Supporting Information

Coexistence of High Magnetization and Anisotropy with Non-monotonic Particle Size Effect in Ferromagnetic PrMnO_{3} Nanoparticles

Anustup Sadhu, ${ }^{1}$ Hemant G. Salunke, ${ }^{2}$ and Sayan Bhattacharyya ${ }^{1, *}$
${ }^{1}$ Department of Chemical Sciences and Centre for Advanced Functional Materials, Indian Institute of Science Education and Research (IISER) Kolkata, Mohanpur - 741246, India
${ }^{2}$ Technical Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
* Email for correspondence: sayanb@iiserkol.ac.in

Telephone: +91-9051167666; Fax: +91-33-25873020

EDAX analysis of P1, P2 and P3

Figure S1: EDAX spectra of P1, P2 and P3.

Elemental Mapping

Electron Image 1

Pr La1

O Ka1

Mn Ka1

Figure S2: Elemental maps of P1 NPs.

Discussion S1: Gravimetric Analysis of Oxygen Nonstoichiometry

Oxygen Non-stoichiometry Calculation: Oxygen nonstoichiometry in the P1, P2 NPs and P3 particles has been calculated by their reaction at elevated temperatures under reducing atmosphere as follows:
$\mathrm{PrMnO}_{3+\delta}+1 / 2(1+2 \delta) \mathrm{H}_{2}=1 / 2 \mathrm{Pr}_{2} \mathrm{O}_{3}+\mathrm{MnO}+1 / 2(1+2 \delta) \mathrm{H}_{2} \mathrm{O}$

The samples were first preheated at $600^{\circ} \mathrm{C}$ for 30 min in air to remove moistures and surface bound $-\mathrm{OH},-\mathrm{CO}_{3}$ groups. The initial weight of the 'cleaned' samples was measured $\left(y_{1} \mathrm{~g}\right)$. Thereafter the samples were introduced at the center of the quartz tube placed inside a tubular furnace. The samples were heat treated in $\mathrm{H}_{2} / \mathrm{He}(2: 98 \mathrm{v} / \mathrm{v})$ at $900^{\circ} \mathrm{C}$ for 30 min at the rate of $2^{\circ} \mathrm{C} / \mathrm{min}$. After cooling, the weight of the products was measured $\left(y_{2} \mathrm{~g}\right)$. The non-stoichiometry was calculated as follows:
$\mathrm{M}\left[\mathrm{PrMnO}_{3+\delta}\right] / \mathrm{M}\left[1 / 2 \mathrm{Pr}_{2} \mathrm{O}_{3}+\mathrm{MnO}\right]=y_{1} / y_{2}$
where M is the molecular weight.

Evidence of Spin-glass from ZFC-FC Curves at High Applied Field

Figure S3: ZFC-FC curves of P1 NPs at 10 kOe applied field.

