475})}{dt} = k_1 [(A_{475})_{\infty} - (A_{475})] + \frac{1}{nb\varepsilon_{475}} k_2 (A_{475})_t [(A_{475})_{\infty} - (A_{475})]$$
(S5b)

or to eq (S5c) by substituting $k_2' = k_2/nb\varepsilon_{475}$

$$\frac{d(A_{475})}{dt} = k_1 [(A_{475})_{\infty} - (A_{475})] + k'_2 (A_{475})_t [(A_{475})_{\infty} - (A_{475})]$$
(S5c)
where $k'_2 = k_2 \left(\frac{1}{nb\varepsilon_{475}}\right) = k_2 \frac{1}{C_1}$
 $C_1 = constant = nb\varepsilon_{475} \text{ or } k_2 = (nb\varepsilon_{475}) k'_2 = C_1 k'_2$

Eq (S5c) looks exactly like the $\frac{d[B]}{dt}$ form of eq (S1), repeated below, for which the integrated rate equation is eq (S6)

$$\frac{d[B]}{dt} = k_1[A] + k_2[A][B]$$
(S1)

$$[B]_{t} = [A]_{o} \left(1 - \frac{k_{1} + k_{2}[A]_{o}}{k_{2}[A]_{o} + k_{1}e^{(k_{1} + k_{2}[A]_{o})t}} \right)$$
(S6)

S 3

By analogy, the integrated rate equation for eq (S5b) is given eqs (S7a), (S7b), (S7c), and (S8):

$$[B]_{t} = \left(\frac{1}{nb\varepsilon_{475}}\right) (A_{475})_{t} = \frac{1}{C_{1}} (A_{475})_{t}$$
(S7a)

$$[A]_{t} = \frac{1}{nb\varepsilon_{475}} \left((A_{475})_{\infty} - (A_{475})_{t} \right) = \frac{1}{C_{1}} \left((A_{475})_{\infty} - (A_{475})_{t} \right)$$
(S7b)

$$[A]_{0} = [B]_{\infty} = \frac{1}{nb\varepsilon_{475}} (A_{475})_{\infty} = \frac{1}{C_{1}} (A_{475})_{\infty}$$
(S7c)

The integration of eq (S5c) yields eq (S8):

$$(A_{475})_t = (A_{475})_{\infty} \left(1 - \frac{k_1 + k_2' (A_{475})_{\infty}}{k_2' (A_{475})_{\infty} + k_1 e^{(k_1 + k_2' (A_{475})_{\infty})t}} \right)$$
(S8)

Comparing of eq (S8) to eq (S6) reveals that using the integrated rate equation (S8) for the product formation in terms of absorbance yields k'_2 instead of k_2 in the normal integrated rate equation (S6).

References:

¹ Reeves, R. L.; Harkaway, S. A.; Klingbiel, R. T. Phase transition autocatalysis of the hydrolysis of some esters of azo dyes, *J. Am. Chem. Soc.* **1978**, 100, 3879-3881.