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Note 1 STEM data acquisition and processing

ErMnO3 platelets were oriented by Laue diffraction such that the specimen would be

imaged down the [11̄0] zone axis of the crystal in TEM. Cross-sectional TEM samples

were prepared using an FEI Strata 400 Focused Ion Beam with a final milling step of 2

keV to minimize surface damage. The TEM specimens were imaged on a 100 keV Nion

UltraSTEM optimized for EELS imaging (30 mrad convergence angle, 80-130 pA of usable

beam current, ∼ 1 Å spatial resolution).

The Er distortions – and from that, the local phase, amplitude and polarization –

were quantified from high-angle annular dark field (HAADF) STEM images. To precisely

measure erbium displacements which are on the order of tens of picometers, high quality

STEM images are prepared by cross-correlating several (∼ 20) fast images to reduce scan

noise. The images were calibrated by measuring the peaks in the Fourier transform.

The images are then background subtracted using morphological opening operations and

Wiener Filtered using the thickness obtained from electron energy-loss spectroscopy. The

rough atomic positions of the erbium atoms were then determined by segmentation using

a grey threshold followed by the watershed algorithm, followed by 2-D Gaussian fitting

to refine the positions. The displacement of each atom was compared to its neighboring

atoms in the atomic plane. The phase and amplitude of the distortion was calculated by

comparing the displacements of the three atoms and fitting to eq 1 of the main text, as

illustrated in Figure 1a.

In Figure S1 and Figure S2, we show the data from domain walls and vortices, respec-

tively. These figures include the background subtracted and Wiener filtered data (first

row), the data with the Er displacement color overlay, which monotonically tracks the

polarization, (second row), the phase Φ (third row – for Figure S1 this is modulo 2π/3),

and the amplitude Q (last row). From these images one can see one-to-one correspon-

dence between ↑↑↓ pattern and the positive average displacement of erbium ions, which
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we attribute to the polar Γ−2 mode and thus to the positive polarization. Similarly, one

can see one-to-one correspondence between ↓↓↑ pattern and negative polarization.

Figure S3 shows more details on the data processing behind Figure 2 in the main

text. Figure S3a shows the data processing for all of the walls in Zr-doped ErMnO3.

The raw data including data from 90 images is shown by black dots, which is binned

down into blue circles for viewing purposes (the binned data is plotted in Figure 2e,f).

The raw data is fit (red line) with 95% prediction intervals (magenta lines). Because the

domain walls meander in the specimens, we include a range of angles in our analysis for

charged and neutral walls, called the acceptance angle. Figure S3b shows how ξ6 changes

as the acceptance angle is changed from 1 to 10 degrees, the results do not change within

error except the Zr-doping charged walls appear to become broader. To get meaningful

statistics without introducing error from including domain walls of varying inclination,

we use an acceptance angle of 5 degrees.

We note that we do not observe large broadening of the domain walls due to overlap

of two domains in projection – as would occur if the domain wall was at an angle with

respect to the electron beam or if there were jogs in the domain wall in projection. This

overlap was observed in Ref. 17. In their data, the overlap of two domains in projection is

clearly visible as a reduction in contrast on a specific atomic position as well as smearing

of the atomic column. The overlapping domain wall effect is not observed in our thinner

samples and which is fundamentally different from the atomic displacements addressed in

our work (see Figure S5). While we do observe domain wall overlap in thicker regions of

the specimen, as seen in Figure S5d, this is not generally observed in our thinner regions

(20-50 nm). From our statistics, we exclude images which are taken in thicker regions of

the specimen that may show an overlap of two domains in projection.

Note 2 STEM observations of vortex in

undoped ErMnO3

In Figure S4 we show HAADF-STEM data from a trimerization vortex in undoped

ErMnO3 sample along with Φ(θ) and Q(r) evolutions, similar to the data presented on

Er1−xZrxMnO3 in Figure 3 of the main text. Six domains with different Φn’s merge at the

central point of the vortex, which is seen in the color-overlaid phase map in Figure S4a.

The corresponding amplitude is shown in Figure S4c. In Figure S4b, we plot the trimer-

ization phase Φ as a function of the angle θ around the central point for different distances

from this point. Φ has a step-like nature for distances & 3 nm where it corresponds to a

discrete set of trimerization domains separated by domain walls, except in regions where

the domain width is on the same order as ξ6, such as in the Φ = π/3, 2π/3 regions shown

in yellow and green in part (a). In Figure S4d, the trimerization amplitude Q drops to
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zero at the vortex central point, while it recovers its bulk value within a distance of ∼ 18

Å in ErMnO3.

Note 3 Justification of the constant-amplitude ap-

proximation for eq 4

In order to show that the constant-amplitude approximation is a reasonable approximation

that allows a straightforward and accurate extraction of ξ6 from STEM in our system,

we compare the exact Φ(x) profile obtained by minimizing eq 2 using numerical methods.

This comparison shows that the deviation of our analytical result (eq 4) from the numerical

one is negligible.

We minimize the Landau energy F (eq 2) by solving the system of the corresponding

Euler-Lagrange equations

∂F/∂Q = ~∇ · ∂F/∂(∇Q),

∂F/∂Φ = ~∇ · ∂F/∂(∇Φ)

numerically for the 1D geometry of a domain wall, without using any approximations. For

this, we use COMSOL Multiphysics, with the numerical values of the material constants

corresponding to ξ and ξ6 extracted from the STEM images (Figures 2, 3).

The numerically obtained Φ(x), compared with the analytical one given by eq 4, is

shown in Figure S6. The values of ξ6 that correspond to these two solutions differ by 6%,

the numerical one being slightly wider, which can be linked to the coupling of Φ(x) to

the non-constant Q(x) inside the wall. Thus the extraction of ξ6 by fitting STEM Φ(x)

profile with eq 4 is associated with a negligibly small error, from which we conclude that

the use of the constant-amplitude approach is justified a-posteriori.

Note 4 Analytical description of trimerization ampli-

tude at the wall

We begin with the Euler-Lagrange equation for the trimerization amplitude ∂F/∂Q =
~∇ · ∂F/∂(∇Q) obtained after the substitution of the distribution of phase (eq 4) into

eq 2:

a

g
Q+

b

g
Q3 +

c+ c′

g
Q5 +

(
Q

9ξ26
− c′Q5

g

)
1

cosh2(x/ξ6)
=
d2Q

dx2
. (S1)

In the following, we neglect the influence of the high-order term
c+ c′

g
Q5 in eq S1.
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Since the change of Q(x) inside the wall is small compared to its bulk value [Q(x) =

Q0(1 + q(x)), |q(x)| � 1], eq S1 can be then linearized into

2q

ξ2
+

4

9ξ26

1

cosh2(x/ξ6)
=
d2q

dx2
. (S2)

One can see that eq S2 is controlled by two independent scales: ξ '
√
g/|a| and ξ6 '√

g/(3|c′|Q4
0) ' ξ

√
−b2/(3a|c′|); therefore, the width of the domain wall in terms of

trimerization amplitude is defined by the interplay between these two scales. The solution

to eq S2 can be obtained analytically in the reciprocate space, with Fourier transform

introduced as F [q(x)](k) ≡ q̃(k) = (1/
√

2π)
∫∞
−∞ q(x) exp(−ikx)dx. It reads:

q̃(k) = −2ξ2

9ξ26

1

1 + ξ2k2/2
F

[
1

cosh2(x/ξ6)

]
(k), (S3)

leading to the following distribution of the trimerization amplitude Q(x) in the wall:

Q(x) = Q0 −Q0

√
2

9

ξ

ξ26

(
exp

(
−
√

2

ξ
|x|
)
∗ 1

cosh2(x/ξ6)

)
, (S4)

where (f(x) ∗ g(x)) =
∫∞
−∞ f(t)g(x − t)dt designates the convolution operation. Note

that the two convoluted functions in eq S4 have independent widths controlled by the

two correlation lengths in the system: exp(−
√

2|x|/ξ) has width ∼ ξ, while the function

1/ cosh2(x/ξ6) has width ∼ ξ6. In the following, we estimate the width of the convolution

in two distinct regimes.

Close to the temperature of trimerization transition, when ξ6 � ξ, eq S4 rewrites into

Q(x) = Q0

(
1− 2

9

ξ2

ξ26

1

cosh2(x/ξ6)

)
. (S5)

Thus, near the transition point, the correlation length ξ6 controls all the domain-wall-

related effects.

For the case ξ ∼ ξ6, one can estimate the width of the profile Q(x) by referring, for

example, to the convolution of two Gaussian functions:(
exp

(
− x2

σ2
1

)
∗ exp

(
− x2

σ2
2

))
=
√
π

σ1σ2√
σ2
1 + σ2

2

exp
(
− x2

σ2
1 + σ2

2

)
, (S6)

in line with which eq S4 can be approximated as

Q(x) ≈ Q0

(
1− 1

κ

ξ2

ξ6ξ̃6

1

cosh2(x/ξ̃6)

)
, (S7)
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where κ = 9/
√

2π and ξ̃6 = ξ6
√

1 + ξ2/ξ26 is the length scale controlling the Q(x) profile.

One can see that for ξ ∼ ξ6 the wall width in terms of the trimerization amplitude Q

(∼
√
ξ2 + ξ26) will always exceed the width of the same wall in terms of the phase Φ

(∼ ξ6).

Note that in the case ξ6 � ξ eq S7 rewrites with good precision into eq S5 with

slightly different value for κ: κ = 9/2 for ξ6 � ξ. From this, we conclude that there is

a dependence of κ on the ratio ξ6/ξ, though it is weak for the regime of physical interest

ξ6/ξ & 1.

Note 5 Analytical description of trimerization order

parameter in the vortex

For the analytical description of vortices, we consider an ideal vortex in which the six

domains are equally represented. To reproduce this case, we can assume Φ ≈ Φ(θ) and

Q ≈ Q(r) in the Euler-Lagrange equation for the phase to get:(
Q(r)

Q0

)2

sin2 6Φ =
1

(r/ξ6)2
∂26Φ

∂θ2
. (S8)

If ξ6 & ξ the amplitude can be further approximated as Q(r) ≈ Q0, which renders

the equation equivalent to eq 3 with x = rθ. The validity of this approximation can be

checked a-posteriori. Thus, we can make use of the family of solutions to eq S8

Φ(r, θ) =
π

6
+

1

3
am

(
rθ

kξ6

∣∣∣k2) , (S9)

where am(F |k2) is the Jacobi amplitude, further imposing the condition of periodicity

Φ(θ + 2π) = Φ(θ) + 2π. This restricts the k parameter to that satisfying 2kF (π/2|k2) =

πr/(3ξ6), where F (ψ|k2) =
∫ ψ
0
dt/
√

1− k2 sin2(t) is the elliptic integral of the first kind.

With this, the resulting distribution Φ(x, y) following from eq S9 is shown in Figure S7.

This solution has two distinct regimes, defined by the distance from the central point of

the vortex. Far enough from the vortex central point, where the distance between the walls

is larger than their effective width (
2πr

6
& 4ξ6), eq S9 represents six individual domain

walls of thicknesses ∼ 4ξ6 placed at 60◦ from each other. On the other hand, the overlap

of the domain walls near the vortex central point (r . 4ξ6) results in another regime in

which the distribution of the trimerization phase is Φ(θ) ≈ θ. This analysis confirms that

the central point of the vortex is in fact a singular point in which |∇Φ(θ)| ≈ 1/r diverges.

To track main features of the distribution of the amplitude Q near this singularity, we
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consider the corresponding Euler-Lagrange equation with Φ(θ) = θ:

aQ(r) + bQ3(r) + (c+ c′)Q5(r) =
g

r

(
Q′(r)− Q(r)

r

)
+ gQ′′(r). (S10)

In the immediate vicinity of the singularity the dominant term is
g

r

(
Q′(r)− Q(r)

r

)
,

which drives to a linear drop of Q to zero: Q(r) ' r/ξ√
2 + (r/ξ)2

Q0 ≈
r→0

r√
2ξ
Q0. Besides,

one can see that the characteristic length of change of Q is ξ.

Note 6 Numerical description of trimerization order

parameter in the vortex

For numerical simulation of the vortex, we solve the set of Euler-Lagrange equations

corresponding to the minimal free energy (eq 2 of the main text) using the method of

finite elements implemented in the software COMSOL Multiphysics.

