Supporting Information

Bulky Dehydroamino Acids Enhance Proteolytic Stability and Folding in β-Hairpin
 Peptides

Ankur Jalan, David W. Kastner, Kei G. I. Webber, Mason S. Smith, Joshua L. Price, * and Steven L. Castle*
Department of Chemistry and Biochemistry
Brigham Young University, Provo, Utah, 84602

Table of Contents

General Experimental Details S2
Synthetic Procedures and Spectral Data S3-S29
Proteolysis Assays S29-S32
Determination of Percent Folded Values S32-S33
Circular Dichroism Experiments S34
NMR Structural Calculations S35-S38
${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra S39-S70
Selected Regions of ROESY Spectra. S71-S74
Peptide HPLC Traces S75-S85

General Experimental Details

N, N-Dimethylformamide and tetrahydrofuran were dried by passage through a solvent drying system containing cylinders of activated alumina. ${ }^{1}$ Other solvents and reagents were purchased from commercial vendors and used without purification. Flash chromatography was carried out using $60-230$ mesh silica gel. ${ }^{1} \mathrm{H}$ NMR spectra were acquired on a 500 MHz spectrometer with chloroform (7.27 ppm) or methanol (3.31 ppm) as internal reference. Signals are reported as follows: s (singlet), d (doublet), t (triplet), dd (doublet of doublets), br s (broad singlet), m (multiplet). Coupling constants are reported in hertz (Hz). ${ }^{13} \mathrm{C}$ NMR spectra were acquired on a spectrometer operating at 125 MHz with chloroform (77.23 ppm) or methanol (49.00 $\mathrm{ppm})$ as internal reference. NMR samples of peptides were at concentrations of $1-3.5 \mathrm{mM}$ in 10% $\mathrm{v} / \mathrm{v} \mathrm{D}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$ buffered to pD 3.9 with $5000 \mathrm{mM} \mathrm{NaOAc}-d_{3}$. DSS (sodium 4,4-dimethyl-4-silapentane-1-sulfonate) was used as the internal standard. Samples were transferred to a Varian 500 MHz magnet and data collection was controlled using vnmrJ software. Water suppression was achieved using an excitation sculpting sequence. 2D TOCSY experiments were collected with 32 scans, 400 tl increments, and 150 ms mixing time. 2D adiabatic ROESY experiments were collected with 64 scans, 256 t 1 increments, and 200 ms mixing time. Data were processed using vnmrJ. Peak assignments were made with the assistance of the ccpNMR software package. Infrared spectra were obtained on an FT-IR spectrometer. Mass spectral data were obtained using ESI techniques. Circular dichroism measurements were made with an Aviv 420 Circular Dichroism Spectropolarimeter, using quartz cuvettes with a path length of 0.1 cm .

[^0]
Synthesis of Dipeptides 5

Ethyl

2-((S)-2-(((Allyloxy)carbonyl)amino)-4-0xo-4-(tritylamino)

butanamido)-3-hydroxy-3-methylbutanoate (5aa). A solution of Alloc-Asn(Trt)-OH (3a, 695.2 $\mathrm{mg}, 1.52 \mathrm{mmol}, 1.5$ equiv) in DMF $(30 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was treated with EDC $\cdot \mathrm{HCl}(290.8 \mathrm{mg}, 1.52$ mmol, 1.5 equiv) and $\mathrm{HOBt} \cdot \mathrm{H}_{2} \mathrm{O}(256.9 \mathrm{mg}, 1.52 \mathrm{mmol}, 1.5$ equiv). The resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min , then treated with a solution of β-hydroxyamino ester $4 \mathbf{a}^{2}(163.6 \mathrm{mg}$, $1.01 \mathrm{mmol})$ in DMF (5 mL) and stirred at $0^{\circ} \mathrm{C}$ to rt for 12 h . The reaction was then quenched with sat aq $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with EtOAc $(3 \times 30 \mathrm{~mL})$. The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$ and brine $(20 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (75 mL of $\mathrm{SiO}_{2}, 0-6 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient elution), afforded 5aa $(472.7 \mathrm{mg}, 0.786 \mathrm{mmol}, 77 \%)$ as a white film that was a $1: 1$ mixture of diastereomers: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.23(\mathrm{~m}, 9 \mathrm{H}), 7.18(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}), 6.86$ (br s; 1H), 6.43 (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.97-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.31(\mathrm{dd}, J=17.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.23$ (dd, $J=10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.63-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.56-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.16$ (m, 2H), $3.11(\mathrm{dd}, J=15.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.72-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.69(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 1.30(\mathrm{t}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.21(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 171.1,170.8,170.2,156.4,144.2$ (3C), 132.3, 128.7 (6C), 128.0 (6C), 127.1 (3C), 118.0, 71.9, 70.9, 66.1, 61.6, 60.3, 51.7, 37.6, 26.7, 26.4, 14.1; IR (film) $v_{\max } 3330,2923,1659,1524 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 602.2831\left(\mathrm{MH}^{+}\right.$, $\mathrm{C}_{34} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{H}^{+}$requires 602.2822).

[^1]

Ethyl
2-((S)-2-(((Allyloxy)carbonyl)amino)-4-0xo-4-(tritylamino)
butanamido)-3-ethyl-3-hydroxypentanoate (5ab). Subjection of β-hydroxyamino ester $\mathbf{4 b}^{3}$ ($135.2 \mathrm{mg}, 0.714 \mathrm{mmol}$) to the procedure described above for the synthesis of $\mathbf{5 a} \mathbf{a}$ with stirring for 16 h and purification by flash chromatography (60 mL of $\mathrm{SiO}_{2}, 0-5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient elution), afforded $\mathbf{5 a b}(320.4 \mathrm{mg}, 0.509 \mathrm{mmol}, 71 \%)$ as a white film that was a $1: 1$ mixture of diastereomers: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 7.30-7.19(\mathrm{~m}, 15 \mathrm{H}), 6.00-5.91(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J$ $=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.55-4.51(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 1 \mathrm{H})$, 4.23-4.17 and 4.16-4.09 (2m, 2H), 2.86-2.66(m, 2H), 1.65-1.45 (m, 4H), 1.27 and $1.26(2 \mathrm{t}, J=$ 7.3 and $7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.84$ and $0.83(2 \mathrm{t}, J=7.5$ and $7.4 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 172.1,170.4$ and 170.3, 170.1, 156.7 and 156.6, 144.4 (3C), 132.7, 128.6 (6C), 127.3 (6C), 126.4 (3C), 116.5, 75.6 and $75.5,70.4,65.6$ and $65.5,60.9,57.8$ and 57.7, 52.1, 38.2, 27.4, 27.0 and $26.9,13.0,6.7,6.6$; IR (film) $v_{\max } 3328,2970,1735,1663,1522,1275,1268$ cm^{-1}; HRMS (ESI) $m / z 630.3110\left(\mathrm{MH}^{+}, \mathrm{C}_{36} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{H}^{+}\right.$requires 630.3135) .

Allyl (2R)-2-((1-Ethoxy-3-hydroxy-3-methyl-1-oxobutan-2-yl)carbamoyl)

pyrrolidine-1-carboxylate (5ba). Subjection of β-hydroxyamino ester $\mathbf{4 a}$ ($220.7 \mathrm{mg}, 1.37 \mathrm{mmol}$) to the procedure described above for the synthesis of 5aa with Alloc-D-Pro-OH (3b, 406.3 mg , $2.04 \mathrm{mmol}, 1.5$ equiv) as coupling partner and purification by flash chromatography (60 mL of $\mathrm{SiO}_{2}, 0-6.5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient elution) afforded $\mathbf{5 b a}(378.8 \mathrm{mg}, 1.11 \mathrm{mmol}, 81 \%)$ as a

[^2]colorless oil that was a $1: 1$ mixture of diastereomers: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right.$, mixture of rotamers and diastereomers) $\delta 6.03-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.40-5.09(\mathrm{~m}, 2 \mathrm{H}), 4.64-4.52(\mathrm{~m}, 2 \mathrm{H}), 4.46-$ $4.35(\mathrm{~m}, 2 \mathrm{H}), 4.27-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.46(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.07-$ $1.85(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 6 \mathrm{H}) ; 1.24(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right.$, mixture of rotamers and diastereomers) $\delta \quad 175.2 / 175.0, \quad 171.7 / 171.6, \quad 156.7 / 156.3, \quad 134.2 / 134.1 / 134.0$, $117.9 / 117.7 / 117.6,72.5 / 72.4,67.2,62.3 / 62.2,61.9,61.6 / 61.5 / 61.2,48.1,32.6 / 32.5 / 31.3 / 31.2$, 27.7/27.4/27.3, 27.2/27.1, 25.4/25.3/24.6/24.5, 14.5; IR (film) $v_{\max } 3417,2917,1678,1540,1408$ cm^{-1}; HRMS (ESI) $m / z 343.1824\left(\mathrm{MH}^{+}, \mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{H}^{+}\right.$requires 343.1824).

Allyl (2R)-2-((1-Ethoxy-3-ethyl-3-hydroxy-1-oxopentan-2-yl)carbamoyl) pyrrolidine-1-carboxylate (5bb). Subjection of β-hydroxyamino ester $\mathbf{4 b}$ ($278.1 \mathrm{mg}, 1.47 \mathrm{mmol}$) to the procedure described above for the synthesis of 5aa with Alloc-D-Pro-OH ($\mathbf{3 b}, 437.9 \mathrm{mg}$, $2.20 \mathrm{mmol}, 1.5$ equiv) as coupling partner, stirring for 16 h , and purification by flash chromatography (75 mL of $\mathrm{SiO}_{2}, 0-6 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient elution) afforded $\mathbf{5 b b}$ (431.7 $\mathrm{mg}, 1.17 \mathrm{mmol}, 79 \%)$ as a colorless oil that was a 1:1 mixture of diastereomers: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, 500 MHz , mixture of rotamers and diastereomers) $\delta 6.03-5.85(\mathrm{~m}, 1 \mathrm{H}), 5.39-5.11(\mathrm{~m}, 2 \mathrm{H}), 4.64-$ $4.49(\mathrm{~m}, 3 \mathrm{H}), 4.44-4.33(\mathrm{~m}, 1 \mathrm{H}), 4.28-4.13(\mathrm{~m}, 2 \mathrm{H}), 3.65-3.56(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.47(\mathrm{~m}, 1 \mathrm{H}), 2.36-$ $2.15(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.84(\mathrm{~m}, 3 \mathrm{H}), 1.72-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.33-1.25(\mathrm{~m}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H})$, $0.90-0.82(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right.$, mixture of rotamers and diastereomers) δ $173.6 / 173.5, \quad 170.5 / 170.4, \quad 155.0 / 154.9, \quad 132.7 / 132.6, \quad 116.4 / 116.3 / 116.2 / 116.1, \quad 75.6 / 75.5$, $65.9 / 65.8,60.8 / 60.7,60.3 / 59.9,57.7 / 57.6 / 57.4,46.7,31.1 / 31.0 / 29.9 / 29.8,27.4,27.0 / 26.9$, 24.0/23.9/23.0, 13.0, 6.7, 6.6; IR (film) $v_{\max } 3414,2969,1679,1444,1408 \mathrm{~cm}^{-1} ;$ HRMS (ESI) m / z $371.2127\left(\mathrm{MH}^{+}, \mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{H}^{+}\right.$requires 371.2137).

Ethyl 2-((S)-2-(((allyloxy)carbonyl)amino)-3-methylbutanamido)-3-hydroxy-3-methylbutanoate (5ca). Subjection of β-hydroxyamino ester 4a ($351.8 \mathrm{mg}, 2.18$ $\mathrm{mmol})$ to the procedure described above for the synthesis of $\mathbf{5 a} \mathbf{a}$ with Alloc-Val-OH (3c, 658.3 $\mathrm{mg}, 3.27 \mathrm{mmol}$, 1.5 equiv) as coupling partner, stirring for 14 h , and purification by flash chromatography (100 mL of $\mathrm{SiO}_{2}, 0-2.5 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient elution) afforded 5ca (632.7 $\mathrm{mg}, 1.84 \mathrm{mmol}, 84 \%)$ as a colorless oil that was a $1: 1$ mixture of diastereomers: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 6.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.96-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.50-5.43(\mathrm{~m}, 1 \mathrm{H}), 5.34-5.27(\mathrm{~m}, 1 \mathrm{H})$, 5.24-5.19 (m, 1H), 4.61-4.55 (m, 2H), 4.51 (t, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.17-4.12$ and 4.11-4.06 $(2 \mathrm{~m}, 1 \mathrm{H}), 3.12$ and $2.92(2 \mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.25-2.17$ and $2.16-2.07(2 \mathrm{~m}, 1 \mathrm{H}), 1.32-1.28(\mathrm{~m}$, $3 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 1.00$ and $0.97(2 \mathrm{~d}, J=6.9$ and $6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.95$ and $0.92(2 \mathrm{~d}, J=$ 6.8 and $6.7 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 171.6,171.3$ and 171.1, 156.3, 132.5, 117.9, 71.9 and $71.8,65.9,61.7$ and $61.6,60.3$ and $60.2,59.9$ and $59.8,31.1,26.8,26.7,19.3$ and 19.1, 17.9 and 17.3, 14.1; IR (film) $v_{\max } 3324,2973,1729,1660,1536,1214 \mathrm{~cm}^{-1}$; HRMS (ESI) m / z $345.1976\left(\mathrm{MH}^{+}, \mathrm{C}_{16} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{H}^{+}\right.$requires 345.1981$)$.

Ethyl 2-((S)-2-(((Allyloxy)carbonyl)amino)-3-methylbutanamido)-3-ethyl-3-hydroxypentanoate (5cb). Subjection of β-hydroxyamino ester 4b ($323.2 \mathrm{mg}, 1.71$ $\mathrm{mmol})$ to the procedure described above for the synthesis of $\mathbf{5 a a}$ with Alloc-Val-OH (3c, 514.8 $\mathrm{mg}, 2.56 \mathrm{mmol}$, 1.5 equiv) as coupling partner, stirring for 16 h , and purification by flash chromatography (75 mL of $\mathrm{SiO}_{2}, 0-4 \% \mathrm{MeOH}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gradient elution) afforded 5cb (498.7 $\mathrm{mg}, 1.34 \mathrm{mmol}, 78 \%$) as a colorless liquid that was a $1: 1$ mixture of diastereomers: ${ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 6.69$ and $6.63(2 \mathrm{~d}, J=8.7$ and $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.97-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.37-5.28$ $(\mathrm{m}, 2 \mathrm{H}), 5.23(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.55(\mathrm{~m}, 3 \mathrm{H}), 4.29-4.17(\mathrm{~m}, 2 \mathrm{H}), 4.14-4.09$ and $4.08-$ $4.03(2 \mathrm{~m}, 1 \mathrm{H}), 2.47(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.25-2.17$ and $2.16-2.09(2 \mathrm{~m}, 1 \mathrm{H}), 1.59-1.44(\mathrm{~m}, 4 \mathrm{H}), 1.31(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.00$ and $0.97(2 \mathrm{~d}, J=6.8$ and $6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96-0.91(\mathrm{~m}, 6 \mathrm{H}), 0.87(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 171.8$ and 171.7, 171.2, 156.2, 132.6, 117.9 and 117.8, 76.2, $65.9,61.6$ and $61.5,60.2,56.8$ and $56.7,31.2,28.4,26.7,19.3$ and $19.1,17.7$ and 17.2, 14.1, 7.6, 7.5; IR (film) $v_{\max } 3336,2969,1727,1659,1530 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 373.2276\left(\mathrm{MH}^{+}\right.$, $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{H}^{+}$requires 373.2294).

Synthesis of Azlactone Dipeptides 6

Allyl (S)-(3-oxo-1-(5-oxo-4-(propan-2-ylidene)-4,5-dihydrooxazol-2-yl)-3(tritylamino)propyl)carbamate (6aa). A solution of dipeptide 5aa (402.9 mg, 0.670 mmol) in 3:1 $t-\mathrm{BuOH}-\mathrm{H}_{2} \mathrm{O}(16 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ was treated with $\mathrm{LiOH} \cdot \mathrm{H}_{2} \mathrm{O}(141.4 \mathrm{mg}, 3.37 \mathrm{mmol}, 5.0$ equiv $)$ and stirred at $0{ }^{\circ} \mathrm{C}$ for 4 h . The reaction was quenched with sat aq KHSO_{4} to adjust the pH to 2 , and the resulting mixture was extracted with EtOAc $(4 \times 25 \mathrm{~mL})$. The combined organic layers were washed with brine (15 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. The crude acid (363.6 $\mathrm{mg}, 0.634 \mathrm{mmol}$) was then dissolved in anhydrous THF (20 mL), treated with $\mathrm{NaOAc}(78.1 \mathrm{mg}$, $0.952 \mathrm{mmol}, 1.5$ equiv) and $\mathrm{Ac}_{2} \mathrm{O}(300 \mu \mathrm{~L}, 324 \mathrm{mg}, 3.17 \mathrm{mmol}, 5.0$ equiv $)$, then stirred at rt under Ar for 12 h . The reaction was quenched with $\mathrm{MeOH}(10 \mathrm{~mL})$, stirred at rt for 30 min , diluted with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$, and extracted with $\mathrm{EtOAc}(4 \times 25 \mathrm{~mL})$. The combined organic layers were washed with brine $(15 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated in vacuo. Flash chromatography (50 mL of $\mathrm{SiO}_{2}, 1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $2-10 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded 6aa ($252.4 \mathrm{mg}, 0.469 \mathrm{mmol}$,
$70 \%)$ as a white solid: $[\alpha]^{25}{ }_{\mathrm{D}}-2.1\left(c 0.86, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.31-7.23(\mathrm{~m}$, $9 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 6 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.17(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.97-5.82(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=$ $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.91(\mathrm{~m}, 1 \mathrm{H}), 4.64-4.52(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{dd}, J=15.6$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=15.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 168.7,164.8,161.7,155.9,154.5,144.2(3 \mathrm{C}), 132.5,130.5,128.6$ (6C), 128.0 (6C), 127.2 (3C), 117.7, 70.9, 65.9, 46.9, 37.9, 22.9, 19.7; IR (film) $v_{\max } 3286,2917,1794,1673,1530,1447$, $1158 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 538.2273\left(\mathrm{MH}^{+}, \mathrm{C}_{32} \mathrm{H}_{31} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{H}^{+}\right.$requires 538.2297).

Allyl (S)-(3-oxo-1-(5-oxo-4-(pentan-3-ylidene)-4,5-dihydrooxazol-2-yl)-3-

 (tritylamino)propyl)carbamate (6ab). Subjection of dipeptide 5ab (342.7 mg, 0.544 mmol) to the saponification procedure described above for the synthesis of $\mathbf{6 a a}$ afforded $316.4 \mathrm{mg}(0.526$ mmol) of the crude acid. Subjection of this crude mixture to the conditions described previously with $\mathrm{NaOAc}\left(65.7 \mathrm{mg}, 0.801 \mathrm{mmol}, 1.5\right.$ equiv), $\mathrm{Ac}_{2} \mathrm{O}(250 \mu \mathrm{~L}, 270 \mathrm{mg}, 2.64 \mathrm{mmol}, 5.0$ equiv), and purification by flash chromatography (60 mL of $\mathrm{SiO}_{2}, 1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $1-10 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded $\mathbf{6 a b}(197.7 \mathrm{mg}, 0.349 \mathrm{mmol}, 64 \%)$ as a white solid: $[\alpha]^{25}{ }_{\mathrm{D}}-5.4(c 1.0$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.31-7.22(\mathrm{~m}, 9 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 6 \mathrm{H}), 6.78(\mathrm{~s}, 1 \mathrm{H}), 6.15$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.98-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00-$ $4.92(\mathrm{~m}, 1 \mathrm{H}), 4.64-4.52(\mathrm{~m}, 2 \mathrm{H}), 3.10(\mathrm{dd}, J=15.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=15.5,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, 2.85-2.71(m, 2H), 2.69-2.54(m, 2H), $1.14(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{t}, J=7.7 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 168.7,165.4,164.7,161.9,155.9,144.2(3 \mathrm{C}), 132.5,129.6,128.6$ (6C), 128.0 (6C), 127.2 (3C), 117.6, 71.0, 65.9, 47.0, 37.9, 26.6, 23.4, 12.5, 12.3; IR (film) $v_{\max } 3277,2918$,1789, 1648, 1526, 1447, $1268 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 566.2639\left(\mathrm{MH}^{+}, \mathrm{C}_{34} \mathrm{H}_{35} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{H}^{+}\right.$requires 566.2610).

Allyl (R)-2-(5-oxo-4-(propan-2-ylidene)-4,5-dihydrooxazol-2-yl)pyrrolidine-1-carboxylate (6ba). Subjection of dipeptide $\mathbf{5 b a}(268.6 \mathrm{mg}, 0.784 \mathrm{mmol})$ to the saponification procedure described above for the synthesis of $\mathbf{6 a a}$ afforded $236.1 \mathrm{mg}(0.751 \mathrm{mmol})$ of the crude acid. Subjection of this crude mixture to the conditions described previously with NaOAc (92.8 $\mathrm{mg}, 1.13 \mathrm{mmol}, 1.5$ equiv $), \mathrm{Ac}_{2} \mathrm{O}(360 \mu \mathrm{~L}, 389 \mathrm{mg}, 3.81 \mathrm{mmol}, 5.1$ equiv $)$, and purification by flash chromatography (50 mL of $\mathrm{SiO}_{2}, 1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $2-10 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded $\mathbf{6 b a}(157.9 \mathrm{mg}, 0.567 \mathrm{mmol}, 72 \%)$ as a colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}+93\left(c 0.64, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$, ca. 1.2:1 mixture of rotamers) $\delta 5.99-5.90$ and $5.88-5.78(2 \mathrm{~m}, 1 \mathrm{H}), 5.33$ and $5.25(2 \mathrm{~d}, J=17.2$ and $18.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ and $5.13(2 \mathrm{~d}, J=10.9$ and $10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.75-4.68(\mathrm{~m}$, $1 \mathrm{H}), 4.65-4.59$ and $4.52(\mathrm{~m}$ and dd, $J=13.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.59(\mathrm{~m}$, $1 \mathrm{H}), 3.59-3.50(\mathrm{~m}, 1 \mathrm{H}), 2.35$ and $2.33(2 \mathrm{~s}, 3 \mathrm{H}), 2.32-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H}), 2.18-2.03(\mathrm{~m}$, $2 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right.$, ca. 1.2:1 mixture of rotamers) δ 165.3, $165.1,163.1$ and $162.9,154.5$ and $154.1,132.8$ and $132.6,130.7$ and $130.5,117.4$ and $117.0,66.0$ and 65.9, 55.7 and 55.1, 46.9 and 46.5, 31.2 and 30.4, 24.3 and 23.4, 22.8 and 22.7, 19.7; IR (film) $v_{\max } 2917,1794,1707,1675,1406,1158 \mathrm{~cm}^{-1} ;$ HRMS (ESI) $m / z 279.1325\left(\mathrm{MH}^{+}, \mathrm{C}_{14} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{H}^{+}\right.$ requires 279.1300).

Allyl (R)-2-(5-oxo-4-(pentan-3-ylidene)-4,5-dihydrooxazol-2-yl)pyrrolidine-1-carboxylate (6bb). Subjection of dipeptide $\mathbf{5 b b}(337.4 \mathrm{mg}, 0.911 \mathrm{mmol})$ to the saponification procedure described above for the synthesis of $\mathbf{6 a a}$ afforded $308.2 \mathrm{mg}(0.900 \mathrm{mmol})$ of the crude acid. Subjection of this crude mixture to the conditions described previously with NaOAc (110.9 $\mathrm{mg}, 1.35 \mathrm{mmol}, 1.5$ equiv), $\mathrm{Ac}_{2} \mathrm{O}(430 \mu \mathrm{~L}, 464 \mathrm{mg}, 4.55 \mathrm{mmol}, 5.1$ equiv), and purification by flash chromatography (75 mL of $\mathrm{SiO}_{2}, 1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $1-10 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded $\mathbf{6 b b}(204.8 \mathrm{mg}, 0.668 \mathrm{mmol}, 73 \%)$ as a colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}+83\left(c 1.0, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right.$, ca. 1.1:1 mixture of rotamers) $\delta 6.00-5.89$ and $5.87-5.76(2 \mathrm{~m}, 1 \mathrm{H}), 5.32$ and $5.23(2 \mathrm{~d}, J=17.8$ and $18.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ and $5.12(2 \mathrm{~d}, J=9.4$ and $10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.74$ and 4.69 ($2 \mathrm{dd}, J=8.2,3.0 \mathrm{~Hz}$ and $8.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), $4.65-4.58$ and $4.50(\mathrm{~m}$ and dd, $J=13.6,5.2 \mathrm{~Hz}, 1 \mathrm{H}$), $4.61(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-3.60(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.51(\mathrm{~m}, 1 \mathrm{H}), 2.83-2.74(\mathrm{~m}, 2 \mathrm{H}), 2.69-2.59(\mathrm{~m}$, $2 \mathrm{H}), 2.34-2.24(\mathrm{~m}, 1 \mathrm{H}), 2.18-2.03(\mathrm{~m}, 2 \mathrm{H}), 2.01-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.17-1.07(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right.$, ca. 1.1:1 mixture of rotamers) $\delta 165.2,165.0$ and 164.9, 163.2 and 163.1, 154.5 and 154.2, 132.8 and 132.6, 129.8 and 129.6, 117.4 and 117.1, 66.0 and 65.9, 55.7 and 55.1, 46.9 and $46.5,31.2$ and $30.4,26.6,24.3$ and $23.6,23.4,12.5$ and $12.4,12.3$; IR (film) $v_{\max } 2975,1791$, 1709, 1668, 1406, $1156 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 307.1625\left(\mathrm{MH}^{+}, \mathrm{C}_{16} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{H}^{+}\right.$requires 307.1613).

Allyl (S)-(2-methyl-1-(5-oxo-4-(propan-2-ylidene)-4,5-dihydrooxazol-2yl)propyl)carbamate (6ca). Subjection of dipeptide 5ca (394.2 mg, 1.14 mmol) to the
saponification procedure described above for the synthesis of $\mathbf{6 a a}$ afforded $357.9 \mathrm{mg}(1.13 \mathrm{mmol})$ of the crude acid. Subjection of this crude mixture to the conditions described previously with $\mathrm{NaOAc}\left(139.4 \mathrm{mg}, 1.70 \mathrm{mmol}, 1.5\right.$ equiv), $\mathrm{Ac}_{2} \mathrm{O}(540 \mu \mathrm{~L}, 583 \mathrm{mg}, 5.71 \mathrm{mmol}, 5.0$ equiv), and purification by flash chromatography (50 mL of $\mathrm{SiO}_{2}, 1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $1-10 \% \mathrm{EtOAc}$ in hexanes gradient elution) afforded $\mathbf{6 c a}(257.7 \mathrm{mg}, 0.919 \mathrm{mmol}, 80 \%)$ as a colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}-18(c 0.44$, $\left.\mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 6.01-5.89(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{~d}$, $J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.31-5.27(\mathrm{~m}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.56(\mathrm{~m}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H})$, $2.26(\mathrm{~s}, 3 \mathrm{H}), 2.24-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 164.9,162.1,155.9,154.7,132.6,130.1,118.0,66.0,55.0,31.3,22.8,19.7$, 18.9, 17.5; IR (film) $v_{\max } 3293,2917,1693,1650,1536 \mathrm{~cm}^{-1}$; HRMS (ESI) $m / z 281.1484\left(\mathrm{MH}^{+}\right.$, $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{H}^{+}$requires 281.1457).

Allyl (S)-(2-methyl-1-(5-oxo-4-(pentan-3-ylidene)-4,5-dihydrooxazol-2yl)propyl)carbamate (6cb). Subjection of dipeptide $\mathbf{5 c b}$ ($338.6 \mathrm{mg}, 0.909 \mathrm{mmol}$) to the saponification procedure described above for the synthesis of $\mathbf{6 a a}$ with 6 h of stirring afforded $307.3 \mathrm{mg}(0.892 \mathrm{mmol})$ of the crude acid. Subjection of this crude mixture to the conditions described previously with $\mathrm{NaOAc}\left(109.9 \mathrm{mg}, 1.34 \mathrm{mmol}, 1.5\right.$ equiv), $\mathrm{Ac}_{2} \mathrm{O}(430 \mu \mathrm{~L}, 464 \mathrm{mg}, 4.55$ mmol, 5.1 equiv), and purification by flash chromatography 65 mL of $\mathrm{SiO}_{2}, 1 \% \mathrm{Et}_{3} \mathrm{~N}$ in $1-10 \%$ EtOAc in hexanes gradient elution) afforded $\mathbf{6 c b}(208.6 \mathrm{mg}, 0.676 \mathrm{mmol}, 74 \%)$ as a colorless oil: $[\alpha]^{25}{ }_{\mathrm{D}}-14\left(c 0.36, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}\right) \delta 6.01-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.33(\mathrm{dd}, J=17.3$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{q}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.28-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=7.5$
$\mathrm{Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}, 125 \mathrm{MHz}\right) \delta 172.6$, $166.5,157.0,155.7,132.9,121.3,116.2,65.2,60.4,30.6,25.4,24.3,18.4,17.0,12.0,11.0 ;$ IR (film) $v_{\max } 3293,2966,1693,1650,1561 \mathrm{~cm}^{-1} ;$ HRMS (ESI) $m / z 309.1746\left(\mathrm{MH}^{+}, \mathrm{C}_{16} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{H}^{+}\right.$ requires 309.1770).

General Procedures for Solid-Phase Peptide Synthesis

Attachment of \boldsymbol{C}-terminal amino acid to resin. Rink amide MBHA resin (100-200 mesh, $100 \mu \mathrm{~mol})$ was added to a fritted polypropylene syringe. The resin was swelled in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 min), and then in DMF (5 min). The swelling solvents were drained from the resin using a vacuum manifold. After Fmoc deprotection (see below for procedure, repeated twice), the amino acid was coupled to the resin (see below for procedure, repeated twice).

Fmoc Deprotection. The resin $(100 \mu \mathrm{~mol})$ was treated with piperidine $(20 \%$ solution in DMF, 5.0 mL) and allowed to stand for 5 min . The solution was drained from the resin using a vacuum manifold, and additional piperidine (20% solution in DMF, 5.0 mL) was added. The resulting mixture was stirred twice at $80^{\circ} \mathrm{C}$ in a microwave oven for 4 min . The solution was drained from the resin using a vacuum manifold, and the resin was rinsed with DMF $(5 \times 10 \mathrm{~mL})$.

Peptide coupling. The Fmoc-protected amino acid (500 $\mu \mathrm{mol}$, 5 equiv) and HBTU (190 $\mathrm{mg}, 500 \mu \mathrm{~mol}$, 5 equiv) were dissolved by vortexing in a 0.1 M HOBt solution in NMP (5.0 mL , $500 \mu \mathrm{~mol}, 5$ equiv). $i \operatorname{Pr}_{2} \mathrm{NEt}(176 \mu \mathrm{~L}, 1000 \mu \mathrm{~mol}, 10$ equiv) was added to this solution, and it was allowed to stand for ca. 1 min . The solution was added to the resin $(100 \mu \mathrm{~mol})$, and the resulting mixture was stirred at $70^{\circ} \mathrm{C}$ in a microwave oven for 10 min . The solution was drained from the resin using a vacuum manifold, and the resin was rinsed with DMF $(5 \times 10 \mathrm{~mL})$. The N-terminal amino acid of each peptide (i.e., Arg) was coupled by gently stirring the solution at rt under Ar for ca. 10-12 h after the microwave heating was completed.

Coupling of azlactones 6 with resin-bound peptides. A solution of $6(500 \mu \mathrm{~mol}, 5$ equiv, typically employed crude without purification by flash chromatography) and $\mathrm{Et}_{3} \mathrm{~N}(150 \mu \mathrm{~L}, 1.08$ mmol, 10 equiv) in NMP (10 mL) was added to the resin-bound peptide ($100 \mu \mathrm{~mol}$). The resulting mixture was gently stirred at $80^{\circ} \mathrm{C}$ for $24-36 \mathrm{~h}$. The solution was drained from the resin using a fritted polypropylene syringe into a 20 mL glass vial (note: the unreacted azlactone present in the solution can be reused), and the resin was rinsed with DMF ($5 \times 10 \mathrm{~mL}$). Any unreacted amines were then capped by addition of a solution of $\mathrm{Ac}_{2} \mathrm{O}(1.0 \mathrm{~mL}, 1.08 \mathrm{~g}, 10.6 \mathrm{mmol}, 106$ equiv $)$ and $\mathrm{Et}_{3} \mathrm{~N}(200 \mu \mathrm{~L}, 145.2 \mathrm{mg}, 1.44 \mathrm{mmol}, 14.4$ equiv. $)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$, followed by stirring at rt under Ar for 90 min and washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 10 \mathrm{~mL})$.

Alloc deprotection. The resin-bound peptide ($100 \mu \mathrm{~mol}$) was placed under an Ar atmosphere and treated with a solution of $\mathrm{PhSiH}_{3}(700 \mu \mathrm{~L}, 613.9 \mathrm{mg}, 5.67 \mathrm{mmol}, 56.7$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ with stirring, followed by addition of a solution of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(56.8 \mathrm{mg}, 49.2 \mu \mathrm{~mol}$, 0.49 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The resulting mixture was stirred at rt under Ar for 20 min . The resin was rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 10 \mathrm{~mL})$, and the deprotection protocol was repeated once.

Acetylation of the N-terminus of resin-bound peptides. The N-terminus of each peptide was capped by addition of a solution of $\mathrm{Ac}_{2} \mathrm{O}(1.0 \mathrm{~mL}, 1.08 \mathrm{~g}, 10.6 \mathrm{mmol}, 106$ equiv $)$ and $\mathrm{Et}_{3} \mathrm{~N}$ ($200 \mu \mathrm{~L}, 145.2 \mathrm{mg}, 1.44 \mathrm{mmol}, 14.4$ equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL), followed by stirring at rt under Ar for 2 h . The resin was then rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \times 10 \mathrm{~mL})$.

Cleavage of peptide from resin and purification. The resin-bound peptide ($100 \mu \mathrm{~mol}$) was treated carefully with a solution of phenol ($500 \mathrm{mg}, 5.31 \mathrm{mmol}$), $\mathrm{H}_{2} \mathrm{O}(500 \mu \mathrm{~L})$, thioanisole $(500 \mu \mathrm{~L}, 528.5 \mathrm{mg}, 4.26 \mathrm{mmol})$, ethanedithiol $(250 \mu \mathrm{~L}, 280.8 \mathrm{mg}, 2.98 \mathrm{mmol})$, and triisopropylsilane ($100 \mu \mathrm{~L}, 77.3 \mathrm{mg}, 488 \mu \mathrm{~mol})$ in TFA $(8.0 \mathrm{~mL})$ in order to avoid the buildup of excess CO_{2} pressure in the reaction vessel. The resulting mixture was stirred at rt for ca. 4 h , and
the peptide was precipitated by filtering the mixture and pouring the filtrate into cold $\mathrm{Et}_{2} \mathrm{O}$ (40 $\mathrm{mL})$. The resin was rinsed with TFA $(3 \mathrm{~mL})$, and the precipitate was collected by centrifugation. The crude peptide was lyophilized and purified by HPLC (see entries for individual peptides for elution conditions).

Synthesis of cyclic and random coil control peptides (S1-S6). Ac-Cys-Trp-Val-Glu-Val-Asn-Gly-Orn-Lys-Ile-Leu-Gln-Cys-NH2 and Ac-Cys-Trp-Val-Glu-Val- Δ Val-Gly-Orn-Lys-Ile-Leu-Gln-Cys-NH2 were synthesized according to the previously described general procedures and purified by HPLC. They were then cyclized by stirring in open air for ca. 24 h in a 10 mM phosphate buffer solution (pH 7.5) containing 5\% DMSO, affording cyclic controls $\mathbf{S 1}$ and $\mathbf{S 4}$ respectively. Random coil peptides $\mathbf{S 2}, \mathbf{S 3}, \mathbf{S 5}$, and S6 were synthesized according to the previously described general procedures. Azlactones 6ca and Ac- $\mathbf{\Delta V a l} \mathbf{l}^{4}$ were used to synthesize S5 and S6 respectively.

Peptide Concentration Determination and NMR Sample Preparation. Peptide solutions were prepared in 20 mM sodium phosphate buffer (pH 7), and peptide concentrations were determined spectroscopically based on tryptophan absorbance at 280 nm in 6 M guanidine hydrochloride $\left(\operatorname{Trp} \varepsilon_{280}=5690 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$. NMR samples were prepared with $1-3.5 \mathrm{mM}$ peptide in $10 \% \mathrm{v} / \mathrm{v}_{2} \mathrm{O} / \mathrm{H}_{2} \mathrm{O}$ buffered to pD 3.9 with $5000 \mathrm{mM} \mathrm{NaOAc}-d_{3}$.

[^3]Tabulated ${ }^{1} \mathbf{H}$ NMR Data for Peptides
Ac-R-W-V-E-V-N-G-O-K-I-L-Q-NH ${ }_{2}$ (1)

	Amide	$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$	Others $(\boldsymbol{\gamma}, \boldsymbol{\delta}, \boldsymbol{\varepsilon})$
Arg	8.11	4.38	$1.65,1.71$	$\gamma \mathrm{CH}_{2} 1.52 ; \delta \mathrm{CH}_{2} 3.15 ; \varepsilon \mathrm{H} 7.14$
Trp	8.34	5.09	3.09	$\mathrm{H}_{1} 10.2 ; \mathrm{H} 27.25 ; \mathrm{H} 47.50 ; \mathrm{H} 67.08 ; \mathrm{H} 77.34$
Val	9.00	4.45	2.04	$\gamma \mathrm{CH}_{3} 0.871,0.889$
Glu	8.55	4.92	$1.93,2.02$	$\gamma \mathrm{CH}_{2} 2.28$
Val	8.90	4.22	1.96	$\gamma \mathrm{CH}_{3} 0.928$
Asn	9.41	4.48	$2.77,3.07$	$\delta \mathrm{NH}_{2} 6.96,7.64$
Gly	8.64	$3.75,4.09$		
Orn	7.87	4.62	$1.83,1.87$	$\gamma \mathrm{CH}_{2} 1.73 ; \delta \mathrm{CH}_{2} 3.05 ; \varepsilon \mathrm{NH} 7.66$
Lys	8.51	4.74	1.70	$\gamma \mathrm{CH}_{2} 1.23 ; \delta \mathrm{CH}_{2} 1.36 ; \varepsilon \mathrm{CH}_{2} 2.58 ; \zeta \mathrm{NH}_{3} 7.28$
Ile	9.11	4.57	1.89	$\gamma \mathrm{CH}_{2} 1.21,1.43 ; \delta \mathrm{CH}_{3} 0.836 ; \gamma \mathrm{CH}_{3} 0.902$
Leu	8.35	4.10	$1.09,1.37$	$\gamma \mathrm{CH}_{2} 0.792 ; \delta \mathrm{CH}_{3} 0.319,0.529$
Gln	8.67	4.33	$1.89,2.05$	$\gamma \mathrm{CH}_{2} 2.28 ; \varepsilon \mathrm{NH}_{2} 6.89,7.36$

Ac-R-W-V-E-V-p-G-O-K-I-L-Q-NH2 (2)

	\mathbf{H}	$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$	Others $(\boldsymbol{\gamma}, \boldsymbol{\delta}, \boldsymbol{\varepsilon})$
Arg	8.07	4.41	$1.64,1.72$	$\gamma \mathrm{CH}_{2} 1.53 ; \delta \mathrm{CH}_{2} 3.16 ; \varepsilon \mathrm{NH} 6.88$
Trp	8.36	5.13	3.08	$\mathrm{H} 11010.20 ; \mathrm{H} 27.23 ; \mathrm{H} 47.27 ; \mathrm{H} 57.05 ; \mathrm{H} 77.49$
Val	9.25	4.51	2.05	$\gamma \mathrm{CH}_{3} 0.889,0.873$
Glu	8.59	5.06	$2.03,1.95$	$\gamma \mathrm{CH}_{2} 2.33$
Val	8.98	4.63	1.99	$\gamma \mathrm{CH}_{3} 0.941$
D-Pro		4.38	$2.20,2.40$	$\gamma \mathrm{CH}_{2} 2.01,2.08 ; \delta \mathrm{CH}_{2} 3.88$
Gly	8.62	$3.80,4.04$		
Orn	7.93	4.66	1.85	$\gamma \mathrm{CH}_{2} 1.71 ; \delta \mathrm{CH}_{2} 3.03, \varepsilon \mathrm{NH}_{3} 7.65$
Lys	8.48	4.86	1.67	$\gamma \mathrm{CH}_{2} 1.20 ; \delta \mathrm{CH}_{2} 1.28 ; \varepsilon \mathrm{CH}_{2} 2.48$
Ile	9.24	4.62	1.88	$\gamma \mathrm{CH}_{2} 1.19,1.40 ; \delta \mathrm{CH}_{3} 0.816 ; \gamma \mathrm{CH}_{3} 0.889$
Leu	8.36	4.02	$0.966,1.32$	$\gamma \mathrm{CH}^{2} 0.595 ; \delta \mathrm{CH}_{3} 0.166,0.445$
Gln	8.73	4.33	$1.86,2.03$	$\gamma \mathrm{CH}_{2} 2.25 ; \varepsilon \mathrm{NH}_{2} 7.71,7.12$

Ac-R-W-V-E-V-N- Δ Val-O-K-I-L-Q-NH2 $\mathbf{N a}^{(7 a)}$

	\mathbf{H}	$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$	\boldsymbol{O} Others $(\boldsymbol{\gamma}, \boldsymbol{\delta}, \boldsymbol{\varepsilon})$
Arg	8.12	4.30	1.64	$\gamma \mathrm{CH}_{2} 1.47 ; \delta \mathrm{CH}_{2} 3.11 ; \varepsilon \mathrm{NH} 7.11$
Trp	8.27	4.97	3.14	$\mathrm{H} 110.18 ; \mathrm{H} 27.23 ; \mathrm{H} 47.42 ; \mathrm{H} 57.08 ; \mathrm{H} 77.49$
Val	8.62	4.30	2.01	$\gamma \mathrm{CH}_{3} 0.851$
Glu	8.45	4.75	$1.90,1.98$	$\gamma \mathrm{CH}_{2} 2.23$
Val	8.70	4.18	1.99	$\gamma \mathrm{CH}_{3} 0.915$
Asn	9.15	4.61	$2.80,3.01$	$\delta \mathrm{NH}_{2} 6.95,7.62$
Δ Val	9.34			$\gamma \mathrm{CH}_{3} 1.81,0.917$
Orn	7.78	4.49	$1.72,1.76$	$\gamma \mathrm{CH}_{2} 1.86 ; \delta \mathrm{CH}_{2} 3.04 ; \varepsilon \mathrm{NH}_{3} 7.64$
Lys	8.36	4.57	1.73	$\gamma \mathrm{CH}_{2} 1.26 ; \delta \mathrm{CH}_{2} 1.42 ; \varepsilon \mathrm{CH}_{2} 2.68$
Ile	8.76	4.39	1.87	$\gamma \mathrm{CH}_{2} 1.17,1.42 ; \delta \mathrm{CH}_{3} 0.805 ; \gamma \mathrm{CH}_{3} 0.805$
Leu	8.33	4.16	$1.42,1.25$	$\gamma \mathrm{CH}^{2} 1.05 ; \delta \mathrm{CH}_{3} 0.484,0.619$
Gln	8.49	4.30	$1.91,2.05$	$\gamma \mathrm{CH}_{2} 2.30 ; \varepsilon \mathrm{NH}_{2} 7.12,7.62$

	Ac-R-W-V-E-V-N- Ennv-O-K-I-L-Q-NH2 $_{2}$ (7ab)			
	H	$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$	Others ($\gamma, \delta, \varepsilon$)
Arg	8.14	4.27	1.64	$\gamma \mathrm{CH}_{2} 1.47 ; \delta \mathrm{CH}_{2} 3.11 ; \varepsilon \mathrm{NH} 7.11$
Trp	8.25	4.92	3.18	1H 10.2; H2 7.24; H5 7.10; H7 7.48
Val	8.44	4.25	2.01	$\gamma \mathrm{CH}_{3} 0.856$
Glu	8.40	4.66	1.97, 2.09	$\gamma \mathrm{CH}_{2} 2.32$
Val	8.58	4.16	2.02	$\gamma \mathrm{CH}_{3} 0.935$
Asn	8.98	4.70	2.80, 3.01	$\delta \mathrm{NH}_{2} 7.00,7.64$
Δ Env	9.21			$\gamma \mathrm{CH}_{2} 2.139,2.215 ; \delta \mathrm{CH}_{3} 0.971$
Orn	7.85	4.41	1.87	$\gamma \mathrm{CH}_{2} 1.74 ; \delta \mathrm{CH}_{2} 3.04 ; \varepsilon \mathrm{NH}_{3} 7.65$
Lys	8.24	4.50	1.77	$\gamma \mathrm{CH}_{2} 1.30 ; \delta \mathrm{CH}_{2} 1.49$ \& $\mathrm{CH}_{2} 2.75 ; \zeta \mathrm{NH}_{3} 7.41$
Ile	8.61	4.30	1.90	$\gamma \mathrm{CH}_{2} 1.18,1.45 ; \delta \mathrm{CH}_{3} 0.804 ; \gamma \mathrm{CH}_{3} 0.879$
Leu	8.33	4.19	1.39, 1.48	$\gamma \mathrm{CH} 1.23 ; \delta \mathrm{CH}_{3} 0.585,0.685$
Gln	8.62	4.30	2.09	$\gamma \mathrm{CH}_{2} 2.43 ; \varepsilon \mathrm{NH}_{2} 7.15,7.57$

Ac-R-W-V-E-V-p- Δ Val-O-K-I-L-Q-NH2 (7ba)

	\mathbf{H}	$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$	Others $(\boldsymbol{\gamma}, \boldsymbol{\delta}, \boldsymbol{\varepsilon})$
Arg	8.08	4.40	$1.71,1.63$	$\gamma \mathrm{CH}_{2} 1.513, \delta \mathrm{CH}_{2} 3.15, \varepsilon \mathrm{CH} 7.13$
Trp	8.35	5.11	3.06	$\mathrm{H} 110.2 ; \mathrm{H} 27.23 ; \mathrm{H} 47.50 ; \mathrm{H} 67.05 ; \mathrm{H} 77.30$
Val	9.15	4.48	2.05	$\gamma \mathrm{CH}_{2} 0.876$
Glu	8.55	5.07	$1.89,1.97$	$\gamma \mathrm{CH}_{2} 2.16,2.22$
Val	8.95	4.62	2.00	$\gamma \mathrm{CH}_{3} 0.947$
D-Pro		4.42	$2.19,2.47$	$\gamma \mathrm{CH}_{2} 2.10 ; \delta \mathrm{CH}_{2} 3.88,3.94$
$\Delta \mathbf{V a l}$	9.25			$\gamma \mathrm{CH}_{3} 1.80,2.18$
Orn	7.77	4.63	$1.80,1.86$	$\gamma \mathrm{CH}_{2} 1.73 ; \delta \mathrm{CH}_{2} 3.03 ; \varepsilon \mathrm{NH}_{3} 7.64$
Lys	8.48	4.82	1.67	$\gamma \mathrm{CH}_{2} 1.20 ; \delta \mathrm{CH}_{2} 1.30 ; \varepsilon \mathrm{CH}_{2} 2.53$
Ile	9.17	4.58	1.87	$\gamma \mathrm{CH}_{2} 1.19,1.40 ; \delta \mathrm{CH}_{3} 0.814 ; \gamma \mathrm{CH}_{3} 0.885$
Leu	8.36	4.04	$1.01,1.34$	$\gamma{\mathrm{CH} 0.671 ; \delta \mathrm{CH}_{3} 0.217,0.470}^{\text {Gln }}$
8.69	4.32	$1.86,2.03$	$\gamma \mathrm{CH}_{2} 2.26 ; \varepsilon \mathrm{NH}_{2} 6.89,7.33$	

Ac-R-W-V-E-V-p- $\Delta \mathbf{E n v}-\mathrm{O}-\mathrm{K}-\mathrm{I}-\mathrm{L}-\mathrm{Q}-\mathrm{NH}_{2}$ (7bb)

	\mathbf{H}	$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$	Others $(\boldsymbol{\gamma}, \boldsymbol{\delta}, \boldsymbol{\varepsilon})$
Arg	8.08	4.39	$1.64,1.71$	$\gamma \mathrm{CH}_{2} 1.52 ; \delta \mathrm{CH}_{2} 3.15 ; \varepsilon \mathrm{NH} 7.14$
Trp	8.32	5.10	3.07	$\mathrm{H} 110.2 ; \mathrm{H} 27.23 ; \mathrm{H} 47.31 ; \mathrm{H} 57.05 ; \mathrm{H} 77.50$
Val	9.10	4.48	2.07	$\gamma \mathrm{CH}_{3} 0.884$
Glu	8.53	5.09	$1.90,1.97$	$\gamma \mathrm{CH}_{2} 2.14,2.29$
Val	8.89	4.61	2.01	$\gamma \mathrm{CH}_{3} 0.955$
D-Pro		4.44	$2.17,2.47$	$\gamma \mathrm{CH}_{2} 2.09 ; \delta \mathrm{CH}_{2} 3.87,3.97$
Δ Env	9.33			$\gamma \mathrm{CH}_{2} 2.23,2.061 ; \delta \mathrm{CH}_{3} 0.969$
Orn	7.78	4.62	1.88	$\gamma \mathrm{CH}_{2} 1.74 ; \delta \mathrm{CH}_{2} 3.05 ; \varepsilon \mathrm{NH}_{3} 7.63$
Lys	8.44	4.82	1.67	$\gamma \mathrm{CH}_{2} 1.21 ; \delta \mathrm{CH}_{2} 1.34 ; \varepsilon \mathrm{CH}_{2} 2.55$
Ile	9.12	4.56	1.88	$\gamma \mathrm{CH}_{2} 1.20,1.42 ; \delta \mathrm{CH}_{3} 0.823 ; \gamma \mathrm{CH}_{3} 0.891$
Leu	8.36	4.06	$1.36,1.06$	$\gamma \mathrm{CH}_{2} 0.730 ; \delta \mathrm{CH}_{3} 0.258,0.499$
Gln	8.66	4.33	$1.89,2.05$	$\gamma \mathrm{CH}_{2} 2.27 ; \varepsilon \mathrm{NH}_{2} 7.12,7.69$

	Ac-R-W-V-E-V- $\Delta \mathbf{V} \mathbf{a l}-\mathrm{G}-\mathrm{O}-\mathrm{K}-\mathrm{I}-\mathrm{L}-\mathrm{Q}-\mathrm{NH}_{2}(7 \mathbf{c a})$			
	H	α	$\boldsymbol{\beta}$	Others ($\gamma, \delta, \varepsilon$)
Arg	8.08	4.41	1.73, 1.65	$\gamma \mathrm{CH}_{2} 1.54 ; \delta \mathrm{CH}_{2} 3.16 ; \varepsilon \mathrm{NH} 7.14$
Trp	8.34	5.15	3.04, 3.09	H1 10.2; H2 7.24; H4 7.29; H6 7.06; H7 7.50
Val	9.24	4.54	2.08	$\gamma \mathrm{CH}_{3} 0.880$
Glu	8.57	5.14	2.01, 1.93	$\gamma \mathrm{CH}_{2} 2.27,2.30$
Val	9.08	4.38	1.96	$\gamma \mathrm{CH}_{3} 0.994,0.955$
Δ Val	10.3			$\gamma \mathrm{CH}_{3} 1.99,1.89$
Gly	8.63	4.11,		
Orn	7.98	4.66	1.72	$\gamma \mathrm{CH}_{2} 1.85 ; \delta \mathrm{CH}_{2} 3.03 ; \varepsilon \mathrm{NH}_{3} 7.65$
Lys	8.50	4.82	1.67, 1.35	$\gamma \mathrm{CH}_{2} 1.20 ; \delta \mathrm{CH}_{2} 1.28,1.35 ; \varepsilon \mathrm{CH}_{2} 2.50,2.45 ; \zeta \mathrm{NH}_{3} 7.20$
Ile	9.26	4.63	1.90	$\gamma \mathrm{CH}_{2} 1.21,1.41 ; \delta \mathrm{CH}_{3} 0.813 ; \gamma \mathrm{CH}_{3} 0.888$
Leu	8.35	4.04	0.990, 1.33	$\gamma \mathrm{CH} 0.641 ; \delta \mathrm{CH}_{3} 0.194,0.454$
Gln	8.72	4.33	1.87, 2.03	$\gamma \mathrm{CH}_{2} 2.26 ; \varepsilon \mathrm{NH}_{2} 7.12,7.71$

	Ac-R-W-V-E-V- Δ Env-G-O-K-I-L-Q-NH2 (7cb)			
	H	$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$	Others ($\boldsymbol{\gamma}, \boldsymbol{\delta}, \boldsymbol{\varepsilon}$)
Arg	8.08	4.42	1.66, 1.73	$\gamma \mathrm{CH}_{2} 1.54 ; \delta \mathrm{CH}_{2} 3.17 ; \varepsilon \mathrm{NH} 7.15$
Trp	8.35	5.14	3.04, 3.10	H1 10.2; H2 7.24; H4 7.31; H5 7.07; H7 7.51
Val	9.18	4.52	2.07	$\gamma \mathrm{CH}_{3} 0.885,0.907$
Glu	8.57	5.09	2.22	$\gamma \mathrm{CH}_{2} 1.92,2.00$
Val	9.04	4.41	1.99	$\gamma \mathrm{CH}_{3} 0.965,0.982$
Δ Env	10.1			$\gamma \mathrm{CH}_{2} 2.36,2.20 ; \delta \mathrm{CH}_{3} 1.05,0.992$
Gly	8.65	3.76,		
Orn	7.97	4.67	1.87	$\gamma \mathrm{CH}_{2} 1.74 ; \delta \mathrm{CH}_{2} 3.05 ; \varepsilon \mathrm{NH}_{3} 7.63$
Lys	8.53	4.83	1.68	$\gamma \mathrm{CH}_{2} 1.21 ; \delta \mathrm{CH}_{2} 1.30,1.38 ; \varepsilon \mathrm{CH}_{2} 2.52$
Ile	9.23	4.62	1.89	$\gamma \mathrm{CH}_{2} 1.21,1.42 ; \delta \mathrm{CH}_{3} 0.829 ; \gamma \mathrm{CH}_{3} 0.898$
Leu	8.34	4.05	1.01, 1.34	$\gamma \mathrm{CH} 0.663 ; \delta \mathrm{CH}_{3} 0.224,0.476$
Gln	8.71	4.34	1.88, 2.05	$\gamma \mathrm{CH}_{2} 2.27 ; \varepsilon \mathrm{NH}_{2} 7.71,7.12$

	$\mathrm{c}\left[\mathrm{Ac}-\mathrm{C}-\mathrm{R}-\mathrm{W}-\mathrm{V}-\mathrm{E}-\mathrm{V}-\Delta \mathbf{V a l}-\mathrm{G}-\mathrm{O}-\mathrm{K}-\mathrm{I}-\mathrm{L}-\mathrm{Q}-\mathrm{C}-\mathrm{NH}_{2}\right](\mathbf{S 4})$			
	\mathbf{H}	$\boldsymbol{\alpha}$	$\boldsymbol{\beta}$	Others $\mathbf{(} \boldsymbol{\gamma}, \boldsymbol{\delta}, \boldsymbol{\varepsilon})$
Cys	8.38	5.23	$3.00,2.41$	
Arg	8.73	4.62	$1.67,1.81$	$\gamma \mathrm{CH}_{2} 1.51 ; \delta \mathrm{CH}_{2} 3.18 ; \varepsilon \mathrm{NH} 7.12$
Trp	8.66	5.15	$3.10,2.96$	$\mathrm{H} 110.2 ; \mathrm{H} 27.25 ; \mathrm{H} 47.29 ; \mathrm{H} 57.01 ; \mathrm{H} 77.50$
Val	9.55	4.61	2.09	$\gamma \mathrm{CH}_{3} 0.888$
Glu	8.54	5.16	$1.99,1.90$	$\gamma \mathrm{CH}_{2} 2.18,2.19$
Val	9.12	4.40	1.95	$\gamma \mathrm{CH}_{3} 0.968$
Δ Val	10.3			$\delta \mathrm{CH}_{2} 0.985,1.89$
Gly	8.66	$3.72,4.13$		
Orn	7.98	4.70	1.86	$\gamma \mathrm{CH}_{2} 1.72 ; \delta \mathrm{CH}_{2} 3.04 ; \varepsilon \mathrm{NH}_{3} 7.64$
Lys	8.53	4.99	1.75	$\gamma \mathrm{CH}_{2} 1.38 ; \delta \mathrm{CH}_{2} 1.38 ; \varepsilon \mathrm{CH}_{2} 2.56$
Ile	9.40	4.71	1.86	$\gamma \mathrm{CH}_{2} 1.17,1.41 ; \gamma \mathrm{CH}_{3} 0.826 ; \delta \mathrm{CH}_{3} 0.888$
Leu	8.35	3.91	$0.772,1.31$	$\gamma \mathrm{CH}_{2} 0.379 ; \delta \mathrm{CH}_{3}-0.338,0.078$
Gln	9.05	4.58	$1.83,2.08$	$\gamma \mathrm{CH}_{2} 2.24$
Cys	8.94	5.05	$2.94,3.04$	

S1

Amino Acid	Ha
Cys	5.22
Arg	4.62
Trp	5.14
Val	4.59
Glu	5.04
Val	4.25
Asn	4.41
Gly	$3.69,4.14$
Orn	4.70
Lys	4.97
Ile	4.72
Leu	3.90
Gln	4.57
Cys	5.05

S2

Amino Acid	H $\boldsymbol{\alpha}$
Arg	4.18
Trp	4.72
Val	4.00
Glu	4.25
Val	4.09
Asn	4.69
Gly	3.91

Amino Acid	$\mathbf{H} \boldsymbol{\alpha}$
Asn	4.70
Gly	3.96
Orn	4.36
Lys	4.32
Ile	4.15
Leu	4.40
Gln	4.32
	S5
Amino Acid	$\mathbf{H a}$
Arg	4.18
Trp	4.73
Val	4.01
Glu	4.27
Val	4.15
$\Delta V a l$	-
Gly	3.94

S6	
Amino Acid	$\mathbf{H} \boldsymbol{\alpha}$
Δ Val	-
Gly	3.94
Orn	4.35
Lys	4.30
Ile	4.13
Leu	4.38
Gln	4.31

Figure S1. H α chemical shift differences between the residues in $\mathbf{1}$ and the corresponding random coil 7-mers $\mathbf{S 2}$ and $\mathbf{S 3}$.

Figure S2. H α chemical shift differences between the residues in $\mathbf{2}$ and the random coil values obtained from Wüthrich, K. NMR of Proteins and Nucleic Acids, Wiley: New York (1986).

Figure S3. H α chemical shift differences between the residues in $\mathbf{7 a a}$ and the random coil values obtained from Wüthrich, K. NMR of Proteins and Nucleic Acids, Wiley: New York (1986).

Figure S4. H α chemical shift differences between the residues in $\mathbf{7 a b}$ and the random coil values obtained from Wüthrich, K. NMR of Proteins and Nucleic Acids, Wiley: New York (1986).

Figure S5. H α chemical shift differences between the residues in 7ba and the random coil values obtained from Wüthrich, K. NMR of Proteins and Nucleic Acids, Wiley: New York (1986).

Figure S6. H α chemical shift differences between the residues in 7bb and the random coil values obtained from Wüthrich, K. NMR of Proteins and Nucleic Acids, Wiley: New York (1986).

Figure S7. H α chemical shift differences between the residues in 7ca and the corresponding random coil 7-mers $\mathbf{S 2}$ and $\mathbf{S 3}$.

Figure S8. H α chemical shift differences between the residues in $\mathbf{7 c b}$ and the corresponding random coil 7-mers $\mathbf{S} \mathbf{2}$ and $\mathbf{S 3}$.

Inter-residue ROESY Cross-peaks

Table S1. Ac-R-W-V-E-V-N-G-O-K-I-L-Q-NH2 (1)

Res I	Res II	Peak
2Trp H2,4	11Leu δ	S
2Trp H7	11Leu δ	M
2Trp α	11Leu δ	M
2Trp β	11Leu δ	W
2Trp H6	11Leu γ	M
2Trp H2,7	11Leu α	M
2Trp H2	11Leu β	M
2Trp H6	11Leu β	W
2Trp $\beta, \mathrm{H} 7$	11Leu β	S
2Trp α	11Leu α	S
1Arg α	11Leu δ	M
1Arg β	12Gln H	W
4Glu H	10Ile γ	S
2Trp H6,7	10Ile α	S
2Trp H2	10Ile α, γ	M
5Val γ	8Orn H	M
5Val H	8Orn H	S
2Trp H2,6,7	9Lys γ	S
2Trp H7	9Lys α	W
5Val γ	6Asn δ	S

Table S2. Ac-R-W-V-E-V-p-G-O-K-I-L-Q-NH2 (2)

Res I	Res II	Peak
2Trp H4	11Leu α	M
2Trp $\alpha, \mathrm{H} 2$	11Leu α	S
2Trp H1,7	11Leu δ	S
2Trp α	11Leu δ	W
2Trp H1,4	11Leu δ	W
2Trp H1,5	11Leu γ	M
2Arg α	11Leu δ	M
2Trp H2	9Lys γ	W
2Trp H4	9Lys γ, δ	M
2Trp H1,4	9Lys β	S
2Trp α	10Ile H	S
2Trp H5	10Ile α	S
2Trp H1	10Ile α	M
2Trp H4	10Ile α	W
4Glu γ	8Orn H	M
6D-Pro α	8Orn H	M
5Val H	8Orn H	M
1Arg δ	12Gln α	M
2Trp H2	12Gln γ	M
5Val γ	6D-Pro δ	S

Table S3. Ac-R-W-V-E-V-N- Δ Val-O-K-I-L-Q-NH 2 (7aa)

Res I	Res II	Peak
1Arg ε	12Gln γ	W
1Arg ε	10Ile γ	M
2Trp H2	10Ile γ	M
2Trp H1,	11Leu δ	W
2Trp H2,4	11Leu δ	M
2Trp β	11Leu δ	W
2Trp α	11Leu δ	M
2Trp α	11Leu α	S
2Trp H7	9Lys γ	S
2Trp H2	9Lys γ	W
2Trp H7	11Leu α	S
2Trp H2	11Leu α	M
2Trp H7	10Ile α	M
2Trp H2	10Ile α	W
2Trp H6	10Ile α	S
2Trp H2,7	11Leu β	S
2Trp H7	11Leu δ	S
5Val H	9Orn H	M
4Glu γ	7 MVal H	S
4Glu γ	8Orn H	S

Table S4. Ac-R-W-V-E-V-N- Δ Env-O-K-I-L-Q-NH 2 (7ab)

Res I	Res II	Peak
2Trp H2,7	11Leu δ	M
2Trp H1,4	11Leu δ	W
2Trp α	11Leu δ	S
2Trp H7	11Leu β	S
2Trp H5	11Leu γ	W
2Trp α	11Leu α	S
2Trp H7	11Leu α	M
1Arg H	11Leu δ	M
2Trp H2	9Lys β	M
2Trp H7	9Lys β	S
2Trp H2	9Lys δ	W
2Trp H7	9Lys γ	S
1Arg ε	9Lys β	M
2Trp H2	4Glu γ	S
1Arg ε	10Ile γ	W
5Val H	8Orn H	M
11Leu α	2Trp H2	W
6Asn δ	5Val γ	S

Table S5. Ac-R-W-V-E-V-p- Δ Val-O-K-I-L-Q-NH2 (7ba)

Table S6. Ac-R-W-V-E-V-p- Δ Env-O-K-I-L-Q-NH2 (7bb)

Res I	Res II	Peak
2Trp H1,4	11Leu δ	W
2Trp H2,7, α	11Leu δ	M
2Trp α	11Leu δ	M
2Trp H4, α	11Leu α	S
2Trp H2	11Leu α	M
2Trp H4	11Leu β	M
1Arg α	11Leu δ	W
1Arg H	12Gln β	W
2Trp H4	12Gln α	W
2Trp H4	9Lys β	S
2Trp H2	9Lys β	M
2Trp H2,5	9Lys γ	W
4Trp H2	9Lys δ	W
1Trp H4	9Lys δ	M
4Glu H	9Lys α	S
5Val H	8Orn H	S
2Trp H5	10Ile α	S
2Trp H2	10Ile α	W
2Trp H4	10Ile γ	M
4Glu H	10Ile γ	S
6D-Pro δ	7DEnv	S
5Val γ	6D-Pro δ	S

Table S7. Ac-R-W-V-E-V- Δ Val-G-O-K-I-L-Q-NH2 (7ca)

| Res I | Res II Peak |
| :--- | :--- | :--- |

2Trp H1,4	11Leu δ	W
2Trp H7	11Leu δ	M
2Trp H2	11Leu δ	S
2Trp α, β	11Leu δ	M
2Trp H2,5	11Leu γ	M
2Trp H2,4	11Leu α	M
2Trp α	11Leu α	S
2Trp H2	11Leu β	W
1Arg α	11Leu δ	M
4Glu β	11Leu δ	M
2Trp H2,5	9Lys β	M
2Trp H4d	9Lys δ	M
2Trp H4	9Lys γ	W
2Trp H4	9Lys β	S
2Trp H4	10Ile α	M
2Trp H2	10Ile α	W
2Trp H5	10Ile α	S
2Trp H4	10Ile γ	S
5Val H	8Orn H	S
2Trp H2	12Gln γ	W
1Arg H	12Gln β	W
6 $\Delta \mathrm{Val} \gamma$	5Val γ	S

$2 \operatorname{Trp} \alpha, \beta \quad$ 11Leu $\delta \quad \mathrm{M}$
$2 \operatorname{Trp} \mathrm{H} 2,5$ 11Leu $\gamma \quad \mathrm{M}$
$2 \operatorname{Trp} \mathrm{H} 2,4$ 11Leu $\alpha \quad \mathrm{M}$
$2 \operatorname{Trp} \alpha \quad$ 11Leu $\alpha \quad \mathrm{S}$
$2 \operatorname{Trp} \mathrm{H} 2 \quad$ 11Leu $\beta \quad \mathrm{W}$
$1 \operatorname{Arg} \alpha \quad$ 11Leu $\delta \quad \mathrm{M}$
4Glu $\beta \quad$ 11Leu $\delta \quad \mathrm{M}$
$2 \operatorname{Trp} \mathrm{H} 2,5$ 9Lys $\beta \quad \mathrm{M}$
$\begin{array}{lll}2 \operatorname{Trp} \mathrm{H} 4 & \text { 9Lys } \gamma & \mathrm{W}\end{array}$
$2 \operatorname{Trp} \mathrm{H} 4 \quad$ 9Lys β
$\begin{array}{lll}2 \text { 2Trp H4 } & \text { 10Ile } \alpha & \text { M } \\ \text { 2Trp H2 } & \text { 10Ile } \alpha & \text { W }\end{array}$
2Trp H5 10lle $\alpha \quad$ S
2Trp H4 10Ile $\gamma \quad \mathrm{S}$
2Trp H2 12Gln $\gamma \quad \mathrm{W}$
$6 \Delta \mathrm{Val} \gamma \quad \mathbf{5 V a l} \gamma \quad \mathrm{S}$

Table S8. Ac-R-W-V-E-V- Δ Env-G-O-K-I-L-Q-NH2 (7cb)

Res I	Res II	Peak
2Trp H2	11Leu δ	S
2Trp α, H4,5	11Leu δ	W
2Trp H7	11Leu δ	M
2Trp H2,5	11Leu γ	M
2Trp H4,7	11Leu γ	W
2Trp α	11Leu α	S
2Trp H2	10Leu α	W
2Trp H4	11Leu α	M
2Trp H5	10Ile α	M
2Trp H2	10Ile α	W
2Trp H2	9Lys β	M
9Lys β, γ, δ	2Trp H4	S
9Lys γ, ε	2Trp H2	W
2Trp H5	9Lys β	M
2Trp H4	12Gln γ	S
8Orn β	5Val H	S
6 Δ Env δ	5Val α	W
1Arg δ	12Gln ε	S
1Arg α	11Leu δ	S

Table S9. c[Ac-Cys-R-W-V-E-V- Δ Val-G-O-K-I-L-Q-Cys-NH ${ }_{2}$] (S4)

Proteolysis assays for 1 and its analogues

Pronase E from Streptomyces griseus (EC 3.4.24.31) was purchased from EMD Millipore.
This mixture of enzymes was dissolved in 1X PBS buffer (10 mM sodium phosphate, 137 mM $\mathrm{NaCl}, 2.7 \mathrm{mM} \mathrm{KCl}$ buffer, pH 7.4) at a concentration of $0.128 \mathrm{mg} / \mathrm{mL}$. Then, solutions of each peptide (1, 7aa, 7ab, 7ca, and 7cb) in 1X PBS buffer ($0.10 \mathrm{mM}, 1.5 \mathrm{~mL}$) at $37^{\circ} \mathrm{C}$ were treated with an aliquot $(5 \mu \mathrm{~L})$ of the pronase E solution. Aliquots $(50 \mu \mathrm{~L})$ were removed after $0,30,60$, $90,150,210,270,360180,300$, and 360 min . The aliquots were quenched with $25 \% \mathrm{v} / \mathrm{v}$ glacial acetic acid $(10 \mu \mathrm{~L})$, diluted to $75 \mu \mathrm{~L}$ with 1X PBS buffer, and analyzed by HPLC (Phenomenex Jupiter C18, $5 \mu \mathrm{~m}$ particle size, $300 \AA$ pore size, $4.6 \times 250 \mathrm{~mm}, 40 \mu \mathrm{~L}$ injection volume, $10 \%-$ $60 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ gradient over 50 min , then $95 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ for 10 min, flow rate: 1 $\mathrm{mL} / \mathrm{min}$).

Proteolysis assays for 2 and its analogues

Pronase E from Streptomyces griseus (EC 3.4.24.31) was purchased from EMD Millipore. This mixture of enzymes was dissolved in 1X PBS buffer (10 mM sodium phosphate, 137 mM $\mathrm{NaCl}, 2.7 \mathrm{mM} \mathrm{KCl}$ buffer, pH 7.4) at a concentration of $0.162 \mathrm{mg} / \mathrm{mL}$. Then, solutions of each peptide (2, 7ba, and 7bb) in 1X PBS buffer $(0.40 \mathrm{mM}, 1.5 \mathrm{~mL})$ at $37^{\circ} \mathrm{C}$ were treated with an aliquot $(10 \mu \mathrm{~L})$ of the pronase E solution. Aliquots ($50 \mu \mathrm{~L}$) were removed after $0,30,60,90,150$, 210, 270, 360180,300 , and 360 min . The aliquots were quenched with glacial acetic acid ($10 \mu \mathrm{~L}$), diluted to $75 \mu \mathrm{~L}$ with 1 X PBS buffer, and analyzed by HPLC (Phenomenex Jupiter C18, $5 \mu \mathrm{~m}$ particle size, $300 \AA$ pore size, $4.6 \times 250 \mathrm{~mm}, 40 \mu \mathrm{~L}$ injection volume, $10 \%-60 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ gradient over 50 min , then $95 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ for 10 min , flow rate: $1 \mathrm{~mL} / \mathrm{min}$).

Figure S9. Analytical HPLC traces (monitored at 220 nm) for peptide $\mathbf{1}(0.10 \mathrm{mM})$ after incubation in Pronase E for up to 360 min .

Figure S10. Analytical HPLC traces (monitored at 220 nm) for control peptide $2(0.40 \mathrm{mM})$ after incubation in Pronase E for up to 360 min .

Figure S11. Analytical HPLC traces (monitored at 220 nm) for peptide $7 \mathbf{c a}(0.10 \mathrm{mM})$ after incubation in Pronase E for up to 360 min .

Figure S12. Analytical HPLC traces (monitored at 220 nm) for peptide 7ba $(0.40 \mathrm{mM})$ after incubation in Pronase E for up to 360 min .

Determination of Percent Folded Values for 1 and 7ca

The percentage of each peptide residing in the folded state was determined using two methods. First, the $\mathrm{H} \alpha$ chemical shifts of residues that form cross-strand hydrogen bonds were compared to the corresponding $\mathrm{H} \alpha$ chemical shifts in random coil 7-mers representing the unfolded structures $\left(\delta_{0}\right)$ and to H α chemical shifts in cyclic controls representing the fully folded structures (δ_{100}). The H α chemical shifts of residues in peptides $\mathbf{1}$ and $7 \mathbf{c a}$ were designated as $\delta_{\text {obs }}$. The percent folded at each residue was determined by Equation (i):

$$
\begin{equation*}
\text { Percent Folded } \left.=\left[\left(\boldsymbol{\delta}_{\text {obs }}-\boldsymbol{\delta}_{\mathbf{o}}\right) / \boldsymbol{\delta}_{100^{-}} \boldsymbol{\delta}_{\mathbf{o}}\right)\right] \times 100 \% \tag{i}
\end{equation*}
$$

The overall percent folded was calculated by averaging the percent folded values for residues Val3, Val5, Orn8, and Ile10, each of which are involved in cross-strand hydrogen bonds.

Amino Acids	7ca	S4	Random Coil	\% Folded	Average \% Folded	Standard Error
Val 3	4.534	4.608	4.009	87.64	89.99	2.0
Val 5	4.385	4.397	4.151	95.12		
Orn 8	4.666	4.697	4.354	90.96	K	Std. error
Ile 10	4.635	4.715	4.134	86.23	9.0	2.0

$\Delta G(k c a l / m o l) \quad$ Std. error (kcal/mol) $-1.30 \quad 0.13$

Amino Acids	$\mathbf{1}$	S1	Random Coil	\% Folded	Average \% Folded	Standard Error
Val 3	4.447	4.586	4.003	76.16	77.30	2.0
Val 5	4.222	4.249	4.090	83.02		
Orn 8	4.620	4.696	4.364	77.11	\mathbf{K}	Std error
Ile 10	4.564	4.717	4.152	72.92	3.4	0.4
					$\Delta \mathbf{G G (k c a l} / \mathbf{m o l})$	Std. error $(\mathbf{k c a l} / \mathbf{m o l})$

The overall percent folded was also calculated by measuring the differences in chemical shift of the two diastereotopic $\mathrm{H} \alpha$ signals from the glycine residues in $\mathbf{1}$ and 7ca. This was done using equation (ii):

$$
\begin{equation*}
\text { Percent Folded }=\left(\Delta \delta_{\text {Observed }} / \Delta \delta_{100}\right) \times 100 \% \tag{ii}
\end{equation*}
$$

where $\Delta \delta_{\text {Observed }}$ is the difference between the two diastereotopic glycine $\mathrm{H} \alpha$ chemical shifts observed for $\mathbf{1}$ or $7 \mathbf{c a}$ and $\Delta \delta_{100}$ is the difference between the two diastereotopic glycine $\mathrm{H} \alpha$ chemical shifts of the corresponding cyclic peptide $\mathbf{S} 1$ or $\mathbf{S 4}$.

Peptide	Gly H ${ }_{\text {a }}$	Gly H $\alpha_{\text {b }}$	Glycine Splitting	\% Folded
Cyclic peptide (S4)	4.1322	3.7217	$0.4105 \quad\left(\Delta \delta_{100}\right)$	93.7
7ca	4.1141	3.7296	0.3845 ($\Delta \delta_{\text {Observed }}$)	$\begin{gathered} \mathbf{K} \\ 14.79 \\ \hline \end{gathered}$
			$\Delta \mathrm{G}(\mathrm{kcal} / \mathrm{mol})$	-1.60
Peptide	Gly H ${ }_{\text {a }}$	Gly H $\alpha_{\text {b }}$	Glycine Splitting	\% Folded
Cyclic peptide (S1)	4.1354	3.6865	$0.4489 \quad\left(\Delta \delta_{100}\right)$	72.8
1	4.0941	3.7674	0.3267 ($\Delta \delta_{\text {Observed }}$)	K
			(G (kcalmol)	-0.58

Circular Dichroism Experiments

Peptide solutions were prepared in 20 mM sodium phosphate buffer (pH 7.4), and concentrations were determined spectroscopically based on tryptophan absorbance at 280 nm in 6 M guanidine hydrochloride $\left(\operatorname{Trp} \varepsilon_{280}=5690 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right) .0 .10 \mathrm{mM}$ solutions of $\mathbf{1}$ and $\mathbf{7 c a}$ in 10 mM sodium phosphate buffer (pH 7.4) and 6 M guanidine hydrochloride were used to perform wavelength scans in duplicate at $25^{\circ} \mathrm{C} .0 .10 \mathrm{mM}$ solutions of 2 and $7 \mathbf{b a}$ in 10 mM sodium phosphate buffer (pH 7.4) and 2.5 M urea were used to run wavelength scans in duplicate at $25^{\circ} \mathrm{C}$.

Figure S13. CD wavelength scan for peptides $\mathbf{1}$ and $\mathbf{7 c a}$ at $25^{\circ} \mathrm{C}$.

Figure S14. CD wavelength scan for peptides 2 and 7 ba at $25^{\circ} \mathrm{C}$.

NMR Structural Calculations

NOE Distance-restrained Calculations Summary. Manual NMR structural calculations were performed to generate conformational ensembles of all the peptides that were studied. The ensembles were generated using the simulated annealing algorithm CYANA in conjunction with ROESY chemical shift and peak data for the eight peptides (cross-peak data used in the calculations is tabulated and summarized visually in tables S1-S9). Dihedral restraints were not used due to the presence of multiple non-standard amino acids (e.g., ornithine, D-proline, $\Delta \mathrm{V}$ al and $\Delta E n v$) which lack sufficient secondary chemical shift analysis data.

The final ensemble for each peptide consists of the 10 lowest-energy conformations as determined by the CYANA objective-function from 100 preliminary structures. The ensemble shows the expected hydrogen bonding pattern, dihedral angles, and overall secondary structure consistent with the β-hairpin motif.

Table S10. Restraints and Calculation Parameters

Structure	1	2	7 aa	7ab	7ba	7bb	7ca	7cb
Conformational restraints								
Total Distance	32	28	29	24	29	31	28	31
Restraints								
Cross-strand ${ }^{\text {b }}$	31	26	20	22	27	29	28	30
Sequential	1	2	0	2	2	2	0	1
Intra-residue	0	0	0	0	0	0	0	0
Strong Intensity ${ }^{\text {a }}$	14	8	9	8	10	12	6	11
Medium Intensity ${ }^{\text {a }}$	11	14	9	9	10	9	14	9
Weak Intensity ${ }^{\text {a }}$	7	6	11	7	9	10	8	11
Hydrogen Bonds	4	4	4	4	4	4	4	4
Dihedral Restraints ${ }^{\text {c }}$	0	0	0	0	0	0	0	0
RMSD from Ideality:								
Backbone (Å)	$0.18 \pm$	$0.40 \pm$	$0.26 \pm$	$0.60 \pm$	$0.26 \pm$	$0.31 \pm$	$0.13 \pm$	$0.34 \pm$
	0.01	0.14	0.12	0.11	0.18	0.11	0.04	0.08
Heavy Atom (Å)	$0.57 \pm$	$0.74 \pm$	$0.72 \pm$	$1.32 \pm$	$0.86 \pm$	$0.77 \pm$	$0.54 \pm$	$0.67 \pm$
	0.08	0.11	0.17	0.34	0.25	0.26	0.08	0.09

[^4]
NMR structural calculations from NOE peaks

Summary. Out of 100 initial structures, the 10 best conformations per the CYANA objective function, were superimposed based on backbone geometry. Sidechains were omitted for clarity. The structures show the expected beta-hairpin hydrogen bonding and dihedral angles. Note: structural ensembles of $\mathbf{7 a b}$ and $\mathbf{7 c b}$ were generated using NOE data from the major conformation of each peptide, as data from the minor conformations were difficult to interpret.
А) Ac-R-W-V-E-V-N-G-O-K-I-L-Q-NH2 (1)
B) Ac-R-W-V-E-V-p-G-O-K-I-L-Q-NH2 (2)

Backbone RMSD (\AA):
$\mathbf{0 . 1 8 0} \pm 0.008$

Backbone RMSD (\AA): $\mathbf{0 . 3 9 6} \pm 0.143$
C) Ac-R-W-V-E-V-N- Δ Val-O-K-I-L-Q- NH_{2} (7aa)
D) Ac-R-W-V-E-V-N- Δ Env-O-K-I-L-Q-NH2 (7ab)

Position	Res.
\boldsymbol{i}	Val
$\boldsymbol{i}+\mathbf{1}$	Asn
$\boldsymbol{i}+\mathbf{2}$	$\Delta \mathrm{Env}$
$\boldsymbol{i}+\mathbf{3}$	Orn

Backbone RMSD (\AA) $\mathbf{0 . 6 0 1} \pm 0.113$

Backbone RMSD (\AA):
$\mathbf{0 . 2 6 2} \pm 0.184$
G) Ac-R-W-V-E- Δ Val-G-O-K-I-L-Q-NH2 (7ca)

Backbone RMSD (\AA):
$\mathbf{0 . 1 2 8} \pm 0.037$

Position	AA
\boldsymbol{i}	Val
$\boldsymbol{i}+\boldsymbol{1}$	$\Delta \mathrm{Env}$
$\boldsymbol{i}+\mathbf{2}$	Gly
$\boldsymbol{i}+\mathbf{3}$	Orn

Backbone RMSD (\AA):
$\mathbf{0 . 3 3 5} \pm 0.075$

Structural Ensembles A-H. Structural ensembles A and B depict known parent β-hairpins 1 and 2 that were used as controls. Ensembles C-G show β-hairpins 7aa-7cb that contain Δ Val or Δ Env in either the $i+l$ or the $i+2$ position. RMSD values were calculated based on the backbone atoms and only include residues 3-10 to avoid impact of fraying of the ends of the strands where less NOEs were found. Calculations were performed in CYANA, ${ }^{5}$ and graphic representations were generated using VMD. ${ }^{6}$

[^5]

$54 /$

Selected Regions of ROESY Spectra. The spectra are presented with ROESY peaks in orange and TOCSY peaks superimposed in black for comparison. Peak labels use the standard CCPNMR nomenclature and their corresponding cross-peaks are marked with a crosshair.

ROESY Spectrum of 2

ROESY Spectrum of 7aa

ROESY Spectrum of 7ab

ROESY Spectrum of 7ba

ROESY Spectrum of 7bb

ROESY Spectrum of 7cb

Figure S15. HPLC trace of crude peptide 1 (top). Analytical HPLC trace of peptide $\mathbf{1}$ after preparative purification (bottom). Sample was injected onto a C18 analytical column ($4.6 \mathrm{~mm} \times$ 25 cm) and eluted using a linear gradient of $10-60 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ (constant 0.1% TFA) over 50 min .

Figure S16. HPLC trace of crude peptide 2 (top). Analytical HPLC trace of peptide 2 after preparative purification (bottom). Sample was injected onto a C18 analytical column ($4.6 \mathrm{~mm} \times$ 25 cm) and eluted using a linear gradient of $10-60 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ (constant 0.1% TFA) over 50 min .

Figure S17. HPLC trace of crude peptide 7aa (top). Analytical HPLC trace of peptide 7aa after preparative purification (bottom). Sample was injected onto a C18 analytical column ($4.6 \mathrm{~mm} \times$ 25 cm) and eluted using a linear gradient of $20-60 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ (constant $0.1 \% \mathrm{TFA}$) over 40 min .

Figure S18. HPLC trace of crude peptide 7ab (top). Analytical HPLC trace of peptide 7ab after preparative purification (bottom). Sample was injected onto a C18 analytical column ($4.6 \mathrm{~mm} \times$ 25 cm) and eluted using a linear gradient of $10-60 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ (constant 0.1% TFA) over 38 min (run was terminated $\sim 15 \mathrm{~min}$ after the product eluted).

Figure S19. HPLC trace of crude peptide 7ba (top). Analytical HPLC trace of peptide 7ba after preparative purification (bottom). Sample was injected onto a C18 analytical column ($4.6 \mathrm{~mm} \times$ 25 cm) and eluted using a linear gradient of $10-60 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ (constant 0.1% TFA) over 50 min .

Figure S20. HPLC trace of crude peptide 7bb (top). Analytical HPLC trace of peptide 7bb after preparative purification (bottom). Sample was injected onto a C18 analytical column ($4.6 \mathrm{~mm} \times$ 25 cm) and eluted using a linear gradient of $10-60 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ (constant 0.1% TFA) over 50 min .

Figure S21. HPLC trace of crude peptide 7ca (top). Analytical HPLC trace of peptide 7ca after preparative purification (bottom). Sample was injected onto a C18 analytical column ($4.6 \mathrm{~mm} \times$ 25 cm) and eluted using a linear gradient of $10-60 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ (constant 0.1% TFA) over 50 min .

Figure S22. HPLC trace of crude peptide 7cb (top). Analytical HPLC trace of peptide 7cb after preparative purification (bottom). Sample was injected onto a C18 analytical column ($4.6 \mathrm{~mm} \times$ 25 cm) and eluted using a linear gradient of $10-60 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ (constant 0.1% TFA) over 50 min (run was terminated $\sim 25 \mathrm{~min}$ after the product eluted).

Figure S23. Analytical HPLC trace of peptide S1 after preparative purification. Sample was injected onto a C18 analytical column ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$) and eluted using a linear gradient of 10$40 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ (constant $0.1 \% \mathrm{TFA}$) over 25 min .

Figure S24. Analytical HPLC trace of peptide S2 after preparative purification. Sample was injected onto a C18 analytical column ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$) and eluted using a linear gradient of 10$60 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ (constant $0.1 \% \mathrm{TFA}$) over 50 min .

Figure S25. Analytical HPLC trace of peptide S3 after preparative purification. Sample was injected onto a C 18 analytical column ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$) and eluted using a linear gradient of 10$28 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ (constant $0.1 \% \mathrm{TFA}$) over 35 min .

Figure S26. Analytical HPLC trace of peptide S4 after preparative purification. Sample was injected onto a C18 analytical column ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$) and eluted using a linear gradient of 10$60 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ (constant $0.1 \% \mathrm{TFA}$) over 50 min .

Figure S27. Analytical HPLC trace of peptide S5 after preparative purification. Sample was injected onto a C18 analytical column ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$) and eluted using a linear gradient of 10$60 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ (constant $0.1 \% \mathrm{TFA}$) over 50 min .

Figure S28. Analytical HPLC trace of peptide S6 after preparative purification. Sample was injected onto a C 18 analytical column ($4.6 \mathrm{~mm} \times 25 \mathrm{~cm}$) and eluted using a linear gradient of 10$28 \% \mathrm{CH}_{3} \mathrm{CN}$ in $\mathrm{H}_{2} \mathrm{O}$ (constant $0.1 \% \mathrm{TFA}$) over 35 min (run was terminated $\sim 25 \mathrm{~min}$ after the product eluted).

[^0]: ${ }^{1}$ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 1518.

[^1]: ${ }^{2}$ Ma, Z.; Naylor, B. C.; Loertscher, B. M.; Hafen, D. D.; Li, J. M.; Castle, S. L. J. Org. Chem. 2012, 77, 1208.

[^2]: ${ }^{3}$ Jiang, J.; Luo, S.; Castle, S. L. Tetrahedron Lett. 2015, 56, 3311.

[^3]: ${ }^{4}$ El-Baba, S., Nuzillard, J.M., Poulin, J.C., Kagan, H.B. Tetrahedron 1986, 42, 3851.

[^4]: ${ }^{a}$ For distance ranges in angstroms for the strong, medium, and weak restraints see Tables S1-S9.
 ${ }^{\text {a }}$ Tables S1-S9 contain schematic representations of important cross-peaks from the data
 ${ }^{\mathrm{b}}$ The majority of NOEs used in the calculations were cross-strand peaks because of the high quality signals caused by the proximity of the strands
 ${ }^{c}$ No dihedral restraints were used since our sequences contain non-standard amino acids such as $\triangle A A s$ and ornithine which are incompatible the leading software such as DANGLE or TALOS.

[^5]: ${ }^{5}$ Güntert, P.; Mumenthaler, C.; Wüthrich, K. J. Mol. Biol. 1997, 273, 283.
 ${ }^{6}$ Humphrey, W., Dalke, A. and Schulten, K., J. Mol. Graphics 1996, 14, 33. http://www.ks.uiuc.edu/Research/vmd/.

