Supporting Information

Bulky Dehydroamino Acids Enhance Proteolytic Stability and Folding in β-Hairpin Peptides

Ankur Jalan, David W. Kastner, Kei G. I. Webber, Mason S. Smith, Joshua L. Price,* and Steven

L. Castle*

Department of Chemistry and Biochemistry

Brigham Young University, Provo, Utah, 84602

Table of Contents

General Experimental Details	S2
Synthetic Procedures and Spectral Data	S3–S29
Proteolysis Assays	S29–S32
Determination of Percent Folded Values	S32–S33
Circular Dichroism Experiments	S34
NMR Structural Calculations	S35–S38
¹ H and ¹³ C NMR Spectra	S39–S70
Selected Regions of ROESY Spectra.	S71–S74
Peptide HPLC Traces	S75–S85

General Experimental Details

N,N-Dimethylformamide and tetrahydrofuran were dried by passage through a solvent drying system containing cylinders of activated alumina.¹ Other solvents and reagents were purchased from commercial vendors and used without purification. Flash chromatography was carried out using 60-230 mesh silica gel. ¹H NMR spectra were acquired on a 500 MHz spectrometer with chloroform (7.27 ppm) or methanol (3.31 ppm) as internal reference. Signals are reported as follows: s (singlet), d (doublet), t (triplet), dd (doublet of doublets), br s (broad singlet), m (multiplet). Coupling constants are reported in hertz (Hz). ¹³C NMR spectra were acquired on a spectrometer operating at 125 MHz with chloroform (77.23 ppm) or methanol (49.00 ppm) as internal reference. NMR samples of peptides were at concentrations of 1–3.5 mM in 10% v/v D₂O/H₂O buffered to pD 3.9 with 5000 mM NaOAc-d₃. DSS (sodium 4,4-dimethyl-4silapentane-1-sulfonate) was used as the internal standard. Samples were transferred to a Varian 500 MHz magnet and data collection was controlled using vnmrJ software. Water suppression was achieved using an excitation sculpting sequence. 2D TOCSY experiments were collected with 32 scans, 400 t1 increments, and 150 ms mixing time. 2D adiabatic ROESY experiments were collected with 64 scans, 256 t1 increments, and 200 ms mixing time. Data were processed using vnmrJ. Peak assignments were made with the assistance of the ccpNMR software package. Infrared spectra were obtained on an FT-IR spectrometer. Mass spectral data were obtained using ESI techniques. Circular dichroism measurements were made with an Aviv 420 Circular Dichroism Spectropolarimeter, using quartz cuvettes with a path length of 0.1 cm.

¹ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. *Organometallics* **1996**, *15*, 1518.

Synthesis of Dipeptides 5

Ethyl 2-((S)-2-(((Allyloxy)carbonyl)amino)-4-oxo-4-(tritylamino)

butanamido)-3-hydroxy-3-methylbutanoate (5aa). A solution of Alloc-Asn(Trt)-OH (3a, 695.2 mg, 1.52 mmol, 1.5 equiv) in DMF (30 mL) at 0 °C was treated with EDC·HCl (290.8 mg, 1.52 mmol, 1.5 equiv) and HOBt H₂O (256.9 mg, 1.52 mmol, 1.5 equiv). The resulting mixture was stirred at 0 °C for 15 min, then treated with a solution of β -hydroxyamino ester $4a^2$ (163.6 mg, 1.01 mmol) in DMF (5 mL) and stirred at 0 °C to rt for 12 h. The reaction was then guenched with sat aq NaHCO₃ (10 mL) and extracted with EtOAc (3×30 mL). The combined organic layers were washed with $H_2O(3 \times 15 \text{ mL})$ and brine (20 mL), dried (Na₂SO₄), and concentrated in vacuo. Flash chromatography (75 mL of SiO₂, 0–6% MeOH in CH₂Cl₂ gradient elution), afforded **5aa** (472.7 mg, 0.786 mmol, 77%) as a white film that was a 1:1 mixture of diastereomers: ¹H NMR $(CDCl_3, 500 \text{ MHz}) \delta 7.38 \text{ (d, } J = 8.4 \text{ Hz}, 1\text{H}), 7.33-7.23 \text{ (m, 9H)}, 7.18 \text{ (d, } J = 7.8 \text{ Hz}, 6\text{H}), 6.86$ (br s; 1H), 6.43 (d, J = 8.1 Hz, 1H), 5.97–5.85 (m, 1H), 5.31 (dd, J = 17.2, 1.3 Hz, 1H), 5.23 (dd, J = 10.4, 1.2 Hz, 1H), 4.63–4.56 (m, 2H), 4.56–4.51 (m, 1H), 4.47 (d, J = 8.8 Hz, 1H), 4.29–4.16 (m, 2H), 3.11 (dd, J = 15.6, 3.7 Hz, 1H), 2.72–2.63 (m, 1H), 2.69 (br s, 1H), 1.30 (t, J = 7.0 Hz, 3H), 1.21 (s, 3H), 1.14 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 171.1, 170.8, 170.2, 156.4, 144.2 (3C), 132.3, 128.7 (6C), 128.0 (6C), 127.1 (3C), 118.0, 71.9, 70.9, 66.1, 61.6, 60.3, 51.7, 37.6, 26.7, 26.4, 14.1; IR (film) v_{max} 3330, 2923, 1659, 1524 cm⁻¹; HRMS (ESI) *m/z* 602.2831 (MH⁺, $C_{34}H_{39}N_{3}O_{7}H^{+}$ requires 602.2822).

² Ma, Z.; Naylor, B. C.; Loertscher, B. M.; Hafen, D. D.; Li, J. M.; Castle, S. L. *J. Org. Chem.* **2012**, *77*, 1208.

butanamido)-3-ethyl-3-hydroxypentanoate (5ab). Subjection of β-hydroxyamino ester **4b**³ (135.2 mg, 0.714 mmol) to the procedure described above for the synthesis of **5aa** with stirring for 16 h and purification by flash chromatography (60 mL of SiO₂, 0–5% MeOH in CH₂Cl₂ gradient elution), afforded **5ab** (320.4 mg, 0.509 mmol, 71%) as a white film that was a 1:1 mixture of diastereomers: ¹H NMR (CD₃OD, 500 MHz) δ 7.30–7.19 (m, 15H), 6.00–5.91 (m, 1H), 5.34 (d, *J* = 17.2 Hz, 1H), 5.21 (d, *J* = 10.3 Hz, 1H), 4.60–4.56 (m, 2H), 4.55–4.51 (m, 1H), 4.50 (s, 1H), 4.23–4.17 and 4.16–4.09 (2m, 2H), 2.86–2.66 (m, 2H), 1.65–1.45 (m, 4H), 1.27 and 1.26 (2t, *J* = 7.3 and 7.3 Hz, 3H), 0.93 (t, *J* = 7.4 Hz, 3H), 0.84 and 0.83 (2t, *J* = 7.5 and 7.4 Hz, 3H); ¹³C NMR (CD₃OD, 125 MHz) δ 172.1, 170.4 and 170.3, 170.1, 156.7 and 156.6, 144.4 (3C), 132.7, 128.6 (6C), 127.3 (6C), 126.4 (3C), 116.5, 75.6 and 75.5, 70.4, 65.6 and 65.5, 60.9, 57.8 and 57.7, 52.1, 38.2, 27.4, 27.0 and 26.9, 13.0, 6.7, 6.6; IR (film) v_{max} 3328, 2970, 1735, 1663, 1522, 1275, 1268 cm⁻¹; HRMS (ESI) *m/z* 630.3110 (MH⁺, C₃₆H₄₃N₃O₇H⁺ requires 630.3135).

$\overbrace{ba}^{\text{H}} \xrightarrow{\text{CO}_2\text{Et}}_{\text{Alloc}}$ Allyl (2*R*)-2-((1-Ethoxy-3-hydroxy-3-methyl-1-oxobutan-2-yl)carbamoyl) pyrrolidine-1-carboxylate (5ba). Subjection of β -hydroxyamino ester 4a (220.7 mg, 1.37 mmol) to the procedure described above for the synthesis of 5aa with Alloc-D-Pro-OH (3b, 406.3 mg, 2.04 mmol, 1.5 equiv) as coupling partner and purification by flash chromatography (60 mL of SiO₂, 0–6.5% MeOH in CH₂Cl₂ gradient elution) afforded 5ba (378.8 mg, 1.11 mmol, 81%) as a

³ Jiang, J.; Luo, S.; Castle, S. L. *Tetrahedron Lett.* **2015**, *56*, 3311.

colorless oil that was a 1:1 mixture of diastereomers: ¹H NMR (CD₃OD, 500 MHz, mixture of rotamers and diastereomers) δ 6.03–5.83 (m, 1H), 5.40–5.09 (m, 2H), 4.64–4.52 (m, 2H), 4.46–4.35 (m, 2H), 4.27–4.14 (m, 2H), 3.64–3.56 (m, 1H), 3.55–3.46 (m, 1H), 2.34–2.16 (m, 1H), 2.07–1.85 (m, 3H), 1.33–1.27 (m, 6H); 1.24 (s, 3H); ¹³C NMR (CD₃OD, 125 MHz, mixture of rotamers and diastereomers) δ 175.2/175.0, 171.7/171.6, 156.7/156.3, 134.2/134.1/134.0, 117.9/117.7/117.6, 72.5/72.4, 67.2, 62.3/62.2, 61.9, 61.6/61.5/61.2, 48.1, 32.6/32.5/31.3/31.2, 27.7/27.4/27.3, 27.2/27.1, 25.4/25.3/24.6/24.5, 14.5; IR (film) v_{max} 3417, 2917, 1678, 1540, 1408 cm⁻¹; HRMS (ESI) *m/z* 343.1824 (MH⁺, C₁₆H₂₆N₂O₆H⁺ requires 343.1824).

Allyl (2*R*)-2-((1-Ethoxy-3-ethyl-3-hydroxy-1-oxopentan-2-yl)carbamoyl)

pyrrolidine-1-carboxylate (5bb). Subjection of β-hydroxyamino ester **4b** (278.1 mg, 1.47 mmol) to the procedure described above for the synthesis of **5aa** with Alloc-D-Pro-OH (**3b**, 437.9 mg, 2.20 mmol, 1.5 equiv) as coupling partner, stirring for 16 h, and purification by flash chromatography (75 mL of SiO₂, 0–6% MeOH in CH₂Cl₂ gradient elution) afforded **5bb** (431.7 mg, 1.17 mmol, 79%) as a colorless oil that was a 1:1 mixture of diastereomers: ¹H NMR (CD₃OD, 500 MHz, mixture of rotamers and diastereomers) δ 6.03–5.85 (m, 1H), 5.39–5.11 (m, 2H), 4.64–4.49 (m, 3H), 4.44–4.33 (m, 1H), 4.28–4.13 (m, 2H), 3.65–3.56 (m, 1H), 3.55–3.47 (m, 1H), 2.36–2.15 (m, 1H), 2.08–1.84 (m, 3H), 1.72–1.49 (m, 4H), 1.33–1.25 (m, 3H), 0.93 (t, *J* = 7.6 Hz, 3H), 0.90–0.82 (m, 3H); ¹³C NMR (CD₃OD, 125 MHz, mixture of rotamers and diastereomers) δ 173.6/173.5, 170.5/170.4, 155.0/154.9, 132.7/132.6, 116.4/116.3/116.2/116.1, 75.6/75.5, 65.9/65.8, 60.8/60.7, 60.3/59.9, 57.7/57.6/57.4, 46.7, 31.1/31.0/29.9/29.8, 27.4, 27.0/26.9, 24.0/23.9/23.0, 13.0, 6.7, 6.6; IR (film) v_{max} 3414, 2969, 1679, 1444, 1408 cm⁻¹; HRMS (ESI) *m/z* 371.2127 (MH⁺, C₁₈H₃₀N₂O₆H⁺ requires 371.2137).

Ethyl 2-((S)-2-(((allyloxy)carbonyl)amino)-3-methylbutanamido)-3-

hydroxy-3-methylbutanoate (5ca). Subjection of β-hydroxyamino ester 4a (351.8 mg, 2.18 mmol) to the procedure described above for the synthesis of 5aa with Alloc-Val-OH (3c, 658.3 mg, 3.27 mmol, 1.5 equiv) as coupling partner, stirring for 14 h, and purification by flash chromatography (100 mL of SiO₂, 0–2.5% MeOH in CH₂Cl₂ gradient elution) afforded 5ca (632.7 mg, 1.84 mmol, 84%) as a colorless oil that was a 1:1 mixture of diastereomers: ¹H NMR (CDCl₃, 500 MHz) δ 6.90 (d, J = 8.7 Hz, 1H), 5.96–5.86 (m, 1H), 5.50–5.43 (m, 1H), 5.34–5.27 (m, 1H), 5.24–5.19 (m, 1H), 4.61–4.55 (m, 2H), 4.51 (t, J = 8.5 Hz, 1H), 4.29–4.19 (m, 2H), 4.17–4.12 and 4.11–4.06 (2m, 1H), 3.12 and 2.92 (2 br s, 1H), 2.25–2.17 and 2.16–2.07 (2m, 1H), 1.32–1.28 (m, 3H), 1.30 (s, 3H), 1.26 (s, 3H), 1.00 and 0.97 (2d, J = 6.9 and 6.7 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 171.6, 171.3 and 171.1, 156.3, 132.5, 117.9, 71.9 and 71.8, 65.9, 61.7 and 61.6, 60.3 and 60.2, 59.9 and 59.8, 31.1, 26.8, 26.7, 19.3 and 19.1, 17.9 and 17.3, 14.1; IR (film) v_{max} 3324, 2973, 1729, 1660, 1536, 1214 cm⁻¹; HRMS (ESI) *m/z* 345.1976 (MH⁺, C₁₆H₂₈N₂O₆H⁺ requires 345.1981).

Ethyl 2-((S)-2-(((Allyloxy)carbonyl)amino)-3-methylbutanamido)-3-

ethyl-3-hydroxypentanoate (5cb). Subjection of β -hydroxyamino ester 4b (323.2 mg, 1.71 mmol) to the procedure described above for the synthesis of 5aa with Alloc-Val-OH (3c, 514.8 mg, 2.56 mmol, 1.5 equiv) as coupling partner, stirring for 16 h, and purification by flash chromatography (75 mL of SiO₂, 0–4% MeOH in CH₂Cl₂ gradient elution) afforded 5cb (498.7 mg, 1.34 mmol, 78%) as a colorless liquid that was a 1:1 mixture of diastereomers: ¹H NMR

(CDCl₃, 500 MHz) δ 6.69 and 6.63 (2d, J = 8.7 and 8.2 Hz, 1H), 5.97–5.88 (m, 1H), 5.37–5.28 (m, 2H), 5.23 (d, J = 10.4 Hz, 1H), 4.62–4.55 (m, 3H), 4.29–4.17 (m, 2H), 4.14–4.09 and 4.08–4.03 (2m, 1H), 2.47 (br s, 1H), 2.25–2.17 and 2.16–2.09 (2m, 1H), 1.59–1.44 (m, 4H), 1.31 (t, J = 7.2 Hz, 3H), 1.00 and 0.97 (2d, J = 6.8 and 6.8 Hz, 3H), 0.96–0.91 (m, 6H), 0.87 (t, J = 7.4 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 171.8 and 171.7, 171.2, 156.2, 132.6, 117.9 and 117.8, 76.2, 65.9, 61.6 and 61.5, 60.2, 56.8 and 56.7, 31.2, 28.4, 26.7, 19.3 and 19.1, 17.7 and 17.2, 14.1, 7.6, 7.5; IR (film) ν_{max} 3336, 2969, 1727, 1659, 1530 cm⁻¹; HRMS (ESI) *m/z* 373.2276 (MH⁺, C₁₈H₃₂N₂O₆H⁺ requires 373.2294).

Synthesis of Azlactone Dipeptides 6

Gaa \ddot{o} **Allyl** (*S*)-(3-oxo-1-(5-oxo-4-(propan-2-ylidene)-4,5-dihydrooxazol-2-yl)-3-(tritylamino)propyl)carbamate (6aa). A solution of dipeptide 5aa (402.9 mg, 0.670 mmol) in 3:1 *t*-BuOH–H₂O (16 mL) at 0 °C was treated with LiOH·H₂O (141.4 mg, 3.37 mmol, 5.0 equiv) and stirred at 0 °C for 4 h. The reaction was quenched with sat aq KHSO₄ to adjust the pH to 2, and the resulting mixture was extracted with EtOAc (4 × 25 mL). The combined organic layers were washed with brine (15 mL), dried (Na₂SO₄), and concentrated *in vacuo*. The crude acid (363.6 mg, 0.634 mmol) was then dissolved in anhydrous THF (20 mL), treated with NaOAc (78.1 mg, 0.952 mmol, 1.5 equiv) and Ac₂O (300 µL, 324 mg, 3.17 mmol, 5.0 equiv), then stirred at rt under Ar for 12 h. The reaction was quenched with MeOH (10 mL), stirred at rt for 30 min, diluted with H₂O (10 mL), and extracted with EtOAc (4 × 25 mL). The combined organic layers were washed with brine (15 mL), dried (Na₂SO₄), and concentrated *in vacuo*. Flash chromatography (50 mL of SiO₂, 1% Et₃N in 2–10% EtOAc in hexanes gradient elution) afforded **6aa** (252.4 mg, 0.469 mmol, 70%) as a white solid: $[\alpha]^{25}_{D}$ –2.1 (*c* 0.86, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 7.31–7.23 (m, 9H), 7.17–7.12 (m, 6H), 6.78 (s, 1H), 6.17 (d, *J* = 8.5 Hz, 1H), 5.97–5.82 (m, 1H), 5.32 (d, *J* = 17.1 Hz, 1H), 5.21 (d, *J* = 10.4 Hz, 1H), 5.01–4.91 (m, 1H), 4.64–4.52 (m, 2H), 3.08 (dd, *J* = 15.6, 4.3 Hz, 1H), 2.92 (dd, *J* = 15.5, 4.5 Hz, 1H), 2.35 (s, 3H), 2.19 (s, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 168.7, 164.8, 161.7, 155.9, 154.5, 144.2 (3C), 132.5, 130.5, 128.6 (6C), 128.0 (6C), 127.2 (3C), 117.7, 70.9, 65.9, 46.9, 37.9, 22.9, 19.7; IR (film) v_{max} 3286, 2917, 1794, 1673, 1530, 1447, 1158 cm⁻¹; HRMS (ESI) *m/z* 538.2273 (MH⁺, C₃₂H₃₁N₃O₅H⁺ requires 538.2297).

Allyl (S)-(3-oxo-1-(5-oxo-4-(pentan-3-ylidene)-4,5-dihydrooxazol-2-yl)-3-

(tritylamino)propyl)carbamate (6ab). Subjection of dipeptide 5ab (342.7 mg, 0.544 mmol) to the saponification procedure described above for the synthesis of 6aa afforded 316.4 mg (0.526 mmol) of the crude acid. Subjection of this crude mixture to the conditions described previously with NaOAc (65.7 mg, 0.801 mmol, 1.5 equiv), Ac₂O (250 μ L, 270 mg, 2.64 mmol, 5.0 equiv), and purification by flash chromatography (60 mL of SiO₂, 1% Et₃N in 1–10% EtOAc in hexanes gradient elution) afforded 6ab (197.7 mg, 0.349 mmol, 64%) as a white solid: [α]²⁵_D –5.4 (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ 7.31–7.22 (m, 9H), 7.14–7.11 (m, 6H), 6.78 (s, 1H), 6.15 (d, *J* = 8.6 Hz, 1H), 5.98–5.84 (m, 1H), 5.32 (d, *J* = 17.3 Hz, 1H), 5.21 (d, *J* = 10.5 Hz, 1H), 5.00–4.92 (m, 1H), 4.64–4.52 (m, 2H), 3.10 (dd, *J* = 15.6, 4.4 Hz, 1H), 2.92 (dd, *J* = 15.5, 4.7 Hz, 1H), 2.85–2.71 (m, 2H), 2.69–2.54 (m, 2H), 1.14 (t, *J* = 7.5 Hz, 3H), 1.09 (t, *J* = 7.7 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 168.7, 165.4, 164.7, 161.9, 155.9, 144.2 (3C), 132.5, 129.6, 128.6 (6C), 128.0 (6C), 127.2 (3C), 117.6, 71.0, 65.9, 47.0, 37.9, 26.6, 23.4, 12.5, 12.3; IR (film) v_{max} 3277, 2918,

1789, 1648, 1526, 1447, 1268 cm⁻¹; HRMS (ESI) *m/z* 566.2639 (MH⁺, C₃₄H₃₅N₃O₅H⁺ requires 566.2610).

Allyl (R)-2-(5-oxo-4-(propan-2-ylidene)-4,5-dihydrooxazol-2-yl)pyrrolidine-

1-carboxylate (6ba). Subjection of dipeptide 5ba (268.6 mg, 0.784 mmol) to the saponification procedure described above for the synthesis of **6aa** afforded 236.1 mg (0.751 mmol) of the crude acid. Subjection of this crude mixture to the conditions described previously with NaOAc (92.8 mg, 1.13 mmol, 1.5 equiv), Ac₂O (360 µL, 389 mg, 3.81 mmol, 5.1 equiv), and purification by flash chromatography (50 mL of SiO₂, 1% Et₃N in 2–10% EtOAc in hexanes gradient elution) afforded **6ba** (157.9 mg, 0.567 mmol, 72%) as a colorless oil: $[\alpha]_{D}^{25} + 93$ (*c* 0.64, CHCl₃); ¹H NMR (CDCl₃, 500 MHz, ca. 1.2:1 mixture of rotamers) & 5.99–5.90 and 5.88–5.78 (2m, 1H), 5.33 and 5.25 (2d, J = 17.2 and 18.8 Hz, 1H), 5.22 and 5.13 (2d, J = 10.9 and 10.5 Hz, 1H), 4.75–4.68 (m, 1H), 4.65–4.59 and 4.52 (m and dd, J = 13.7, 5.1 Hz, 1H), 4.61 (d, J = 5.4 Hz, 1H), 3.68–3.59 (m, 1H), 3.59–3.50 (m, 1H), 2.35 and 2.33 (2s, 3H), 2.32–2.26 (m, 1H), 2.24 (s, 3H), 2.18–2.03 (m, 2H), 2.02–1.92 (m, 1H); ¹³C NMR (CDCl₃, 125 MHz, ca. 1.2:1 mixture of rotamers) δ 165.3, 165.1, 163.1 and 162.9, 154.5 and 154.1, 132.8 and 132.6, 130.7 and 130.5, 117.4 and 117.0, 66.0 and 65.9, 55.7 and 55.1, 46.9 and 46.5, 31.2 and 30.4, 24.3 and 23.4, 22.8 and 22.7, 19.7; IR (film) v_{max} 2917, 1794, 1707, 1675, 1406, 1158 cm⁻¹; HRMS (ESI) *m/z* 279.1325 (MH⁺, C₁₄H₁₈N₂O₄H⁺ requires 279.1300).

Allyl (R)-2-(5-oxo-4-(pentan-3-ylidene)-4,5-dihydrooxazol-2-yl)pyrrolidine-

1-carboxylate (6bb). Subjection of dipeptide 5bb (337.4 mg, 0.911 mmol) to the saponification procedure described above for the synthesis of 6aa afforded 308.2 mg (0.900 mmol) of the crude acid. Subjection of this crude mixture to the conditions described previously with NaOAc (110.9 mg, 1.35 mmol, 1.5 equiv), Ac₂O (430 µL, 464 mg, 4.55 mmol, 5.1 equiv), and purification by flash chromatography (75 mL of SiO₂, 1% Et₃N in 1–10% EtOAc in hexanes gradient elution) afforded **6bb** (204.8 mg, 0.668 mmol, 73%) as a colorless oil: $[\alpha]^{25}_{D}$ +83 (*c* 1.0, CHCl₃); ¹H NMR (CDCl₃, 500 MHz, ca. 1.1:1 mixture of rotamers) & 6.00-5.89 and 5.87-5.76 (2m, 1H), 5.32 and 5.23 (2d, J = 17.8 and 18.5 Hz, 1H), 5.22 and 5.12 (2d, J = 9.4 and 10.4 Hz, 1H), 4.74 and 4.69 (2dd, J = 8.2, 3.0 Hz and 8.1, 3.4 Hz, 1H), 4.65-4.58 and 4.50 (m and dd, J = 13.6, 5.2 Hz, 1H),4.61 (d, J = 4.6 Hz, 1H), 3.68–3.60 (m, 1H), 3.59–3.51 (m, 1H), 2.83–2.74 (m, 2H), 2.69–2.59 (m, 2H), 2.34–2.24 (m, 1H), 2.18–2.03 (m, 2H), 2.01–1.91 (m, 1H), 1.17–1.07 (m, 6H); ¹³C NMR (CDCl₃, 125 MHz, ca. 1.1:1 mixture of rotamers) δ 165.2, 165.0 and 164.9, 163.2 and 163.1, 154.5 and 154.2, 132.8 and 132.6, 129.8 and 129.6, 117.4 and 117.1, 66.0 and 65.9, 55.7 and 55.1, 46.9 and 46.5, 31.2 and 30.4, 26.6, 24.3 and 23.6, 23.4, 12.5 and 12.4, 12.3; IR (film) v_{max} 2975, 1791, 1709, 1668, 1406, 1156 cm⁻¹; HRMS (ESI) *m/z* 307.1625 (MH⁺, C₁₆H₂₂N₂O₄H⁺ requires 307.1613).

Allyl (S)-(2-methyl-1-(5-oxo-4-(propan-2-ylidene)-4,5-dihydrooxazol-2yl)propyl)carbamate (6ca). Subjection of dipeptide 5ca (394.2 mg, 1.14 mmol) to the saponification procedure described above for the synthesis of **6aa** afforded 357.9 mg (1.13 mmol) of the crude acid. Subjection of this crude mixture to the conditions described previously with NaOAc (139.4 mg, 1.70 mmol, 1.5 equiv), Ac₂O (540 μL, 583 mg, 5.71 mmol, 5.0 equiv), and purification by flash chromatography (50 mL of SiO₂, 1% Et₃N in 1–10% EtOAc in hexanes gradient elution) afforded **6ca** (257.7 mg, 0.919 mmol, 80%) as a colorless oil: $[\alpha]^{25}_{D}$ –18 (*c* 0.44, CHCl₃); ¹H NMR (CDCl₃, 500 MHz) δ ¹H NMR (CDCl₃, 500 MHz) δ 6.01–5.89 (m, 1H), 5.34 (d, *J* = 17.1 Hz, 1H), 5.31–5.27 (m, 1H), 5.25 (d, *J* = 10.9 Hz, 1H), 4.64–4.56 (m, 3H), 2.36 (s, 3H), 2.26 (s, 3H), 2.24–2.17 (m, 1H), 1.02 (d, *J* = 6.8 Hz, 3H), 0.96 (d, *J* = 6.8 Hz, 3H); ¹³C NMR (CDCl₃, 125 MHz) δ 164.9, 162.1, 155.9, 154.7, 132.6, 130.1, 118.0, 66.0, 55.0, 31.3, 22.8, 19.7, 18.9, 17.5; IR (film) v_{max} 3293, 2917, 1693, 1650, 1536 cm⁻¹; HRMS (ESI) *m/z* 281.1484 (MH⁺, C_{14H20}N₂O₄H⁺ requires 281.1457).

Allyl (S)-(2-methyl-1-(5-oxo-4-(pentan-3-ylidene)-4,5-dihydrooxazol-2-

yl)propyl)carbamate (6cb). Subjection of dipeptide **5cb** (338.6 mg, 0.909 mmol) to the saponification procedure described above for the synthesis of **6aa** with 6 h of stirring afforded 307.3 mg (0.892 mmol) of the crude acid. Subjection of this crude mixture to the conditions described previously with NaOAc (109.9 mg, 1.34 mmol, 1.5 equiv), Ac₂O (430 µL, 464 mg, 4.55 mmol, 5.1 equiv), and purification by flash chromatography 65 mL of SiO₂, 1% Et₃N in 1–10% EtOAc in hexanes gradient elution) afforded **6cb** (208.6 mg, 0.676 mmol, 74%) as a colorless oil: $[\alpha]^{25}_{D}$ –14 (*c* 0.36, CHCl₃); ¹H NMR (CD₃OD, 500 MHz) δ 6.01–5.90 (m, 1H), 5.33 (dd, *J* = 17.3, 1.6 Hz, 1H), 5.19 (d, *J* = 10.6 Hz, 1H), 4.56 (d, *J* = 5.4 Hz, 2H), 4.02 (d, *J* = 6.8 Hz, 1H), 2.58 (q, *J* = 7.6 Hz, 2H), 2.28–2.18 (m, 2H), 2.17–2.09 (m, 1H), 1.11 (t, *J* = 7.4 Hz, 3H), 1.04 (t, *J* = 7.5

Hz, 3H), 1.03 (d, J = 7.3 Hz, 3H), 0.99 (d, J = 6.8 Hz, 3H); ¹³C NMR (CD₃OD, 125 MHz) δ 172.6, 166.5, 157.0, 155.7, 132.9, 121.3, 116.2, 65.2, 60.4, 30.6, 25.4, 24.3, 18.4, 17.0, 12.0, 11.0; IR (film) v_{max} 3293, 2966, 1693, 1650, 1561 cm⁻¹; HRMS (ESI) *m/z* 309.1746 (MH⁺, C₁₆H₂₄N₂O₄H⁺ requires 309.1770).

General Procedures for Solid-Phase Peptide Synthesis

Attachment of *C*-terminal amino acid to resin. Rink amide MBHA resin (100–200 mesh, 100 μ mol) was added to a fritted polypropylene syringe. The resin was swelled in CH₂Cl₂ (10 min), and then in DMF (5 min). The swelling solvents were drained from the resin using a vacuum manifold. After Fmoc deprotection (see below for procedure, repeated twice), the amino acid was coupled to the resin (see below for procedure, repeated twice).

Fmoc Deprotection. The resin (100 μ mol) was treated with piperidine (20% solution in DMF, 5.0 mL) and allowed to stand for 5 min. The solution was drained from the resin using a vacuum manifold, and additional piperidine (20% solution in DMF, 5.0 mL) was added. The resulting mixture was stirred twice at 80 °C in a microwave oven for 4 min. The solution was drained from the resin using a vacuum manifold, and the resin was rinsed with DMF (5 × 10 mL).

Peptide coupling. The Fmoc-protected amino acid (500 μ mol, 5 equiv) and HBTU (190 mg, 500 μ mol, 5 equiv) were dissolved by vortexing in a 0.1 M HOBt solution in NMP (5.0 mL, 500 μ mol, 5 equiv). *i*Pr₂NEt (176 μ L, 1000 μ mol, 10 equiv) was added to this solution, and it was allowed to stand for ca. 1 min. The solution was added to the resin (100 μ mol), and the resulting mixture was stirred at 70 °C in a microwave oven for 10 min. The solution was drained from the resin using a vacuum manifold, and the resin was rinsed with DMF (5 × 10 mL). The *N*-terminal amino acid of each peptide (i.e., Arg) was coupled by gently stirring the solution at rt under Ar for ca. 10–12 h after the microwave heating was completed.

Coupling of azlactones 6 with resin-bound peptides. A solution of **6** (500 μ mol, 5 equiv, typically employed crude without purification by flash chromatography) and Et₃N (150 μ L, 1.08 mmol, 10 equiv) in NMP (10 mL) was added to the resin-bound peptide (100 μ mol). The resulting mixture was gently stirred at 80 °C for 24–36 h. The solution was drained from the resin using a fritted polypropylene syringe into a 20 mL glass vial (**note:** the unreacted azlactone present in the solution can be reused), and the resin was rinsed with DMF (5 × 10 mL). Any unreacted amines were then capped by addition of a solution of Ac₂O (1.0 mL, 1.08 g, 10.6 mmol, 106 equiv) and Et₃N (200 μ L, 145.2 mg, 1.44 mmol, 14.4 equiv.) in CH₂Cl₂ (5 mL), followed by stirring at rt under Ar for 90 min and washing with CH₂Cl₂ (5 × 10 mL).

Alloc deprotection. The resin-bound peptide (100 μ mol) was placed under an Ar atmosphere and treated with a solution of PhSiH₃ (700 μ L, 613.9 mg, 5.67 mmol, 56.7 equiv) in CH₂Cl₂ (3 mL) with stirring, followed by addition of a solution of Pd(PPh₃)₄ (56.8 mg, 49.2 μ mol, 0.49 equiv) in CH₂Cl₂ (3 mL). The resulting mixture was stirred at rt under Ar for 20 min. The resin was rinsed with CH₂Cl₂ (5 × 10 mL), and the deprotection protocol was repeated once.

Acetylation of the *N*-terminus of resin-bound peptides. The *N*-terminus of each peptide was capped by addition of a solution of Ac_2O (1.0 mL, 1.08 g, 10.6 mmol, 106 equiv) and Et_3N (200 µL, 145.2 mg, 1.44 mmol, 14.4 equiv.) in CH_2Cl_2 (5 mL), followed by stirring at rt under Ar for 2 h. The resin was then rinsed with CH_2Cl_2 (5 × 10 mL).

Cleavage of peptide from resin and purification. The resin-bound peptide (100 μ mol) was treated carefully with a solution of phenol (500 mg, 5.31 mmol), H₂O (500 μ L), thioanisole (500 μ L, 528.5 mg, 4.26 mmol), ethanedithiol (250 μ L, 280.8 mg, 2.98 mmol), and triisopropylsilane (100 μ L, 77.3 mg, 488 μ mol) in TFA (8.0 mL) in order to avoid the buildup of excess CO₂ pressure in the reaction vessel. The resulting mixture was stirred at rt for ca. 4 h, and

the peptide was precipitated by filtering the mixture and pouring the filtrate into cold Et₂O (40 mL). The resin was rinsed with TFA (3 mL), and the precipitate was collected by centrifugation. The crude peptide was lyophilized and purified by HPLC (see entries for individual peptides for elution conditions).

Synthesis of cyclic and random coil control peptides (S1–S6). Ac-Cys-Trp-Val-Glu-Val-Asn-Gly-Orn-Lys-Ile-Leu-Gln-Cys-NH₂ and Ac-Cys-Trp-Val-Glu-Val- Δ Val-Gly-Orn-Lys-Ile-Leu-Gln-Cys-NH₂ were synthesized according to the previously described general procedures and purified by HPLC. They were then cyclized by stirring in open air for ca. 24 h in a 10 mM phosphate buffer solution (pH 7.5) containing 5% DMSO, affording cyclic controls S1 and S4 respectively. Random coil peptides S2, S3, S5, and S6 were synthesized according to the previously described general procedures. Azlactones 6ca and Ac- Δ Val⁴ were used to synthesize S5 and S6 respectively.

Peptide Concentration Determination and NMR Sample Preparation. Peptide solutions were prepared in 20 mM sodium phosphate buffer (pH 7), and peptide concentrations were determined spectroscopically based on tryptophan absorbance at 280 nm in 6 M guanidine hydrochloride (Trp $\varepsilon_{280} = 5690 \text{ M}^{-1} \text{ cm}^{-1}$). NMR samples were prepared with 1–3.5 mM peptide in 10% v/v D₂O/H₂O buffered to pD 3.9 with 5000 mM NaOAc-*d*₃.

⁴ El-Baba, S., Nuzillard, J.M., Poulin, J.C., Kagan, H.B. Tetrahedron 1986, 42, 3851.

Tabulated ¹H NMR Data for Peptides

	Amide	α	β	Others $(\gamma, \delta, \varepsilon)$
Arg	8.11	4.38	1.65, 1.71	γ CH ₂ 1.52; δ CH ₂ 3.15; ε Η 7.14
Trp	8.34	5.09	3.09	H1 10.2; H2 7.25; H4 7.50; H6 7.08; H7 7.34
Val	9.00	4.45	2.04	γ CH ₃ 0.871, 0.889
Glu	8.55	4.92	1.93, 2.02	γ CH ₂ 2.28
Val	8.90	4.22	1.96	γ CH ₃ 0.928
Asn	9.41	4.48	2.77, 3.07	δ NH ₂ 6.96, 7.64
Gly	8.64	3.75, 4.09		
Orn	7.87	4.62	1.83, 1.87	γ CH ₂ 1.73; δ CH ₂ 3.05; ε NH 7.66
Lys	8.51	4.74	1.70	γ CH_2 1.23; δ CH_2 1.36; ϵ CH_2 2.58; ζ NH_3 7.28
Ile	9.11	4.57	1.89	γ CH_2 1.21, 1.43; δ CH_3 0.836; γ CH_3 0.902
Leu	8.35	4.10	1.09, 1.37	γ CH 0.792; δ CH ₃ 0.319, 0.529
Gln	8.67	4.33	1.89, 2.05	$\gamma CH_2 2.28; \epsilon NH_2 6.89, 7.36$

Ac-R-W-V-E-V-N-G-O-K-I-L-Q-NH $_2$ (1)

Ac-R-W-V-E-V-p-G-O-K-I-L-Q-NH₂ (2)

Н	α	β	Others $(\gamma, \delta, \varepsilon)$
8.07	4.41	1.64, 1.72	γ CH ₂ 1.53; δ CH ₂ 3.16; ε NH 6.88
8.36	5.13	3.08	H1 10.20; H2 7.23; H4 7.27; H5 7.05; H7 7.49
9.25	4.51	2.05	γ CH ₃ 0.889, 0.873
8.59	5.06	2.03, 1.95	γ CH ₂ 2.33
8.98	4.63	1.99	γ CH ₃ 0.941
	4.38	2.20, 2.40	γ CH ₂ 2.01, 2.08; δ CH ₂ 3.88
8.62	3.80, 4.04		
7.93	4.66	1.85	γ CH_2 1.71; δ CH_2 3.03, ϵ NH_3 7.65
8.48	4.86	1.67	γ CH ₂ 1.20; δ CH ₂ 1.28; ϵ CH ₂ 2.48
9.24	4.62	1.88	γ CH_2 1.19, 1.40; δ CH_3 0.816; γ CH_3 0.889
8.36	4.02	0.966, 1.32	γ CH 0.595; δ CH ₃ 0.166, 0.445
8.73	4.33	1.86, 2.03	γ CH ₂ 2.25; ε NH ₂ 7.71, 7.12
	H 8.07 8.36 9.25 8.59 8.98 8.62 7.93 8.48 9.24 8.36 8.73	Hα8.074.418.365.139.254.518.595.068.984.634.388.623.80, 4.047.934.668.484.869.244.628.364.028.734.33	H α β 8.074.411.64, 1.728.365.133.089.254.512.058.595.062.03, 1.958.984.631.994.382.20, 2.408.623.80, 4.047.934.661.858.484.861.679.244.621.888.364.020.966, 1.328.734.331.86, 2.03

	Н	α	β	Others $(\gamma, \delta, \varepsilon)$
Arg	8.12	4.30	1.64	γ CH ₂ 1.47; δ CH ₂ 3.11; ε NH 7.11
Trp	8.27	4.97	3.14	H1 10.18; H2 7.23; H4 7.42; H5 7.08; H7 7.49
Val	8.62	4.30	2.01	γ CH ₃ 0.851
Glu	8.45	4.75	1.90, 1.98	γ CH ₂ 2.23
Val	8.70	4.18	1.99	γ CH ₃ 0.915
Asn	9.15	4.61	2.80, 3.01	δ NH ₂ 6.95, 7.62
∆Val	9.34			γ CH ₃ 1.81, 0.917
Orn	7.78	4.49	1.72, 1.76	γ CH_2 1.86; δ CH_2 3.04; ϵ NH_3 7.64
Lys	8.36	4.57	1.73	γ CH ₂ 1.26; δ CH ₂ 1.42; ϵ CH ₂ 2.68
Ile	8.76	4.39	1.87	γ CH_2 1.17, 1.42; δ CH_3 0.805; γ CH_3 0.805
Leu	8.33	4.16	1.42, 1.25	γ CH 1.05; δ CH ₃ 0.484, 0.619
Gln	8.49	4.30	1.91, 2.05	γ CH ₂ 2.30; ϵ NH ₂ 7.12, 7.62

Ac-R-W-V-E-V-N- Δ Val-O-K-I-L-Q-NH₂ (7aa)

Ac-R-W-V-E-V-N- Δ Env-O-K-I-L-Q-NH₂ (7ab)

	Н	α	β	Others $(\gamma, \delta, \varepsilon)$
Arg	8.14	4.27	1.64	γ CH ₂ 1.47; δ CH ₂ 3.11; ε NH 7.11
Trp	8.25	4.92	3.18	1H 10.2; H2 7.24; H5 7.10; H7 7.48
Val	8.44	4.25	2.01	γ CH ₃ 0.856
Glu	8.40	4.66	1.97, 2.09	γ CH ₂ 2.32
Val	8.58	4.16	2.02	γ CH ₃ 0.935
Asn	8.98	4.70	2.80, 3.01	δ NH ₂ 7.00, 7.64
ΔEnv	9.21			γ CH ₂ 2.139, 2.215; δ CH ₃ 0.971
Orn	7.85	4.41	1.87	γ CH ₂ 1.74; δ CH ₂ 3.04; ε NH ₃ 7.65
Lys	8.24	4.50	1.77	γ CH ₂ 1.30; δ CH ₂ 1.49 ε CH ₂ 2.75; ζ NH ₃ 7.41
Ile	8.61	4.30	1.90	γ CH_2 1.18, 1.45; δ CH_3 0.804; γ CH_3 0.879
Leu	8.33	4.19	1.39, 1.48	γ CH 1.23; δ CH ₃ 0.585, 0.685
Gln	8.62	4.30	2.09	γ CH ₂ 2.43; ϵ NH ₂ 7.15, 7.57

	Н	α	β	Others $(\gamma, \delta, \varepsilon)$
Arg	8.08	4.40	1.71, 1.63	γ CH ₂ 1.513, δ CH ₂ 3.15, ε CH 7.13
Trp	8.35	5.11	3.06	H1 10.2; H2 7.23; H4 7.50; H6 7.05; H7 7.30
Val	9.15	4.48	2.05	γ CH ₂ 0.876
Glu	8.55	5.07	1.89, 1.97	γ CH ₂ 2.16, 2.22
Val	8.95	4.62	2.00	γ CH ₃ 0.947
D-Pro		4.42	2.19, 2.47	$\gamma CH_2 2.10; \delta CH_2 3.88, 3.94$
∆Val	9.25			γ CH ₃ 1.80, 2.18
Orn	7.77	4.63	1.80, 1.86	$\gamma CH_2 1.73; \delta CH_2 3.03; \epsilon NH_3 7.64$
Lys	8.48	4.82	1.67	$\gamma \ CH_2 \ 1.20; \ \delta \ CH_2 \ 1.30; \ \epsilon \ CH_2 \ 2.53$
Ile	9.17	4.58	1.87	$\gamma \ CH_2 \ 1.19, \ 1.40; \ \delta \ CH_3 \ 0.814; \ \gamma \ CH_3 \ 0.885$
Leu	8.36	4.04	1.01, 1.34	γ CH 0.671; δ CH ₃ 0.217, 0.470
Gln	8.69	4.32	1.86, 2.03	γ CH ₂ 2.26; ϵ NH ₂ 6.89, 7.33

Ac-R-W-V-E-V- $p-\Delta Val-O-K-I-L-Q-NH_2$ (7ba)

Ac-R-W-V-E-V-p- Δ Env-O-K-I-L-Q-NH₂ (7bb)

	Н	α	β	Others $(\gamma, \delta, \varepsilon)$
Arg	8.08	4.39	1.64, 1.71	γ CH ₂ 1.52; δ CH ₂ 3.15; ε NH 7.14
Trp	8.32	5.10	3.07	H1 10.2; H2 7.23; H4 7.31; H5 7.05; H7 7.50
Val	9.10	4.48	2.07	γ CH ₃ 0.884
Glu	8.53	5.09	1.90, 1.97	γ CH ₂ 2.14, 2.29
Val	8.89	4.61	2.01	γ CH ₃ 0.955
D-Pro		4.44	2.17, 2.47	γ CH ₂ 2.09; δ CH ₂ 3.87, 3.97
ΔEnv	9.33			γ CH ₂ 2.23, 2.061; δ CH ₃ 0.969
Orn	7.78	4.62	1.88	γ CH ₂ 1.74; δ CH ₂ 3.05; ϵ NH ₃ 7.63
Lys	8.44	4.82	1.67	γ CH ₂ 1.21; δ CH ₂ 1.34; ε CH ₂ 2.55
Ile	9.12	4.56	1.88	γ CH_2 1.20, 1.42; δ CH_3 0.823; γ CH_3 0.891
Leu	8.36	4.06	1.36, 1.06	γ CH ₂ 0.730; δ CH ₃ 0.258, 0.499
Gln	8.66	4.33	1.89, 2.05	γ CH ₂ 2.27; ε NH ₂ 7.12, 7.69

	Η	α	β	Others $(\gamma, \delta, \varepsilon)$
Arg	8.08	4.41	1.73, 1.65	γ CH ₂ 1.54; δ CH ₂ 3.16; ε NH 7.14
Trp	8.34	5.15	3.04, 3.09	H1 10.2; H2 7.24; H4 7.29; H6 7.06; H7 7.50
Val	9.24	4.54	2.08	γ CH ₃ 0.880
Glu	8.57	5.14	2.01, 1.93	γ CH ₂ 2.27, 2.30
Val	9.08	4.38	1.96	γ CH ₃ 0.994, 0.955
ΔVal	10.3			γ CH ₃ 1.99, 1.89
Gly	8.63	4.11, 3.73		
Orn	7.98	4.66	1.72	$\gamma CH_2 1.85; \delta CH_2 3.03; \epsilon NH_3 7.65$
Lys	8.50	4.82	1.67, 1.35	γ CH_2 1.20; δ CH_2 1.28, 1.35; ϵ CH_2 2.50, 2.45; ζ NH_37.20
Ile	9.26	4.63	1.90	γ CH_2 1.21, 1.41; δ CH_3 0.813; γ CH_3 0.888
Leu	8.35	4.04	0.990, 1.33	γ CH 0.641; δ CH ₃ 0.194, 0.454
Gln	8.72	4.33	1.87, 2.03	γ CH ₂ 2.26; ε NH ₂ 7.12, 7.71

Ac-R-W-V-E-V- Δ Val-G-O-K-I-L-Q-NH₂ (7ca)

Ac-R-W-V-E-V- Δ Env-G-O-K-I-L-Q-NH₂ (7cb)

	Н	α	β	Others $(\gamma, \delta, \varepsilon)$
Arg	8.08	4.42	1.66, 1.73	γ CH ₂ 1.54; δ CH ₂ 3.17; ε NH 7.15
Trp	8.35	5.14	3.04, 3.10	H1 10.2; H2 7.24; H4 7.31; H5 7.07; H7 7.51
Val	9.18	4.52	2.07	γ CH ₃ 0.885, 0.907
Glu	8.57	5.09	2.22	γ CH ₂ 1.92, 2.00
Val	9.04	4.41	1.99	γ CH ₃ 0.965, 0.982
ΔEnv	10.1			γ CH ₂ 2.36, 2.20; δ CH ₃ 1.05, 0.992
Gly	8.65	3.76, 4.11		
Orn	7.97	4.67	1.87	$\gamma CH_2 1.74; \delta CH_2 3.05; \epsilon NH_3 7.63$
Lys	8.53	4.83	1.68	$\gamma \ CH_2 \ 1.21; \ \delta \ CH_2 \ 1.30, \ 1.38; \ \epsilon \ CH_2 \ 2.52$
Ile	9.23	4.62	1.89	γ CH ₂ 1.21, 1.42; δ CH ₃ 0.829; γ CH ₃ 0.898
Leu	8.34	4.05	1.01, 1.34	γ CH 0.663; δ CH ₃ 0.224, 0.476
Gln	8.71	4.34	1.88, 2.05	γ CH ₂ 2.27; ϵ NH ₂ 7.71, 7.12

	Н	α	β	Others $(\gamma, \delta, \varepsilon)$
Cys	8.38	5.23	3.00, 2.41	
Arg	8.73	4.62	1.67, 1.81	γ CH_2 1.51; δ CH_2 3.18; ϵ NH 7.12
Trp	8.66	5.15	3.10, 2.96	H1 10.2; H2 7.25; H4 7.29; H5 7.01; H7 7.50
Val	9.55	4.61	2.09	γ CH ₃ 0.888
Glu	8.54	5.16	1.99, 1.90	γ CH ₂ 2.18, 2.19
Val	9.12	4.40	1.95	γ CH ₃ 0.968
∆Val	10.3			δ CH ₂ 0.985, 1.89
Gly	8.66	3.72, 4.13		
Orn	7.98	4.70	1.86	$\gamma CH_2 1.72; \delta CH_2 3.04; \epsilon NH_3 7.64$
Lys	8.53	4.99	1.75	$\gamma CH_2 1.38; \delta CH_2 1.38; \epsilon CH_2 2.56$
Ile	9.40	4.71	1.86	γ CH_2 1.17, 1.41; γ CH_3 0.826; δ CH_3 0.888
Leu	8.35	3.91	0.772, 1.31	γ CH ₂ 0.379; δ CH ₃ -0.338, 0.078
Gln	9.05	4.58	1.83, 2.08	γ CH ₂ 2.24
Cys	8.94	5.05	2.94, 3.04	

 $c[Ac-C-R-W-V-E-V-\Delta Val-G-O-K-I-L-Q-C-NH_2] (S4)$

S1

Amino Acid	Ηα
Cys	5.22
Arg	4.62
Trp	5.14
Val	4.59
Glu	5.04
Val	4.25
Asn	4.41
Gly	3.69, 4.14
Orn	4.70
Lys	4.97
lle	4.72
Leu	3.90
Gln	4.57
Cys	5.05

Amino Acid Ηα 4.70 Asn 3.96 Gly Orn 4.36 Lys 4.32 Ile 4.15 Leu 4.40 Gln 4.32

S5 Amino Acid Ηα 4.18 Arg Trp 4.73 Val 4.01 Glu 4.27 Val 4.15 ΔVal -Gly 3.94

S2

Amino Acid	Ηα
Arg	4.18
Trp	4.72
Val	4.00
Glu	4.25
Val	4.09
Asn	4.69
Gly	3.91

S6					
Amino Acid	Hα				
∆Val	-				
Gly	3.94				
Orn	4.35				
Lys	4.30				
Ile	4.13				
Leu	4.38				
Gln	4.31				

Figure S1. H α chemical shift differences between the residues in 1 and the corresponding random coil 7-mers S2 and S3.

Figure S2. H α chemical shift differences between the residues in **2** and the random coil values obtained from Wüthrich, K. *NMR of Proteins and Nucleic Acids*, Wiley: New York (1986).

Figure S3. Hα chemical shift differences between the residues in **7aa** and the random coil values obtained from Wüthrich, K. *NMR of Proteins and Nucleic Acids*, Wiley: New York (1986).

Figure S4. H α chemical shift differences between the residues in **7ab** and the random coil values obtained from Wüthrich, K. *NMR of Proteins and Nucleic Acids*, Wiley: New York (1986).

Figure S5. Hα chemical shift differences between the residues in **7ba** and the random coil values obtained from Wüthrich, K. *NMR of Proteins and Nucleic Acids*, Wiley: New York (1986).

Figure S6. Hα chemical shift differences between the residues in **7bb** and the random coil values obtained from Wüthrich, K. *NMR of Proteins and Nucleic Acids*, Wiley: New York (1986).

Figure S7. H α chemical shift differences between the residues in 7ca and the corresponding random coil 7-mers S2 and S3.

Figure S8. H α chemical shift differences between the residues in 7cb and the corresponding random coil 7-mers S2 and S3.

Inter-residue ROESY Cross-peaks

Table S1. Ac-R-W-V-E-V-N-G-O-K-I-L-Q-NH₂(1)

Table S2. Ac-R-W-V-E-V-**p-G**-O-K-I-L-Q-NH₂ (2)

Res I	Res II	Peak	н
2 Trp H4	11Leu α	М	H_2N \dot{N}
2 Trp α, H2	11Leu α	S	
2 Trp H1,7	11Leu δ	S	
2 Trp α	11Leu δ	W	й н й н й
2 Trp H1,4	11Leu δ	W	
2 Trp H1,5	11Leu γ	М	H = H = H = H = H
2 Arg α	11Leu δ	М	
2 Trp H2	9 Lys γ	W	
2 Trp H4	9 Lys γ, δ	М	
2 Trp H1,4	9 Lys β	S	
2 Trp α	10 Ile H	S	
2 Trp H5	10 Ile α	S	
2 Trp H1	10 Ile α	М	
2 Trp H4	10 Ile α	W	
4 Glu γ	8Orn H	М	H H H H H H H H H H
6D-Pro α	8Orn H	М	strong
5Val H	8Orn H	М	3.70 - 4.03 A
1Arg δ	12 Gln α	М	$O' NH_2$ $^+H_3N + H_3N + H_$
2 Trp H2	12 Gln γ	Μ	< → weak
5 Val γ	6 D-Pro δ	S	<i>4.37 - 4.69</i> Å

Table S3. Ac-R-W-V-E-V-N- Δ Val-O-K-I-L-Q-NH₂ (7aa)

Res I	Res II	Peak	▶ H ▲
1Arg ε	12 Gln γ	W	H_2N
1Arg ε	10 Ile γ	М	
2 Trp H2	10 Ile γ	М	O^{NH_2} O^{NH_2} O^{NH_2}
2 Trp H1,7	11 Leu δ	W	
2 Trp H2,4	11 Leu δ	М	
2 Trp β	11 Leu δ	W	
2 Trp α	11 Leu δ	М	
2 Trp α	11Leu α	S	
2 Trp H7	9 Lys γ	S	
2 Trp H2	9 Lys γ	W	NH .
2 Trp H7	11Leu α	S	
2 Trp H2	11Leu α	М	
2 Trp H7	10 Ile α	М	
2 Trp H2	10 Ile α	W	H_2N \downarrow \downarrow \downarrow H \downarrow \downarrow H \downarrow \downarrow H \downarrow H \downarrow H
2 Trp H6	10 Ile α	S	Ö Ö NOE Restraints
2 Trp H2,7	11Leu β	S	strong
2 Trp H7	11 Leu δ	S	3.04 - 3.60 Å
5Val H	9 Orn H	М	\smile \square_2 $\square_3 \square$ \longrightarrow medium
4 Glu γ	7∆Val H	S	3.01 - 4.1 / A
4 Glu γ	80rn H	S	4.18 - 4.74 Å

Table S4. Ac-R-W-V-E-V-N-ΔEnv-O-K-I-L-Q-NH₂ (7ab)

Res I	Res II	Peak	H
2 Trp H2,7	11Leu d	М	H_2N
2 Trp H1,4	11Leu d	W	
2 Trp α	11Leu d	S	
2 Trp H7	11Leu β	S	
2 Trp H5	11Leu y	W	$\begin{array}{c} & & \\$
2 Trp α	11Leu α	S	
2 Trp H7	11Leu α	Μ	
1Arg H	11Leu d	Μ	
2 Trp H2	9Lys β	Μ	NH
2 Trp H7	9Lys β	S	
2 Trp H2	9Lys δ	W	
2 Trp H7	9Lys γ	S	
1Arg ε	9Lys β	Μ	H_2N \downarrow
2 Trp H2	4 Glu γ	S	$\bigcirc \bigcirc $
1Arg ε	10 Ile γ	W	J medium
5Val H	80rn H	Μ	0^{+} NH ₂ +H ₃ N $3.93 - 4.31$ Å
11Leu α	2 Trp H2	W	- <i>weak</i> 4.32 - 4.71 Å
6 Asn δ	5 Val γ	S	

Table S5. Ac-R-W-V-E-V-p-ΔVal-O-K-I-L-Q-NH₂ (7ba)

Res I	Res II	Peak	Н
2 Trp H1,4,7	11 Leu δ	М	H ₂ N / N
2 Trp H6,α	11 Leu δ	W	
2 Trp H2	11 Leu δ	S	NH_2^+
2 Trp H2,6	11Leu γ	W	й нй нй 🔪
2 Trp H2,7	11Leu α	W	
2 Trp α	11Leu α	S	$H \mid (I \mid I)$ $H \mid I \mid I \mid I \mid I$
2 Trp H7,β	11Leu β	S	
1Arg H,α	11Leu δ	М	
2 Trp H6	10 Ile α	S	
2 Trp H7	10 Ile H	М	
2 Trp H2	10 Ile γ	W	
2 Trp H7	9Lys β	S	
2 Trp H7,β	9Lys γ	М	
2 Trp H6	9 Lys δ	W	H ₂ N N N N N N N N N N N N N N N N N N N
4 Glu H	9Lys α	S	H H H H H H H H H
4 GluH	10 Ile γ	S	3.67 - 4.03 Å
1Arg H	12 Gln H	S	→ medium
2 Trp α	12 Gln H	W	0^{+} NH ₂ + H ₃ N + $ \frac{4.04 - 4.40 \text{ Å}}{10^{-}}$
5Val H	8Orn H	S	441 - 476 Å
5 Val γ	6 D-Pro δ	S	7.71 - 7.70 A

Table S6. Ac-R-W-V-E-V-p-ΔEnv-O-K-I-L-Q-NH₂ (7bb)

Res I	Res II	Peak	
2 Trp H1,4	11Leu δ	W	
2 Trp H2,7, α	11Leu δ	Μ	
2 Trp α	11Leu δ	М	$\ddot{N}H_2^+$
2 Trp H4, α	11Leu α	S	
2 Trp H2	11Leu α	М	
2 Trp H4	11Leu β	М	
1Arg α	11Leu δ	W	
1Arg H	12 Gln β	W	NH
2 Trp H4	12 Gln α	W	
2 Trp H4	9Lys β	S	
2 Trp H2	9Lys β	М	NH NH
2 Trp H2,5	9Lys γ	W	
4Trp H2	9Lys δ	W	
1Trp H4	9Lys δ	Μ	
4 Glu H	9Lys α	S	H_2N
5Val H	80rn H	S	\forall \ddot{i} \ddot{i} \dot{i} \dot{i} \dot{i} \forall \forall \vec{i} strong
2 Trp H5	10 Ile α	S	3.57 - 3.96 Å
2 Trp H2	10 Ile α	W	
2 Trp H4	10Ile γ	М	$O^{\prime} NH_2$ $H_3N^{\prime} = \frac{5.77 + 7.55 N}{4}$
4 Glu H	10 Ile γ	S	<i>4.36 - 4.75</i> Å
6 D-Pro δ	$7\Delta Env$	S	
5Val γ	6 D-Pro δ	S	

Table S7. Ac-R-W-V-E-V- Δ Val-G-O-K-I-L-Q-NH₂ (7ca)

Res I	Res II	Peak		
2 Trp H1,4	11Leu δ	W	– н Н2N、 N、	
2 Trp H7	11Leu d	Μ		
2 Trp H2	11Leu d	S	H_2^+	
2 Trp α, β	11Leu d	Μ		
2 Trp H2,5	11Leu y	Μ		
2 Trp H2,4	11Leu α	Μ	$ \begin{array}{c} & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & & \\ & $	
2 Trp α	11Leu α	S		
2 Trp H2	11Leu β	W	NH I I I I I I I I I I I I I I I I I I I	
1Arg α	11Leu d	Μ		
4 Glu β	11Leu d	Μ		
2 Trp H2,5	9 Lys β	Μ	NH NH	
2 Trp H4d	9 Lys δ	М		
2 Trp H4	9 Lys γ	W		
2 Trp H4	9 Lys β	S		
2 Trp H4	10 Ile α	М	H_2N' \downarrow \uparrow N' \downarrow \uparrow N' \downarrow \downarrow \downarrow NOE Restraints	
2 Trp H2	10 Ile α	W	$\langle \ddot{0} \rangle \rightarrow strong$	
2 Trp H5	10 Ile α	S	3.67 - 4.03 Å	
2 Trp H4	10 Ile γ	S		
5Val H	8 Orn H	S	$O' NH_2$ H_3N' H_3N'	
2 Trp H2	12 Gln γ	W	4.41 - 4.76 Å	
1Arg H	12 Gln β	W		
6 ∆Val γ	5Val γ	S		

 $Table~S8.~Ac-R-W-V-E-V-\Delta Env-G-O-K-I-L-Q-NH_2~(7cb)$

Res I	Res II	Peak	H. H.
2 Trp H2	11Leu d	S	H_2N N
2 Trp α, H4,5	11Leu δ	W	
2 Trp H7	11Leu δ	М	
2 Trp H2,5	11Leu γ	М	
2 Trp H4,7	11Leu γ	W	
2 Trp α	11Leu α	S	
2 Trp H2	10 Leu α	W	
2 Trp H4	11Leu α	М	\mathbb{N}^{+}
2 Trp H5	10 Ile α	М	$\langle \langle \rangle \rangle = \langle \rangle \langle \rangle \langle \rangle \rangle \langle \rangle \langle \rangle \rangle \langle $
2 Trp H2	10 Ile α	W	H H
2 Trp H2	9Lys β	М	
9 Lys β, γ, δ	2 Trp H4	S	
9 Lys γ, ε	2 Trp H2	W	
2 Trp H5	9Lys β	М	H_2N H H H H H H H H
2 Trp H4	12 Gln γ	S	NOE Restraints
8 Orn β	5Val H	S	$ \checkmark strong strong \rangle$
6 ΔEnv δ	5Val α	W	$+_{H-N}$
1Arg δ	12 Gln ε	S	4.00 - 4.39 Å
1Arg α	11Leu δ	S	

Table S9. c	[Ac-C	ys-R-W-`	V-E-V -∆Val -	•G-O-K-I-L-($Q-Cys-NH_2$	(S4)
-------------	-------	----------	----------------------	--------------	--------------	------

Res I	Res II	Peak	
2 Trp α	11Leu δ	M	·
2 Trp H1,2,4	11Leu d	М	H_2N N
2 Trp H5,7	11Leu d	W	
2 Trp H4,2	11Leu γ	W	
2 Trp H4	11Leu α	W	
2 Trp H2	11Leu α	S	
2 Trp α	11Leu α	S	¨ ¨ ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `
2 Trp H5	11Leu H	W	S [·] NH ₂ ⁺
2 Trp H2	11Leu H	М	
1Arg α	11Leu d	М	
2 Trp H2	9Lys β	S	Ś H'''
2 Trp H4	9Lys β	W	
2 Trp H5	9 Lys β	М	H_2N N N N N N N N N N
2 Trp H2	9Lys ε	W	
2 Trp H2	9Lys δ	М	
2 Trp H2	10 Ile α	Μ	3.79 - 4.
2 Trp H5	10 Ile α	S	$O^{2} NH_{2} NH_{2} H_{2} 4.07 - 4.07$
5Val H	80rn H	S	4 34 - 4
$6\Delta Val \gamma$	6Val γ	S	7.57 - 7.

Proteolysis assays for 1 and its analogues

Pronase E from *Streptomyces griseus* (EC 3.4.24.31) was purchased from EMD Millipore. This mixture of enzymes was dissolved in 1X PBS buffer (10 mM sodium phosphate, 137 mM NaCl, 2.7 mM KCl buffer, pH 7.4) at a concentration of 0.128 mg/mL. Then, solutions of each peptide (**1**, **7aa**, **7ab**, **7ca**, **and 7cb**) in 1X PBS buffer (0.10 mM, 1.5 mL) at 37 °C were treated with an aliquot (5 μ L) of the pronase E solution. Aliquots (50 μ L) were removed after 0, 30, 60, 90, 150, 210, 270, 360 180, 300, and 360 min. The aliquots were quenched with 25% v/v glacial acetic acid (10 μ L), diluted to 75 μ L with 1X PBS buffer, and analyzed by HPLC (Phenomenex Jupiter C18, 5 μ m particle size, 300 Å pore size, 4.6 × 250 mm, 40 μ L injection volume, 10%–60% CH₃CN in H₂O gradient over 50 min, then 95% CH₃CN in H₂O for 10 min, flow rate: 1 mL/min).

Proteolysis assays for 2 and its analogues

Pronase E from *Streptomyces griseus* (EC 3.4.24.31) was purchased from EMD Millipore. This mixture of enzymes was dissolved in 1X PBS buffer (10 mM sodium phosphate, 137 mM NaCl, 2.7 mM KCl buffer, pH 7.4) at a concentration of 0.162 mg/mL. Then, solutions of each peptide (**2**, **7ba**, **and 7bb**) in 1X PBS buffer (0.40 mM, 1.5 mL) at 37 °C were treated with an aliquot (10 μ L) of the pronase E solution. Aliquots (50 μ L) were removed after 0, 30, 60, 90, 150, 210, 270, 360 180, 300, and 360 min. The aliquots were quenched with glacial acetic acid (10 μ L), diluted to 75 μ L with 1X PBS buffer, and analyzed by HPLC (Phenomenex Jupiter C18, 5 μ m particle size, 300 Å pore size, 4.6 × 250 mm, 40 μ L injection volume, 10%–60% CH₃CN in H₂O gradient over 50 min, then 95% CH₃CN in H₂O for 10 min, flow rate: 1 mL/min).

Figure S9. Analytical HPLC traces (monitored at 220 nm) for peptide **1** (0.10 mM) after incubation in Pronase E for up to 360 min.

Figure S10. Analytical HPLC traces (monitored at 220 nm) for control peptide **2** (0.40 mM) after incubation in Pronase E for up to 360 min.

Figure S11. Analytical HPLC traces (monitored at 220 nm) for peptide **7ca** (0.10 mM) after incubation in Pronase E for up to 360 min.

Figure S12. Analytical HPLC traces (monitored at 220 nm) for peptide **7ba** (0.40 mM) after incubation in Pronase E for up to 360 min.

Determination of Percent Folded Values for 1 and 7ca

The percentage of each peptide residing in the folded state was determined using two methods. First, the H α chemical shifts of residues that form cross-strand hydrogen bonds were compared to the corresponding H α chemical shifts in random coil 7-mers representing the unfolded structures (δ_0) and to H α chemical shifts in cyclic controls representing the fully folded structures (δ_{100}). The H α chemical shifts of residues in peptides **1** and **7ca** were designated as δ_{obs} . The percent folded at each residue was determined by Equation (i):

Percent Folded =
$$[(\delta_{obs} - \delta_o)/\delta_{100} - \delta_o)] \times 100 \%$$
 (i)

The overall percent folded was calculated by averaging the percent folded values for residues Val3, Val5, Orn8, and Ile10, each of which are involved in cross-strand hydrogen bonds.

Amino Acids	7ca	S4	Random Coil	% Folded	Average % Folded	Standard Error
Val 3	4.534	4.608	4.009	87.64	89.99	2.0
Val 5	4.385	4.397	4.151	95.12		
Orn 8	4.666	4.697	4.354	90.96	K	Std. error
Ile 10	4.635	4.715	4.134	86.23	9.0	2.0
					ΔG (kcal/mol)	Std. error (kcal/mol)
					-1.30	0.13
				0/		

Amino Acids	1	S 1	Random Coil	% Folded	Average % Folded	Standard Error
Val 3	4.447	4.586	4.003	76.16	77.30	2.0
Val 5	4.222	4.249	4.090	83.02		
Orn 8	4.620	4.696	4.364	77.11	Κ	Std error
Ile 10	4.564	4.717	4.152	72.92	3.4	0.4
					ΔG (kcal/mol)	Std. error (kcal/mol)
					-0.73	0.07

The overall percent folded was also calculated by measuring the differences in chemical shift of the two diastereotopic H α signals from the glycine residues in **1** and **7ca**. This was done using equation (ii):

Percent Folded =
$$(\Delta \delta_{\text{Observed}} / \Delta \delta_{100}) \times 100 \%$$
 (ii)

where $\Delta \delta_{\text{Observed}}$ is the difference between the two diastereotopic glycine H α chemical shifts observed for **1** or **7ca** and $\Delta \delta_{100}$ is the difference between the two diastereotopic glycine H α chemical shifts of the corresponding cyclic peptide **S1** or **S4**.

Peptide	Gly Hα _a	Gly Hab	Glycine Splitting	% Folded	
Cyclic peptide (S4)	4.1322	3.7217	0.4105 $(\Delta \delta_{100})$	93.7	
7ca	4.1141	3.7296	$0.3845 (\Delta \delta_{\text{Observed}})$	K	
				14.79	
			∆G (kcal/mol)	-1.60	
Peptide	Gly Hα _a	Gly Hab	Glycine Splitting	% Folded	
Cyclic peptide (S1)	4.1354	3.6865	0.4489 ($\Delta \delta_{100}$)	72.8	
1	4.0941	3.7674	0.3267 ($\Delta \delta_{\text{Observed}}$)	K	
				2.67	
			AC (least/mal)	0.59	

Circular Dichroism Experiments

Peptide solutions were prepared in 20 mM sodium phosphate buffer (pH 7.4), and concentrations were determined spectroscopically based on tryptophan absorbance at 280 nm in 6 M guanidine hydrochloride (Trp $\varepsilon_{280} = 5690 \text{ M}^{-1} \text{cm}^{-1}$). 0.10 mM solutions of **1** and **7ca** in 10 mM sodium phosphate buffer (pH 7.4) and 6 M guanidine hydrochloride were used to perform wavelength scans in duplicate at 25 °C. 0.10 mM solutions of **2** and **7ba** in 10 mM sodium phosphate buffer (pH 7.4) and 2.5 M urea were used to run wavelength scans in duplicate at 25 °C.

Figure S13. CD wavelength scan for peptides 1 and 7ca at 25 °C.

Figure S14. CD wavelength scan for peptides 2 and 7ba at 25 °C.

NMR Structural Calculations

NOE Distance-restrained Calculations Summary. Manual NMR structural calculations were performed to generate conformational ensembles of all the peptides that were studied. The ensembles were generated using the simulated annealing algorithm CYANA in conjunction with ROESY chemical shift and peak data for the eight peptides (cross-peak data used in the calculations is tabulated and summarized visually in tables S1-S9). Dihedral restraints were not used due to the presence of multiple non-standard amino acids (e.g., ornithine, D-proline, Δ Val and Δ Env) which lack sufficient secondary chemical shift analysis data.

The final ensemble for each peptide consists of the 10 lowest-energy conformations as determined by the CYANA objective-function from 100 preliminary structures. The ensemble shows the expected hydrogen bonding pattern, dihedral angles, and overall secondary structure consistent with the β -hairpin motif.

Structure	1	2	7 aa	7ab	7ba	7bb	7ca	7cb
Conformational restraints								
Total Distance	32	28	29	24	29	31	28	31
Restraints								
Cross-strand ^b	31	26	20	22	27	29	28	30
Sequential	1	2	0	2	2	2	0	1
Intra-residue	0	0	0	0	0	0	0	0
Strong Intensity ^a	14	8	9	8	10	12	6	11
Medium Intensity ^a	11	14	9	9	10	9	14	9
Weak Intensity ^a	7	6	11	7	9	10	8	11
Hydrogen Bonds	4	4	4	4	4	4	4	4
Dihedral Restraints ^c	0	0	0	0	0	0	0	0
RMSD from Ideality:								
Backbone (Å)	0.18 ±	0.40 ±	0.26 ±	0.60 ±	0.26 ±	0.31 ±	0.13 ±	0.34 ±
	0.01	0.14	0.12	0.11	0.18	0.11	0.04	0.08
Heavy Atom (Å)	0.57 ±	0.74 ±	0.72 ±	1.32 ±	0.86 ±	0.77 ±	0.54 ±	0.67 ±
	0.08	0.11	0.17	0.34	0.25	0.26	0.08	0.09

 Table S10. Restraints and Calculation Parameters

^a For distance ranges in angstroms for the *strong, medium*, and *weak* restraints see **Tables S1–S9**.

^a **Tables S1-S9** contain schematic representations of important cross-peaks from the data

^b The majority of NOEs used in the calculations were cross-strand peaks because of the high quality signals caused by the proximity of the strands

^c No dihedral restraints were used since our sequences contain non-standard amino acids such as ΔAAs and ornithine which are incompatible the leading software such as DANGLE or TALOS.

NMR structural calculations from NOE peaks

Summary. Out of 100 initial structures, the 10 best conformations per the CYANA objective function, were superimposed based on backbone geometry. Sidechains were omitted for clarity. The structures show the expected beta-hairpin hydrogen bonding and dihedral angles. **Note:** structural ensembles of **7ab** and **7cb** were generated using NOE data from the major conformation of each peptide, as data from the minor conformations were difficult to interpret.

A) Ac-R-W-V-E-V-N-G-O-K-I-L-Q-NH₂ (1)

B) Ac-R-W-V-E-V- \mathbf{p} -G-O-K-I-L-Q-NH₂ (2)

C) Ac-R-W-V-E-V-N- Δ Val-O-K-I-L-Q-NH₂ (7aa)

Orn Backbone RMSD (Å) 0.256 ± 0.120

E) Ac-R-W-V-E-V- $p-\Delta Val-O-K-I-L-Q-NH_2$ (7ba)

F) Ac-R-W-V-E-p- Δ Env-O-K-I-L-Q-NH₂ (7bb)

нΝ Position AA i Val *i* + 1 D-Pro ΔVal *i* + 2 *i* + 3 Orn

Backbone RMSD (Å): $\textbf{0.262} \pm 0.184$

Structural Ensembles A–H. Structural ensembles A and B depict known parent β -hairpins 1 and 2 that were used as controls. Ensembles C–G show β -hairpins 7**aa–7cb** that contain Δ Val or Δ Env in either the *i* + *1* or the *i* + 2 position. RMSD values were calculated based on the backbone atoms and only include residues 3–10 to avoid impact of fraying of the ends of the strands where less NOEs were found. Calculations were performed in CYANA,⁵ and graphic representations were generated using VMD.⁶

⁵ Güntert, P.; Mumenthaler, C.; Wüthrich, K. J. Mol. Biol. 1997, 273, 283.

⁶ Humphrey, W., Dalke, A. and Schulten, K., J. Mol. Graphics **1996**, *14*, 33. <u>http://www.ks.uiuc.edu/Research/vmd/</u>.

Selected Regions of ROESY Spectra. The spectra are presented with ROESY peaks in orange and TOCSY peaks superimposed in black for comparison. Peak labels use the standard CCPNMR nomenclature and their corresponding cross-peaks are marked with a crosshair.

Figure S15. HPLC trace of crude peptide 1 (top). Analytical HPLC trace of peptide 1 after preparative purification (bottom). Sample was injected onto a C18 analytical column (4.6 mm \times 25 cm) and eluted using a linear gradient of 10–60% CH₃CN in H₂O (constant 0.1% TFA) over 50 min.

Figure S16. HPLC trace of crude peptide 2 (top). Analytical HPLC trace of peptide 2 after preparative purification (bottom). Sample was injected onto a C18 analytical column (4.6 mm \times 25 cm) and eluted using a linear gradient of 10–60% CH₃CN in H₂O (constant 0.1% TFA) over 50 min.

Figure S17. HPLC trace of crude peptide **7aa** (top). Analytical HPLC trace of peptide **7aa** after preparative purification (bottom). Sample was injected onto a C18 analytical column (4.6 mm \times 25 cm) and eluted using a linear gradient of 20–60% CH₃CN in H₂O (constant 0.1% TFA) over 40 min.

Figure S18. HPLC trace of crude peptide 7ab (top). Analytical HPLC trace of peptide 7ab after preparative purification (bottom). Sample was injected onto a C18 analytical column (4.6 mm \times 25 cm) and eluted using a linear gradient of 10–60% CH₃CN in H₂O (constant 0.1% TFA) over 38 min (run was terminated ~15 min after the product eluted).

Figure S19. HPLC trace of crude peptide **7ba** (top). Analytical HPLC trace of peptide **7ba** after preparative purification (bottom). Sample was injected onto a C18 analytical column (4.6 mm \times 25 cm) and eluted using a linear gradient of 10–60% CH₃CN in H₂O (constant 0.1% TFA) over 50 min.

Figure S20. HPLC trace of crude peptide **7bb** (top). Analytical HPLC trace of peptide **7bb** after preparative purification (bottom). Sample was injected onto a C18 analytical column (4.6 mm \times 25 cm) and eluted using a linear gradient of 10–60% CH₃CN in H₂O (constant 0.1% TFA) over 50 min.

Figure S21. HPLC trace of crude peptide **7ca** (top). Analytical HPLC trace of peptide **7ca** after preparative purification (bottom). Sample was injected onto a C18 analytical column (4.6 mm \times 25 cm) and eluted using a linear gradient of 10–60% CH₃CN in H₂O (constant 0.1% TFA) over 50 min.

Figure S22. HPLC trace of crude peptide **7cb** (top). Analytical HPLC trace of peptide **7cb** after preparative purification (bottom). Sample was injected onto a C18 analytical column (4.6 mm \times 25 cm) and eluted using a linear gradient of 10–60% CH₃CN in H₂O (constant 0.1% TFA) over 50 min (run was terminated ~25 min after the product eluted).

Figure S23. Analytical HPLC trace of peptide **S1** after preparative purification. Sample was injected onto a C18 analytical column (4.6 mm \times 25 cm) and eluted using a linear gradient of 10–40% CH₃CN in H₂O (constant 0.1% TFA) over 25 min.

Figure S24. Analytical HPLC trace of peptide **S2** after preparative purification. Sample was injected onto a C18 analytical column (4.6 mm \times 25 cm) and eluted using a linear gradient of 10–60% CH₃CN in H₂O (constant 0.1% TFA) over 50 min.

Figure S25. Analytical HPLC trace of peptide **S3** after preparative purification. Sample was injected onto a C18 analytical column (4.6 mm \times 25 cm) and eluted using a linear gradient of 10–28% CH₃CN in H₂O (constant 0.1% TFA) over 35 min.

Figure S26. Analytical HPLC trace of peptide **S4** after preparative purification. Sample was injected onto a C18 analytical column (4.6 mm \times 25 cm) and eluted using a linear gradient of 10–60% CH₃CN in H₂O (constant 0.1% TFA) over 50 min.

Figure S27. Analytical HPLC trace of peptide **S5** after preparative purification. Sample was injected onto a C18 analytical column (4.6 mm \times 25 cm) and eluted using a linear gradient of 10–60% CH₃CN in H₂O (constant 0.1% TFA) over 50 min.

Figure S28. Analytical HPLC trace of peptide **S6** after preparative purification. Sample was injected onto a C18 analytical column (4.6 mm \times 25 cm) and eluted using a linear gradient of 10–28% CH₃CN in H₂O (constant 0.1% TFA) over 35 min (run was terminated ~25 min after the product eluted).