In order to model the core of the vortex (where |∇Φ| → ∞), we cut a small circular

region of radius r1=0.4 Å around the singular point and apply the following boundary

condition at the circular boundary:

Φ
∣∣
r=r1

= θ − θ0, Q
∣∣
r=r1

= 0,

where θ0 is the constant fixing the rotational degree of freedom of the vortex. At the

outer boundary of the zone of calculation ∂D, the boundary conditions correspond to the

set of six domain walls:

Φ
∣∣
∂D

= −3π +
2

3

6∑
i=1

arctan

[
exp

(
r(θ − θi)

ξ6

)]
,

∂D

∂r

∣∣∣∣
∂D

= 0.

Here constants θi are fixing the angular positions of the six domain walls at the outer

boundary. The constant θ0 describing the rotational degree of freedom of the vortex is

thus linked to them as θ0 =
∑6

i=1 θi/6.

The triangular mesh is used for the finite-elements calculation, with mesh size varying

from 0.04 Å around the vortex core to 0.2 Å at the domain wall to 20 Å at the bulk.

For the case of the non-symmetric vortex, we observe a non-negligible influence of the

radius of the circular cut-off region on the distribution of Q(r) around the vortex core,

which we relate to the asymmetry of the core. In order to minimize this influence and

give a reasonable estimate to the distribution of the order parameter in such a vortex,
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we perform a non-self-consistent solution in two steps. For the first step, we seek the

distribution Φ(r) for the fixed Q(r) = Q0
r/ξ√

2 + (r/ξ)2
. As the second step, we fix the

obtained Φ(r) distribution and refine Q(r) accordingly.
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Figure S1. Domain walls in undoped ErMnO3. A charged domain wall is on the left
and a neutral domain wall is on the right. Top row, background subtracted and Wiener
Filtered data. 2nd row, Color overlay indicating the Er displacements, and thus the
polarization, of the image in the top row. Turquoise signifies polarization up and red
polarization down, according to the color bar. 3rd row, The phase, modulo 2π/3, across
the domain wall. A continuous shift is seen from red to turquoise. Last row, the Amplitude
Q. Field of view is 12.2 nm.
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Figure S2. Vortices in Zr-doped and undoped ErMnO3. Zr-doped is on the left and
undoped ErMnO3 is on the right. Top row, background subtracted and Wiener Filtered
data. 2nd row, Color overlay indicating the Er displacements, and thus the polarization,
of the image in the top row. Turquoise signifies polarization up and red polarization down,
according to the color bar. 3rd row, The phase map, showing the 6 domains comprising
the vortices. Last row, the Amplitude Q. Field of view is 15 nm.
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Figure S3. (a) Phase as a function of position across the domain wall, with black
dots representing the individual observations on atomic columns and the blue circles
representing the binned data. The red line is the fit to the dots. The 95% prediction
interval is shown for the fit. (b) How ξ6 changes as we include domains with angles that
fall within ±α degrees of the domain wall, where α is the acceptance angle.
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Figure S4. Atomic vortex structure in undoped ErMnO3. (a) HAADF-STEM overlay
of the phase of the vortex, showing a clockwise progression of phase from 0 to 2π. (b)
Amplitude of the distortions, showing a decrease of Q at the vortex core. (c) Evolution
of the phase wrapping around the vortex core at different radii. Solid points represent
experimental measurement and lines show simulated results. (d) Plot of the amplitude
with radial distance from the vortex core.
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Figure S5. (a) HAADF-STEM image of a neutral domain wall, with a 1 nm scale bar.
The unit cells around the domain wall are highlighted. (b) Zoomed-in region showing the
progression of the atomic columns across a domain wall in a thin region. In comparison
to reference 17, there is not a decrease in atomic contrast or a smearing of atomic posi-
tions, indicating there are not regions of the image that have two overlapping domains
in projection. (c) Slightly thicker region where we see minimal smearing if any. (d) The
thickest region, where we see two domains overlapping in projection, where the atomic
column intensity is lower due to electron beam channelling on the two atomic columns
(pointed out by the arrows).
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Figure S6. Comparison of distributions Φ(x) obtained using two different methods:
numerical result obtained directly from eq 2, and analytical result (eq 4) obtained in
the approximation of the constant amplitude (blue and green lines, respectively). The
difference between the values of ξ6 extracted using these two methods is 6%.
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Figure S7. