Supporting Information

One-pot synthesis of 1,2-disubstituted 4-,5-,6- and 7-azaindoles from amino-o-halopyridines via \mathbf{N}-arylation/Sonogashira/cyclization reaction
Sara I. Purificação, \dagger Marina J. D. Pires, \dagger Rafael Rippel, A. Sofia Santos, and M. Manuel B. Marques ${ }^{\text {a,** }}$
${ }^{\text {a }}$ LAQV@REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia
Universidade Nova de Lisboa, Campus de Caparica
2829-516 Caparica, Portugal
E-mail: mmbmarques@fct.unl.pt

Table of contents

General information 2
A) Route I - Sonogashira reaction followed by N -arylation 3

1) Sonogashira 3
2) N -arylation (C-N coupling) attempts of 3 4
B) Route II - Stepwise N -arylation followed by Sonogashira/cyclization reaction 5
3) N -arylation 5
4) Sonogashira and cyclization reaction. 6
General procedure for the one-pot N -arylation/Sonogashira/cyclization reaction with amino-o- bromopyridines. 11
NMR spectra of intermediates 18
NMR spectra of 1,2-disubstituted azaindoles 22
References 38

General information

All reagents and solvents were acquired commercially and usually used without further purification. The solvents used during the reactions were dried and distilled using typical methods. Analytical TLC was performed on Merck Kieselgel GF 254, 0.2 mm plates supported on aluminum. Preparative TLC was performed using Merk Kieselgel $60 \mathrm{GS}_{254}$ silica gel for TLC supported on a glass surface with the described eluent for each case. Column chromatography was performed using Merck Kieselgel 60A silica gel (70-200 mesh) and the described eluent for each case.

Melting points were measured using a Reichert Thermovar melting point apparatus, equipped with a Kofler plate. Measured melting points were not corrected.

NMR spectra were acquired with Bruker ARX 400 or Bruker Avance III 400 spectrometers. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}$-NMR spectra were measured at 400 and 101 MHz , respectively. The samples were prepared on 5 or 3 mm NMR tubes using $\mathrm{CDCl}_{3}, \mathrm{MeOD}_{4}$ or DMSO- d_{6} as solvents and the corresponding trace of $\mathrm{CHCl}_{3}, \mathrm{MeOH}$ or DMSO as reference signals. The NMR signals are described with chemical shift (δ, in ppm), source of signal ($\mathrm{R}-\mathrm{H}$) and relative intensity of signal multiplicity (nH , with n being the number of protons) of NMR signals are described as singlet (s), broad singlet (br s), doublet of doublets (dd), triplet of doublets (td), doublet (d), triplet (t) and multiplet (m) with coupling constant (J) being given in Hz. IR spectra were acquired using a Perkin Elmer, Spectrum Two FT-IR spectrophotometer. Transmittance of the sample was acquired on between 4000 and $450 \mathrm{~cm}^{-1}$ and the samples were supported on NaCl pellets. The IR bands are classified as weak (w), medium (m) or strong (s), and broad (br) when such is the case.

PTLC means preparative thin layer chromatography and ATR means attenuated total reflectance.

A) Route I - Sonogashira reaction followed by N -arylation

1) Sonogashira

From 1b:
3-(Phenylethynyl)pyridin-4-amine (3) ${ }^{1}$

DMF was previously degassed 7 times by applying vacuum when the mixture is completely frozen and then flushed with nitrogen. Three solutions were prepared with the degassed DMF and the solids were dried under vacuum before DMF addition:

Solution A - A round-bottom flask was charged with 4-amino-3-iodopyridine ($\mathbf{1 b}, 1$ equiv, 100 mg , 0.45 mmol), DIPEA (3.2 equiv, $253 \mu \mathrm{~L}, 1.45 \mathrm{mmol}$) and DMF (0.95 mL) and the final solution degassed thrice.

Solution B - A round-bottom flask was charged with $\mathrm{CuI}(5 \mathrm{~mol} \%, 4.33 \mathrm{mg}, 0.023 \mathrm{mmol})$, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(3 \mathrm{~mol} \%, 9.77 \mathrm{mg}, 0.014 \mathrm{mmol})$ and $\mathrm{DMF}(0.95 \mathrm{~mL})$ and the final solution degassed thrice.

Solution C - A round-bottom flask was charged with phenylacetylene (98%, 2.1 equiv, $107 \mu \mathrm{~L}, 0.95$ mmol) and DMF (1.9 mL) and the final solution degassed thrice.

To solution B, solution A was added via syringe, then degassed twice; and finally, solution C. The mixture was degassed one more time and then allowed to warm up to rt and stirred for an overnight. After reaction completion (18 h), $\mathrm{DCM}(3.8 \mathrm{~mL})$ was added to the residue and washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}(3.8 \mathrm{~mL})$ and water. The combined organic layers were dried over anhydrous sodium sulphate, the desiccant filtered and the product concentrated and vacuum dried. ${ }^{1}$

The product was isolated after purification by column chromatography (silica gel normal, with gradient EtOAc:hexane (1:1) to EtOAc:hexane: $\operatorname{EtOH}(5: 5: 1)$) with quantitative yield ($89 \mathrm{mg}, 0.46 \mathrm{mmol}$) as pale yellow solid.
IR (cm ${ }^{-1}$) (ATR): 3450, 2922, 2206, 1736, 1638, 756, 688
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.11(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=6.5,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.41-7.32$ (m, 3H), 6.70 (d, $J=5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 5.25 (br s, 2H)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 154.1,150.8,147.4,131.7,129.0,128.6,122.4,108.5,105.2,97.8,81.9$
Spectral data were in accordance with literature. ${ }^{1}$

2) N-arylation (C - N coupling) attempts of 3

General procedure: A sealed tube equipped with a magnetic stir bar was charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4$ $\mathrm{mol} \%, 3.39 \mathrm{mg}, 0.0037 \mathrm{mmol}$), XantPhos ($8 \mathrm{~mol} \%, 4.29 \mathrm{mg}, 0.0074 \mathrm{mmol}$), t-BuONa (2 equiv, 17.81 mg , 0.19 mmol) and aminopyridine 3 (1 equiv, $18 \mathrm{mg}, 0.093 \mathrm{mmol}$) and dry toluene ($\mathrm{C}=0.2 \mathrm{M}, 0.5 \mathrm{~mL}$), followed by iodobenzene (1.2 equiv, $12.72 \mu \mathrm{~L}, 0.11 \mathrm{mmol}$). The reaction was stirred for 6 hours with temperature. The crude reaction product was filtered through a celite pad. The products were isolated after purification by column chromatography.

 3		$\mathrm{Pd}_{2}(\mathrm{dba})_{3}$, XantPhos t-BuONa, toluene, 6 h 4		
entry	$\begin{gathered} 3 \\ \text { (equiv) } \end{gathered}$	phenyl iodide (equiv)	temperature $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \hline 4 \\ \text { yield }(\%)^{a} \end{gathered}$
1	1	1.2	110	-
2	1	1.2	60	-

${ }^{a}$ No desired product $\mathbf{4}$ was attained, though this reaction resulted in compound $\mathbf{5}$:
2-Phenyl-1H-pyrrolo[3,2-c]pyridine (5) ${ }^{2}$

Purification: Silica gel, dichloromethane/methanol with gradient
Appearance: White solid
Yield: Traces
$\left.{ }^{1} \mathbf{H}^{(N M R ~(400 ~ M H z, ~ D M S O-d ~} \mathbf{d}_{6}\right) \boldsymbol{\delta}: 11.97(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 7.49$ (t, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}$), $7.38-7.35$ (m, 2H), 7.04 (s, 1H)
Spectral data were in accordance with literature. ${ }^{2}$

Alternative investigated procedures:

 3			6a			
entry	boronic acid (equiv)	$\underset{\text { (equiv) }}{\mathrm{Cu}(\mathrm{OAc})_{2}}$	$\begin{gathered} 2,6- \\ \text { lutidine } \end{gathered}$ (equiv)	conditions	procedure adapted from literature	yield (\%)
$1^{\text {a }}$	1.5	0.1	1.1	$\begin{gathered} \text { toluene, } \\ \text { rt to } 120^{\circ} \mathrm{C} \end{gathered}$	J. Org. Chem., 2014, 79 (19), pp $9000-9008^{3}$	-
$2{ }^{\text {b }}$	2	1.5	2	dichloromethane, rt	$\begin{aligned} & \text { Org. Lett., 2012, } 14(7), \\ & \text { pp 1764-17674 } \end{aligned}$	-
$3{ }^{a}$	1.5	1	1.1	toluene, $50{ }^{\circ} \mathrm{C}$	$\begin{gathered} \text { J. Org. } \\ \text { Chem., 2014, } 79 \text { (19), pp } \\ \hline \end{gathered}$	4

${ }^{a}$ Dodecanoic acid was used. ${ }^{b}$ Atmosphere O_{2}.

B) Route II - Stepwise N-arylation followed by Sonogashira/cyclization reaction

1) N -arylation

General procedure: A sealed tube equipped with a magnetic stir bar was charged with $\mathrm{Pd}_{2}(\mathrm{dba})_{3}(4$ $\mathrm{mol} \%, 21 \mathrm{mg}, 0.023 \mathrm{mmol}$), XantPhos ($8 \mathrm{~mol} \%, 26.8 \mathrm{mg}, 0.046 \mathrm{mmol}$), t-BuONa (2 equiv, $111 \mathrm{mg}, 1.56$ mmol) and 4-amino-3-bromopyridine 7 a (1 equiv, $100 \mathrm{mg}, 0.578 \mathrm{mmol}$) and dry toluene ($2.9 \mathrm{~mL}, \mathrm{C}=0.2 \mathrm{M}$), followed by iodobenzene (1.2 equiv, $77.6 \mu \mathrm{~L}, 0.693 \mathrm{mmol}$). The reaction was stirred for 6 hours at $110^{\circ} \mathrm{C}$. The crude reaction product was filtered through a celite pad. The desired products were isolated after purification by column chromatography (silica gel, EtOAc: hexane with gradient).

3-Bromo- N-phenylpyridin-4-amine (7a) ${ }^{5}$

Appearance: Beige solid
Yield: 87% ($124.8 \mathrm{mg}, 0.5 \mathrm{mmol}$ of 7a from $100 \mathrm{mg}, 0.578 \mathrm{mmol}$ of starting 4-amino-3-bromopyridine)
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.13(\mathrm{~m}$, $3 \mathrm{H}), 6.90(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H})$
Spectral data were in accordance with literature. ${ }^{5}$

2-Bromo- N-phenylpyridin-3-amine ${ }^{5}$

Appearance: Yellow solid
Yield: 99% ($143.4 \mathrm{mg}, 0.575 \mathrm{mmol}$ from 100 mg of starting 3-amino-2-bromopyridine)
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 7.84(\mathrm{dd}, J=4.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{dd}, J=8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.9$
$\mathrm{Hz}, 2 \mathrm{H}$), $7.18-7.04$ (m, 4H), 6.14 (br s, 1H)
Spectral data were in accordance with literature. ${ }^{5}$

Appearance: Beige solid
Yield: 79% ($113.4 \mathrm{mg}, 0.455 \mathrm{mmol}$ from 100 mg of starting 3-amino-4-bromopyridine)
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\boldsymbol{\delta}: 8.50(\mathrm{~s}, 1 \mathrm{H}), 7.92(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{t}, J=7.9$
$\mathrm{Hz}, 2 \mathrm{H}$), 7.18 (d, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.96$ (s, 1H)
Spectral data were in accordance with literature. ${ }^{5}$
3-Iodo- N-phenylpyridin-4-amine (7b)

Appearance: White solid
Yield: 22% ($44 \mathrm{mg}, 0.15 \mathrm{mmol}$ of 7b from $150 \mathrm{mg}, 0.68 \mathrm{mmol}$ of starting 4-amino-3-iodopyridine)
M.p.: $74-76^{\circ} \mathrm{C}$

IR (ATR) $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right): 3370,2923,2852,1735,1572,1503,1405,1228,1007,698$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 8.66(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.41(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.20(\mathrm{~m}, 3 \mathrm{H})$, $6.85(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.43(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 156.8,150.7,149.0,138.6,129.8,125.7,123.6,107.9,84.6$.
GS-MS calcd for $\mathbf{C}_{\mathbf{1 1}} \mathbf{H}_{\mathbf{9}} \mathbf{I} \mathbf{N}_{\mathbf{2}}(\mathbf{M}+$): 295.9; Found: 295.9

2) Sonogashira and cyclization reaction

General procedure from 7 a , with $\mathbf{X}=\mathbf{B r}$: DMF was previously degassed 7 times by applying vacuum when the mixture is completely frozen and then flushed with nitrogen.

Three solutions were prepared with the degassed DMF and the solids were dried under vacuum before DMF addition:

Solution A - A round-bottom flask was charged with $\mathbf{7 a}, \mathbf{X}=\mathbf{B r}$ (1 equiv, $90 \mathrm{mg}, 0.36 \mathrm{mmol}$), DIPEA (3.2 equiv, $202 \mu \mathrm{~L}, 1.15 \mathrm{mmol}$) and $\mathrm{DMF}(0.76 \mathrm{~mL})$ and the final solution degassed thrice.

Solution B - A round-bottom flask was charged with $\mathrm{CuI}(5 \mathrm{~mol} \%, 3.46 \mathrm{mg}, 0.018 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(3 \mathrm{~mol} \%, 7.82 \mathrm{mg}, 0.011 \mathrm{mmol})$ and $\mathrm{DMF}(0.76 \mathrm{~mL})$ and the final solution degassed thrice.

Solution C - A round-bottom flask was charged with phenylacetylene ($98 \%, 86 \mu \mathrm{~L}, 0.76 \mathrm{mmol}, 2.1$ equiv) and DMF (1.5 mL) and the final solution degassed thrice.

To solution B, solution A was added via syringe, then degassed twice; and finally, solution C. The mixture was degassed one more time and then allowed to warm up to $110^{\circ} \mathrm{C}$ and stirred for 24 h . After reaction completion, DMF was evaporated; DCM was added to the residue and washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and water. The combined organic layers were dried over anhydrous sodium sulphate, the desiccant filtered and the product concentrated and vacuum dried. ${ }^{1}$

1,2-Diphenyl-5-azaindole (6a)

Purification: Column chromatography (silica gel flash, EtOAc:hexane with gradient to EtOAc:MeOH 10\%) and PTLC ($\left.\mathrm{CHCl}_{3}: \mathrm{MeOH} 3 \%\right)$

Appearance: Beige solid
Yield: 60% ($59 \mathrm{mg}, 0.22 \mathrm{mmol}$ of $\mathbf{6 a}$ from $90 \mathrm{mg}, 0.36 \mathrm{mmol}$ of starting 7a)
M.p.: $176-178^{\circ} \mathrm{C}$

IR (cm-1) (ATR): 2924, 1739, 1591, 1461, 1379, 1215, 753, 695
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{M e O D}-\mathbf{d}_{4}\right) \boldsymbol{\delta}: 8.89(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.33-7.23(\mathrm{~m}$, 8 H), 6.98 ($\mathrm{s}, 1 \mathrm{H}$)
${ }^{13} \mathbf{C}$ NMR (101 MHz, MeOD-d \mathbf{d}_{4}) $\boldsymbol{\delta}: 144.5,144.2,143.4,141.0,138.5,132.6,130.8,130.2,129.4,129.4$, 128.9, 126.7, 107.4, 103.5

HRMS (EI) calcd for $\mathbf{C}_{\mathbf{1 9}} \mathbf{H}_{\mathbf{1 4}} \mathbf{N}_{\mathbf{2}} \mathbf{(M + 1)}$: 271.1191 ; Found: 271.1229

1,2-Diphenyl-4-azaindole (6b) ${ }^{6}$

Purification: PTLC using EtOAc/hexane (1:1) followed by PTLC using EtOAc/hexane (4:1)
Appearance: Yellow solid
Yield: 27% ($14.4 \mathrm{mg}, 0.053 \mathrm{mmol}$ of $\mathbf{6 b}$ from $50 \mathrm{mg}, 0.2 \mathrm{mmol}$ of starting 2-bromo- N-phenylpyridin-3-amine) ${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta : ~} 8.51(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.37(\mathrm{~m}, 3 \mathrm{H}), 7.29-$ $7.23(\mathrm{~m}, 7 \mathrm{H}), 7.09(\mathrm{dd}, J=8.3,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~s}, 1 \mathrm{H})$

Spectral data were in accordance with literature. ${ }^{6}$

1,2-Diphenyl-6-azaindole (6c)

Purification: PTLC using EtOAc/hexane (1:1) followed by PTLC using EtOAc/hexane/EtOH (5:5:1)
Appearance: Yellow solid
Yield: 47% ($17.4 \mathrm{mg}, 0.064 \mathrm{mmol}$ of $\mathbf{6 c}$ from $33.9 \mathrm{mg}, 0.14 \mathrm{mmol}$ of starting 4-bromo- N-phenylpyridin-3amine)
M.p.: $106-107^{\circ} \mathrm{C}$

IR ($\mathbf{c m}^{-1}$) (NaCl): 3044, 2923, 2853, 1596, 1498
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) \&: $8.66(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{~d}, J=5.3,1 \mathrm{H}), 7.46-7.39(\mathrm{~m}$, $3 \mathrm{H}), 7.28-7.26$ (m, 7H), 6.78 (s, 1H)
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 144.2,140.0,137.5,135.9,134.1,133.1,131.5,129.6,129.3,128.5,128.4$, $128.0,127.8,114.8,102.8$. Note: one carbon is masked.

HRMS (EI) calcd for $\mathbf{C}_{\mathbf{1 9}} \mathbf{H}_{\mathbf{1 4}} \mathbf{N}_{\mathbf{2}} \mathbf{(M + 1)}$: 271.1190 ; Found: 271.1229

2-(4-(Methylsulphonyl)phenyl)-1-phenyl-5-azaindole (6k)

Purification: Silica gel flash, EtOAc/hexane (1:1)
Appearance: Pale yellow solid
Yield: 32% ($22.4 \mathrm{mg}, 0.064 \mathrm{mmol}$ of $\mathbf{6 k}$ from $50 \mathrm{mg}, 0.2 \mathrm{mmol}$ of starting 7a)
M.p.: $174-177^{\circ} \mathrm{C}$

IR ($\mathbf{c m}^{-1}$) (NaCl): 2929, 1729, 1595, 1501, 1314, 1149, 769
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\boldsymbol{\delta}: 8.97(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.42-7.37(\mathrm{~m}$, $5 \mathrm{H}), 7.20-7.14$ (m, 3H), 6.94 (s, 1H), 2.99 (s, 3H)
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 143.2,141.1,140.3,139.8,136.8,136.6,130.2,129.6,128.8,127.7,127.6$, 106.4, 104.8, 44.5. Note: two carbons are masked

HRMS (EI) calcd for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{1 6}} \mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}} \mathbf{S}$ (M+1): 349.0966; Found: 349.1005

General procedure from 7b, with $\mathbf{X}=\mathbf{I}$: DMF was previously degassed 7 times by applying vacuum when the mixture is completely frozen and then flushed with nitrogen.

Three solutions were prepared with the degassed DMF and the solids were dried under vacuum before DMF addition:

Solution A - A round-bottom flask was charged with $7 \mathbf{b}$ (1 equiv, $20 \mathrm{mg}, 0.068 \mathrm{mmol}$), DIPEA (3.2 equiv, $37.7 \mu \mathrm{~L}, 0.22 \mathrm{mmol})$ and $\mathrm{DMF}(0.14 \mathrm{~mL})$ and the final solution degassed thrice.

Solution B - A round-bottom flask was charged with CuI ($5 \mathrm{~mol} \%, 0.6 \mathrm{mg}, 0.034 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(3 \mathrm{~mol} \%, 1.45 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{DMF}(0.14 \mathrm{~mL})$ and the final solution degassed thrice.

Solution C - A round-bottom flask was charged with phenylacetylene (98%, 2.1 equiv, $15.9 \mu \mathrm{~L}, 0.14$ mmol) and DMF (0.3 mL) and the final solution degassed thrice.

To solution B, solution A was added via syringe, then degassed twice; and finally, solution C. The mixture was degassed one more time and then allowed to warm up to rt and stirred for an overnight to achieve the Sonogashira product; then the reaction was stirred at $110^{\circ} \mathrm{C}$ for 5 h . After reaction completion, DCM was added to the residue and washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and water. The combined organic layers were dried over anhydrous sodium sulphate, the desiccant filtered and the product concentrated and vacuum dried. ${ }^{1}$

The product 6a was isolated after purification by column chromatography (silica gel flash, EtOAc:hexane (1:1)) with 66% yield as pale beige solid ($12 \mathrm{mg}, 0.044 \mathrm{mmol}$ of $\mathbf{6 a}$ from $20 \mathrm{mg}, 0.068 \mathrm{mmol}$ of starting $\mathbf{7 b}$). Spectral data were in accordance with the product $\mathbf{6 a}$ isolated from the reaction using "General procedure from 7a, with $X=B r$ ".

Note: DMF was previously degassed 7 times by applying vacuum when the mixture is completely frozen and then flushed with nitrogen.

Three solutions were prepared with the degassed DMF and the solids were dried under vacuum before DMF addition:

Solution A - A round-bottom flask was charged with $\mathbf{7 b}, \mathbf{X}=\mathbf{I}$ (1 equiv, $20 \mathrm{mg}, 0.068 \mathrm{mmol}$), DIPEA (3.2 equiv, $37.7 \mu \mathrm{~L}, 0.22 \mathrm{mmol}$) and DMF $(0.14 \mathrm{~mL})$ and the final solution degassed thrice.

Solution B - A round-bottom flask was charged with CuI ($5 \mathrm{~mol} \%, 0.6 \mathrm{mg}, 0.034 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(3 \mathrm{~mol} \%, 1.45 \mathrm{mg}, 0.02 \mathrm{mmol})$ and $\mathrm{DMF}(0.14 \mathrm{~mL})$ and the final solution degassed thrice.

Solution C - A round-bottom flask was charged with phenylacetylene (98%, 2.1 equiv, $15.9 \mu \mathrm{~L}, 0.14$ $\mathrm{mmol})$ and DMF (0.3 mL) and the final solution degassed thrice.

To solution B, solution A was added via syringe, then degassed twice; and finally, solution C. The mixture was degassed one more time and then allowed to warm up to rt and stirred for an overnight. After reaction completion, DCM was added to the residue and washed with sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and water. The combined organic layers were dried over anhydrous sodium sulphate, the desiccant filtered and the product concentrated and vacuum dried. ${ }^{1}$
Purification: Silica gel flash, EtOAc/hexane (1:1)
Appearance: Beige solid
Yield: 70% ($12.7 \mathrm{mg}, 0.047 \mathrm{mmol}$ of $\mathbf{4}$ from $20 \mathrm{mg}, 0.068 \mathrm{mmol}$ of starting 7b)
IR ($\mathbf{c m}^{-1}$) (ATR): 2920, 2858, 1583, 1567, 1513, 1496, 752
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 8.55(\mathrm{~s}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.38(\mathrm{~m}$, $5 \mathrm{H}), 7.34-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.97(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 152.0,151.4,148.7,138.6,131.8,129.8,129.2,128.7,125.6,123.4,122.4$, 106.3, 105.9, 98.4, 82.1

Synthesis of 1-ethynyl-4-(methylsulphonyl)benzene ${ }^{7}$

A) To a solution of 4-(methylsulphonyl)acetophenone (1 equiv, $500 \mathrm{mg}, 2.5 \mathrm{mmol}$) in dry toluene (10 mL), $2,4,6$-collidine (2 equiv, $671 \mu \mathrm{~L}, 5 \mathrm{mmol}$) was added at $0^{\circ} \mathrm{C}$ under N_{2}. This mixture was stirred for 5 minutes, then $\mathrm{Tf}_{2} \mathrm{O}$ (2 equiv, $847 \mu \mathrm{~L}, 5 \mathrm{mmol}$) was added dropwise and the reaction was stirred for an overnight at rt , then 2 h at $50^{\circ} \mathrm{C}$. The crude reaction product was filtered through a celite pad and washed with ethyl acetate. The product was isolated after purification by column chromatography (silica gel flash, ethyl acetate: cyclohexane with gradient) with 69% yield as a beige solid ($574 \mathrm{mg}, 1.74 \mathrm{mmol}$ of the desired product from 500 mg of 4-(methylsulphonyl)acetophenone).
M.p.: $48-50^{\circ} \mathrm{C}$

IR (KBr) $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right): 1426,1314,1226,1142,942$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 8.01(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.75(\mathrm{~d}, \mathrm{~J}=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 5.80(\mathrm{~d}, \mathrm{~J}=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, 5.59 (d, J = $3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.08 ($\mathrm{s}, 3 \mathrm{H}$)
B) To a solution of 1-(4-(methylsulphonyl)phenyl)vinyl trifluoromethanesulphonate (1 equiv, 364 mg , 1.1 mmol) in dry THF (11 mL) freshly prepared, TBAF 1 M in THF (2.5 equiv, 2.76 mL) was added dropwise under N_{2}. After 10 min at rt the reaction was complete. Ethyl acetate $(50 \mathrm{~mL})$ was added and extracted thrice with water (10 mL). The combined aqueous layers were then extracted with more ethyl acetate and finally the combined organic layers washed with brine. Combined organic layers were dried over anhydrous sodium sulphate, the desiccant filtered and the product concentrated and vacuum dried. ${ }^{8}$ The product was isolated after purification by column chromatography (silica gel flash, ethyl acetate:hexane (1:1)) with 68% yield as a light yellow solid ($135 \mathrm{mg}, 0.75 \mathrm{mmol}$ of the desired product from 364 mg of 1-(4-(methylsulphonyl)phenyl)vinyl trifluoromethanesulphonate).
M.p.: $94-97{ }^{\circ} \mathrm{C}\left(\text { Lit. } 100-101{ }^{\circ} \mathrm{C}\right)^{7}$

IR (NaCl) $\boldsymbol{v}_{\text {max }}\left(\mathbf{c m}^{-1}\right): 3246,2107,1301,1278,1150$
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\boldsymbol{\delta :} 7.91(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.29(\mathrm{~s}, 1 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 140.5,133.1,128.1,127.5,81.9,81.4,44.6$
Spectral data were in accordance with literature. ${ }^{7}$

Synthesis of 1-ethynyl-3,5-dimethoxybenzene ${ }^{9}$

A) To a solution of 3,5-dimethoxybenzaldehyde (1 equiv, $581 \mathrm{mg}, 3.5 \mathrm{mmol}$) and carbon tetrabromide (2 equiv, $2.317 \mathrm{~g}, 7 \mathrm{mmol}$) in dry dichloromethane (10 mL) was added triphenylphosphine (4 equiv, $3.654 \mathrm{~g}, 14 \mathrm{mmol}$) in portions over a period of 20 mins at $0^{\circ} \mathrm{C}$ under inert atmosphere. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 2 h . After reaction completion, the mixture was quenched with water (15 mL). Then reaction mixture was extracted with dichloromethane ($2 \times 20 \mathrm{~mL}$) and combined organic layers were washed with brine (10 mL). The combined organic layers were dried over anhydrous sodium sulphate, the desiccant filtered and the product concentrated and vacuum dried. The product was isolated after purification by column chromatography (silica gel, ethyl acetate:hexane (1:1)) with quantitative yield ($1.3 \mathrm{~g}, 3.98 \mathrm{mmol}$) as a beige solid.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 7.42(\mathrm{~s}, 1 \mathrm{H}), 6.69(\mathrm{~d}, J=4 \mathrm{~Hz}, 2 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 3.80(\mathrm{~s}, 6 \mathrm{H})$
Spectral data were in accordance with literature. ${ }^{10}$
B) To a solution of 1-(2,2-dibromovinyl)-3,5-dimethoxybenzene (1 equiv, $1.28 \mathrm{~g}, 3.98 \mathrm{mmol}$) in dry $\mathrm{CH}_{3} \mathrm{CN}(7.96 \mathrm{~mL})$ was added DBU (2.38 mL , 4 equiv, 15.9 mmol) dropwise over a period of 10 mins at room temperature. The reaction mixture was allowed to stir at room temperature for 16 h . After reaction completion, the mixture was cooled at $15^{\circ} \mathrm{C}$ and quenched by dropwise addition of 5 N aqueous $\mathrm{HCl}(10 \mathrm{~mL})$ over a period of 15 mins and stirred for 5 mins . The reaction mixture was extracted with EtOAc/hexane ($1: 1,2 \times 10 \mathrm{~mL}$); organic layers were washed with water (10 mL). The combined organic layers were dried over anhydrous sodium sulphate, the desiccant filtered and the product concentrated and vacuum dried. The product was
isolated after purification by column chromatography (silica gel, ethyl acetate:hexane (2:1)) with 35% yield ($217.7 \mathrm{mg}, 1.34 \mathrm{mmol}$) as a beige solid.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 6.65(\mathrm{~d}, J=2 \mathrm{~Hz}, 2 \mathrm{H}), 6.47(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 6 \mathrm{H}), 3.04(\mathrm{~s}, 1 \mathrm{H})$
Spectral data were in accordance with literature. ${ }^{10}$

General procedure for the one-pot N -arylation/Sonogashira/cyclization reaction with amino-o-bromopyridines

A) A sealed tube equipped with a magnetic stir bar was charged with $\operatorname{Pd}_{2}(\mathrm{dba})_{3}(4 \mathrm{~mol} \%, 42.34 \mathrm{mg}$, 0.04 mmol), XantPhos ($8 \mathrm{~mol} \%, 53.51 \mathrm{mg}, 0.092 \mathrm{mmol}$), t-BuONa (2 equiv, $222.2 \mathrm{mg}, 2.31 \mathrm{mmol}$) and amino-o-bromopyridine (1) (1 equiv, $200 \mathrm{mg}, 1.16 \mathrm{mmol}$). The tube was sealed with a suba-seal, evacuated and backfilled with N_{2} thrice, then dry toluene $(\mathrm{C}=0.2 \mathrm{M}, 5.8 \mathrm{~mL})$ was added, followed by the aryl iodide (1.2 equiv, $158.67 \mu \mathrm{~L}, 1.39 \mathrm{mmol}$), and the tube sealed under N_{2}. The reaction was stirred for 6 hours at $110^{\circ} \mathrm{C}$. The crude reaction product (7) was concentrated and vacuum dried.
B) DMF was previously degassed 7 times by applying vacuum when the mixture is completely frozen and then flushed with N_{2}.

Three solutions were prepared with the degassed DMF and the solids were dried under vacuum before DMF addition:

Solution A - A round-bottom flask was charged with the crude product 7 (1 equiv, $287.97 \mathrm{mg}, 1.16$ mmol), DIPEA (3.2 equiv, $644.35 \mu \mathrm{~L}, 3.7 \mathrm{mmol}$) and DMF (2.4 mL) and the final solution degassed thrice.

Solution B - A round-bottom flask was charged with $\mathrm{CuI}(5 \mathrm{~mol} \%, 11.01 \mathrm{mg}, 0.058 \mathrm{mmol}$), $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}(3 \mathrm{~mol} \%, 4.87 \mathrm{mg}, 0.035 \mathrm{mmol})$ and $\mathrm{DMF}(2.4 \mathrm{~mL})$ and the final solution degassed twice.

Solution C - A round-bottom flask was charged with phenylacetylene (2.1 equiv, $266.61 \mu \mathrm{~L}, 2.43$ mmol) and DMF (4.8 mL) and the final solution degassed thrice.

To solution B, solution A was added via syringe, then degassed twice; and finally, solution C. The mixture was degassed one more time and then allowed to warm up to $110^{\circ} \mathrm{C}$ and stirred for 24 h . Toluene was added to the residue and washed thrice with water, then sat. $\mathrm{NH}_{4} \mathrm{Cl}$. The combined aqueous layers were then washed with toluene to take off remain product. Combined organic layers were dried with anhydrous sodium sulphate, filtered and concentrated. The desired product was isolated after purification by chromatography.

1,2-Diphenyl-5-azaindole (6a)

Purification: PTLC using EtOAc/hexane (1:1) followed by PTLC using EtOAc/hexane (1:2)
Appearance: Beige solid
Yield: $49 \%(22.8 \mathrm{mg}, 0.084 \mathrm{mmol}$ of $\mathbf{6 a}$ from $30 \mathrm{mg}, 0.17 \mathrm{mmol}$ of starting 4 -amino-3-bromopyridine); 84% ($263.53 \mathrm{mg}, 0.97 \mathrm{mmol}$ of $\mathbf{6 a}$ from $200 \mathrm{mg}, 1.16 \mathrm{mmol}$ of starting 4-amino-3-bromopyridine).

Spectral data were in accordance with the product 6a isolated from the reaction using the previously described approaches.

1,2-Diphenyl-7-azaindole (6d) ${ }^{11}$

Purification: PTLC using toluene/hexane (2:1) followed by PTLC using toluene/hexane (3:1)
Appearance: Beige solid
Yield: 22% ($14.0 \mathrm{mg}, 0.052 \mathrm{mmol}$ of $\mathbf{6 d}$ from $40 \mathrm{mg}, 0.23 \mathrm{mmol}$ of starting 2-amino-3-bromopyridine)
IR ($\mathbf{c m}^{-1}$) (NaCl): 3058, 2923, 2853, 1596, 1498.
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C D}_{3}$) $\boldsymbol{\delta}: 8.27(\mathrm{~d}, J=4.04 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=7.64,1 \mathrm{H}), 7.35-7.18(\mathrm{~m}, 10 \mathrm{H}), 7.09-$ $7.06(\mathrm{~m}, 1 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H})$.
Spectral data were in accordance with literature. ${ }^{11}$

2-Phenyl-1-(p-tolyl)-5-azaindole (6e)

Purification: PTLC using EtOAc/hexane (1:1) followed by PTLC using EtOAc/hexane (1:2)
Appearance: Brown oil
Yield: 62% ($40.7 \mathrm{mg}, 0.14 \mathrm{mmol}$ of $\mathbf{6 e}$ from $40 \mathrm{mg}, 0.23 \mathrm{mmol}$ of starting 4-amino-3-bromopyridine)
IR ($\mathbf{c m}^{-1}$) (NaCI): 3037, 2926, 2852, 1597, 1514, 1463
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl \mathbf{H}_{3}) $\boldsymbol{\delta : ~} 8.96(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 7 \mathrm{H}), 7.15(\mathrm{~d}, J=5.8 \mathrm{~Hz}$, $1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~s}, 1 \mathrm{H}), 2,40(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 143.7,142.7,142.0,141.6,137.9,134.8,130.2,131.8,129.1,128.4,128.0$, $127.5,125.2,105.9,102.4,21.3$

HRMS (EI) calcd for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{1 6}} \mathbf{N}_{\mathbf{2}} \mathbf{(M + 1) : ~ 2 8 5 . 1 3 4 7 ; ~ F o u n d : ~} 285.1386$

2-Phenyl-1-(p-tolyl)-6-azaindole (6f)

Purification: PTLC using EtOAc/hexane (1:1) followed by PTLC using EtOAc/hexane (1:4)
Appearance: Brown solid
Yield: 38% ($24.9 \mathrm{mg}, 0.088 \mathrm{mmol}$ of $\mathbf{6 f}$ from $40 \mathrm{mg}, 0.23 \mathrm{mmol}$ of starting 3-amino-4-bromopyridine)
M.p.: $98-100^{\circ} \mathrm{C}$

IR ($\mathbf{c m}^{-1}$) (NaCl): 3035, 2919, 2849, 1596, 1512, 1460
${ }^{1} \mathbf{H}$ NMR (400 MHz, CDCl $\mathbf{C l}_{3}$) $\boldsymbol{\delta}: 8.55(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=5 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.15(\mathrm{~m}$, $7 \mathrm{H}), 7.07$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6,69(\mathrm{~s}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1 ~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 144.3,139.8,138.0,137.5,134.8,134.2,133.0,131.6,130.3,129.4,128.5$, 127.9, 127.6, 114.7, 102.6, 21.3

HRMS (EI) calcd for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{1 6}} \mathbf{N}_{\mathbf{2}} \mathbf{(M + 1) : 2 8 5 . 1 3 4 7 \text { ; Found: } 2 8 5 . 1 3 8 4 ~}$

2-Phenyl-1-(p-tolyl)-4-azaindole (6 g)

Purification: PTLC using EtOAc/hexane (1:1) followed by PTLC using EtOAc/hexane (1:3)
Appearance: Yellow oil
Yield: 32% ($21.0 \mathrm{mg}, 0.074 \mathrm{mmol}$ of $\mathbf{6 g}$ from $40 \mathrm{mg}, 0.23 \mathrm{mmol}$ of starting 3-amino-2-bromopyridine)
IR ($\mathbf{c m}^{-1}$) (NaCl): 3040, 2928, 2858, 1596, 1512, 1419
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}: 8.42(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.23-7.14(\mathrm{~m}, 8 \mathrm{H}), 7.04-7-$ $02(\mathrm{~m}, 2 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 144.3,144.1,140.7,137.7,135.1,131.9,130.2,129.6,129.2,128.4,128.1$, 127.6, 117.8, 117.1, 104.3, 21.3

HRMS (EI) calcd for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{1 6}} \mathbf{N}_{\mathbf{2}}(\mathbf{M}+\mathbf{1})$: 285.1347; Found: 285.1386

2-Phenyl-1-(p-tolyl)-7-azaindole (6h)

Purification: PTLC using EtOAc/hexane (1:20) followed by PTLC using toluene/hexane (2:1)
Appearance: Orange solid
Yield: 35% ($23.3 \mathrm{mg}, 0.082 \mathrm{mmol}$ of $\mathbf{6 h}$ from $40 \mathrm{mg}, 0.23 \mathrm{mmol}$ of starting 2-amino-3-bromopyridine)
M.p.: $118-121^{\circ} \mathrm{C}$

IR ($\mathbf{c m}^{-1}$) (NaCl): 3040, 2923, 2853, 1596, 1516, 1414
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 8.24(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.17(\mathrm{~m}, 9 \mathrm{H}), 7.03$ (dd, $J=7.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 2.30(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}: 150.2,143.7,141.2,137.3,134.5,132.3,129.9,129.05,128.5,128.4,128.2$, 127.9, 120.9, 117.0, 101.2, 21.3

HRMS (EI) calcd for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{1 6}} \mathbf{N}_{\mathbf{2}} \mathbf{(M + 1)}$: 285.1347; Found: 285.1386

2-(4-Methoxyphenyl)-1-(p-tolyl)-5-azaindole (6i)

Purification: PTLC using EtOAc/hexane (1:1) followed by PTLC using EtOAc/hexane/EtOH (5:5:0.5)
Appearance: Yellow oil
Yield: 45% ($32.7 \mathrm{mg}, 0.1 \mathrm{mmol}$ of $\mathbf{6 i}$ from $40 \mathrm{mg}, 0.23 \mathrm{mmol}$ of starting 4-amino-3-bromopyridine)
IR (cm ${ }^{-1}$) (NaCl): 3041, 2926, 2833, 1607, 1500, 1459, 1255
${ }^{1} \mathbf{H}$ NMR (400 MHz, $\left.\mathbf{C D C l}_{3}\right) \boldsymbol{\delta}: 8.89(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{~d}, J=5.84 \mathrm{~Hz}, 1 \mathrm{H}), 7.19-7.08(\mathrm{~m}, 6 \mathrm{H}), 7.03(\mathrm{~d}, J=8.08$
$\mathrm{Hz}, 1 \mathrm{H}), 6.74-6.71(\mathrm{~m}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C} \mathbf{N M R}\left(\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}: 159.6,142.7,140.8,140.5,137.4,134.7,130.4,130.3,127.8,127.5,125.2$, 124.0, 113.9, 106.0, 101.5, 55.4, 21.3

HRMS (EI) calcd for $\mathbf{C}_{\mathbf{2 1}} \mathbf{H}_{\mathbf{1 8}} \mathbf{N}_{\mathbf{2}} \mathbf{O}$ (M+1): 315.1452; Found: 315.1492

4-(2-Benzonitrile)-1-(p-tolyl)-5-azaindole (6j)

Purification: PTLC using EtOAc/hexane (1:1) followed by PTLC using EtOAc/hexane (2:1)
Appearance: Pale yellow solid
Yield: 23% ($12.5 \mathrm{mg}, 0.04 \mathrm{mmol}$ of $\mathbf{6 j}$ from $30 \mathrm{mg}, 0.17 \mathrm{mmol}$ of starting 4-amino-3-bromopyridine)
M.p. : $127-130{ }^{\circ} \mathrm{C}$

IR ($\mathbf{c m}^{-1}$) (NaCl): 3042, 2923, 2853, 2225, 1512, 1457.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 8.96(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=8.04 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.13(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.92(\mathrm{~s}, 1 \mathrm{H}), 2.37(\mathrm{~s}$, $3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{\mathbf{3}}$) $\boldsymbol{\delta}: 143.5,143.3,141.4,138.9,135.9,134.2,132.3,130.7,129.3,128.7,127.3$, 124.8, 118.6, 111.7, 106.4, 104.4, 21.3

HRMS (EI) calcd for $\mathbf{C}_{\mathbf{2 1}} \mathbf{H}_{\mathbf{1 5}} \mathbf{N}_{\mathbf{3}} \mathbf{(M + 1)}$: 310.1230; Found: 310.1337

Purification: PTLC using EtOAc/hexane (1:1) followed by PTLC using EtOAc/hexane (2:1)
Appearance: Yellow solid
Yield: 44% ($22.7 \mathrm{mg}, 0.076 \mathrm{mmol}$ of $\mathbf{6 1}$ from $30 \mathrm{mg}, 0.17 \mathrm{mmol}$ of starting 4-amino-3-bromopyridine)
M.p.: $123-125{ }^{\circ} \mathrm{C}$

IR ($\mathbf{c m}^{-1}$) (NaCl): 3040, 2933, 2839, 1610, 1498, 1460, 1251
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 8.88(\mathrm{~s}, 1 \mathrm{H}), 8.20(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.09(\mathrm{~m}$, $5 \mathrm{H}), 6.72(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 159.6,143.2,142.5,142.1,141.1,137.5,130.4,129.6,127.9,127.8,125.3$, 124.0, 113.9, 105.9, 101.7, 55.4

HRMS (EI) calcd for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{1 6}} \mathbf{N}_{\mathbf{2}} \mathbf{O}$ (M+1): 301.1296; Found: 301.1336

1-(4-Chlorophenyl)-2-phenyl-5-azaindole (6 m)

Purification: PTLC using EtOAc/hexane (1:1) followed by PTLC using EtOAc/hexane (2:1)
Appearance: Yellow oil
Yield: 52% ($36.4 \mathrm{mg}, 0.12 \mathrm{mmol}$ of $\mathbf{6 m}$ from $40 \mathrm{mg}, 0.23 \mathrm{mmol}$ of starting 4-amino-3-bromopyridine)
IR (cm-1) (NaCl): 3042, 2923, 2848, 1497, 1462, 744.
${ }^{1} \mathbf{H}$ NMR ($\left.\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}: 8.89(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.21-7.16(\mathrm{~m}$, 5 H), 7.07 (d, $J=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 143.8,142.4,141.8,135.9,133.8,131.3,129.8,129.1,128.9,128.6,128.3$, 127.7, 125.2, 105.7, 102.9

HRMS (EI) calcd for $\mathbf{C}_{19} \mathbf{H}_{\mathbf{1 5}} \mathbf{C l N} \mathbf{2} \mathbf{(M + 1) : ~ 3 0 5 . 0 8 4 5 ; ~ F o u n d : ~} 305.0840$

1-(4-Chlorophenyl)-2-(4-benzonitrile)-5-azaindole (6n)

Purification: PTLC using EtOAc/hexane (1:1) followed by PTLC using EtOAc/hexane (1:2)
Appearance: Yellow solid
Yield: 39% ($29.8 \mathrm{mg}, 0.09 \mathrm{mmol}$ of $\mathbf{6 n}$ from $40 \mathrm{mg}, 0.23 \mathrm{mmol}$ of starting 4-amino-3-bromopyridine) IR ($\mathbf{c m}^{-1}$) (NaCl): 3054, 2919, 2844, 2229, 1605, 1493
${ }^{1} \mathbf{H} \operatorname{NMR}\left(400 \mathbf{M H z}, \mathbf{C D C l}_{3}\right) \boldsymbol{\delta}: 9.01(\mathrm{~s}, 1 \mathrm{H}), 8.35(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 6.97(\mathrm{~s}, 1 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 144.5,142.7,139.4,135.8,135.4,134.4,132.3,130.3,129.9 .129 .3,128.8$, 124.9, 118.5, 111.7, 105.8, 104.9

HRMS (EI) calcd for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{1 2}} \mathbf{C l N} \mathbf{3} \mathbf{(M + 1) : ~ 3 3 0 . 0 7 5 3 ; ~ F o u n d : ~} 330.0791$

1-(4-Chlorophenyl)-2-(4-methoxyphenyl)-5-azaindole (6o)

Purification: PTLC using EtOAc/hexane (1:1) followed by PTLC using EtOAc/hexane (1:2)
Appearance: Brown oil
Yield: 68% ($52.3 \mathrm{mg}, 0.16 \mathrm{mmol}$ of $\mathbf{6 0}$ from $40 \mathrm{mg}, 0.23 \mathrm{mmol}$ of starting 4-amino-3-bromopyridine)
IR ($\mathbf{c m}^{-1}$) (NaCl): 3040, 2961, 2839, 1614, 1502, 1405, 1256
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}$, CDCl $_{3}$) $\boldsymbol{\delta}: 8.88(\mathrm{~s}, 1 \mathrm{H}), 8.23(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.05(\mathrm{~m}$, 5 H), 6.75 (d, $J=8.5 \mathrm{~Hz}, 2 \mathrm{H}$), $6.70(\mathrm{~s}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$
${ }^{13} \mathbf{C}$ NMR ($\mathbf{1 0 1} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 159.7,143.6,142.3,141.8,141.7,133.7,130.4,136.1,129.9,128.9,125.4$, 123.7, 114.1, 105.6, 102.1, 55.4

HRMS (EI) calcd for $\mathbf{C}_{\mathbf{2 0}} \mathbf{H}_{\mathbf{1 5}} \mathbf{C l N} \mathbf{2} \mathbf{O}$ (M+1): 335.0907; Found: 335.0945 .

1-(4-Chlorophenyl)-2-(3,5-dimethoxyphenyl)-5-azaindole (6p)

Purification: PTLC using EtOAc/hexane (1:1)
Appearance: Yellow oil
Yield: 60% ($50.3 \mathrm{mg}, 0.14 \mathrm{mmol}$ of $\mathbf{6 p}$ from $40 \mathrm{mg}, 0.23 \mathrm{mmol}$ of starting 4-amino-3-bromopyridine)
IR ($\mathbf{c m}^{-1}$) (NaCl): 3042, 2958, 2838, 1597, 1492, 1203, 759
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 8.89(\mathrm{~s}, 1 \mathrm{H}), 8.24(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=8.5$
$\mathrm{Hz}, 2 \mathrm{H}), 7.07$ (d, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.31-6.30(\mathrm{~m}, 3 \mathrm{H}), 3.58(\mathrm{~s}, 6 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 160.1,143.9,142.3,141.9,141.7,133.8,132.9,129.8,128.8,128.6,128.5$, 125.1, 107.3, 105.6, 103.0, 100.5, 55.3.

HRMS (EI) calcd for $\mathbf{C}_{\mathbf{2 1}} \mathbf{H}_{\mathbf{1 7}} \mathbf{C I N}_{\mathbf{2}} \mathbf{O}_{\mathbf{2}}$ (M+1): 365.1012; Found: 365.1052.

1-(4-Chlorophenyl)-2-(ethyl-1-ol)-5-azaindole (6q)

Purification: PTLC using EtOAc/hexane (1:1) followed by PTLC using $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (5\%)
Appearance: Yellow solid
Yield: 54% ($34.1 \mathrm{mg}, 0.13 \mathrm{mmol}$ of $\mathbf{6 q}$ from $40 \mathrm{mg}, 0.23 \mathrm{mmol}$ of starting 4-amino-3-bromopyridine)
M.p.: $155-158{ }^{\circ} \mathrm{C}$

IR ($\left.\mathbf{c m}^{\mathbf{- 1}} \mathbf{)} \mathbf{(N a C l}\right): 3341,3047,2973,2853,1492,1467,814$.
${ }^{1} \mathbf{H}$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 8.82(\mathrm{~s}, 1 \mathrm{H}), 8.17(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.21(\mathrm{~s}, 1 \mathrm{H}), 6.90(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{q}, J=6 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~s}, \mathrm{OH}) 1.53(\mathrm{~d}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\mathbf{\delta}: 145.6,143.8,142.3,141.6,135.2,134.9,130.1,129.5,125.5,105.6,99.4$, 62.2, 22.9.

HRMS (EI) calcd for $\mathbf{C}_{15} \mathbf{H}_{13} \mathbf{C l N} \mathbf{2} \mathbf{O}$ (M+1): 273.0750; Found: 273.0791.

1-(4-Chlorophenyl)-2-(2-butyl-2-ol)-5-azaindole (6r)

Purification: PTLC using EtOAc/hexane (1:1) followed by PTLC using $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ (10\%)
Appearance: Brown oil
Yield: 45% ($32.7 \mathrm{mg}, 0.11 \mathrm{mmol}$ of $\mathbf{6 f}$ from $40 \mathrm{mg}, 0.23 \mathrm{mmol}$ of starting 4-amino-3-bromopyridine)
IR ($\mathbf{c m}^{-1}$) (NaCl): 3341, 2973, 2878, 1492, 809.
${ }^{1} \mathbf{H}$ NMR ($400 \mathbf{M H z}, \mathbf{C D C l}_{3}$) $\boldsymbol{\delta :} \boldsymbol{8 . 7 3 (\mathrm { s } , 1 \mathrm { H }) , 8 . 0 7 (\mathrm { d } , J = 5 . 3 \mathrm { Hz } , 1 \mathrm { H }) , 7 . 4 1 (\mathrm { d } , J = 8 . 6 \mathrm { Hz } , 2 \mathrm { H }) , 7 . 3 1 (\mathrm { d } , J = 7 . 5}$ $\mathrm{Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.57(\mathrm{~s}, 1 \mathrm{H}), 2.42(\mathrm{~s}, \mathrm{OH}), 1.62(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.49(\mathrm{~s}, 3 \mathrm{H}), 0.71(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathbf{C}$ NMR (101 MHz, $\mathbf{C D C l}_{3}$) $\boldsymbol{\delta}: 147.3,144.0,143.2,141.2,137.0,135.0,131.4,130.6,129.6,123.8,105.6$, 100.9, 72.9, 34.6, 28.4, 8.8.

HRMS (EI) calcd for $\mathbf{C}_{\mathbf{1 7}} \mathbf{H}_{\mathbf{1 7}} \mathbf{C l N} \mathbf{2} \mathbf{O}$ (M+1): 301.1063; Found: 301.1101.

NMR spectra of intermediates

3-(Phenylethynyl)pyridin-4-amine (3)

2-Phenyl-1 H-pyrrolo[3,2-c]pyridine (5)

3-Bromo- N-phenylpyridin-4-amine (7a)

3-Iodo- N-phenylpyridin-4-amine (7b)

\mathbf{N}-Phenyl-3-(phenylethynyl)pyridin-4-amine (4)

NMR spectra of 1,2-disubstituted azaindoles

1,2-Diphenyl-5-azaindole (6a)

1,2-Diphenyl-4-azaindole (6b)

1,2-Diphenyl-6-azaindole (6c)

1,2-Diphenyl-7-azaindole (6d)

2-Phenyl-1-(p-tolyl)-5-azaindole (6e)

2-Phenyl-1-(p-tolyl)-6-azaindole (6f)

2-Phenyl-1-(p-tolyl)-4-azaindole (6g)

2-Phenyl-1-(p-tolyl)-7-azaindole (6h)

2-(4-Methoxyphenyl)-1-(p-tolyl)-5-azaindole (6i)

$\stackrel{\sim}{N}$

2-(4-Benzonitrile)-1-(p-tolyl)-5-azaindole ($\mathbf{6 j}$)

2-(4-(Methylsulphonyl)phenyl)-1-phenyl-5-azaindole (6k)

2-(4-Methoxyphenyl)-1-phenyl-5-azaindole (61)

1-(4-Chlorophenyl)-2-phenyl-5-azaindole (6m)

1-(4-Chlorophenyl)-2-(4-benzonitrile)-5-azaindole (6n)

1-(4-Chlorophenyl)-2-(4-methoxyphenyl)-5-azaindole (60)

1-(4-Chlorophenyl)-2-(3,5-dimethoxyphenyl)-5-azaindole (6p)

1-(4-Chlorophenyl)-2-(ethyl-1-ol)-5-azaindole (6q)

1-(4-Chlorophenyl)-2-(2-butyl-2-ol)-5-azaindole (6r)

References

(1) Lu, X.; Petersen, J. L. and Wang, K. K. J. Org. Chem., 2002, 67, 5412-5415.
(2) Spergel, S. H.; Okoro, D. R. and Pitts, W. J. Org. Chem., 2010, 75, 5316-5319.
(3) Gao, J.; Shao, Y.; Zhu, J.; Zhu, J.; Mao, H.; Wang, X. and Lv, X. J. Org. Chem., 2014, 79, 9000-9008.
(4) Rosenberg, A. J.; Zhao, J. and Clark, D. A. Org. Lett., 2012, 14, 1764-1767.
(5) Iwaki, T.; Yasuhara, A. and Sakamoto, T. J. Chem. Soc., Perkin Trans. 1, 1999, 1505-1510.
(6) Crawford, S. M.; Lavery, C. B. and Stradiotto, M. Chem. Eur. J., 2013, 19, 16760-16771.
(7) Dell'Acqua, M.; Ronda, L.; Piano, R.; Pellegrino, S.; Clerici, F.; Rossi, E.; Mozzarelli, A.; Gelmi, M. L. and Abbiati, G. J. Org. Chem., 2015, 80, 10939-10954.
(8) Moritz, B. J.; Mack, D. J.; Tong, L. and Thomson, R. J. Angew. Chem., Int. Ed., 2014, 53, 2988-2991
(9) Morri, A. K.; Thummala, Y. and Doddi, V. R. Org. Lett., 2015, 17, 4640-4643.
(10) Burroughs, L.; Ritchie, J.; Ngwenya, M.; Khan, D.; Lewis, W. and Woodward, S. Beilstein Journal of Organic Chemistry, 2015, 11, 273-279.
(11) Pham, N. N.; Dang, T. T.; Ngo, N. T.; Villinger, A.; Ehlers, P. and Langer, P. Org. Biomol. Chem., 2015, 13, 60476058.

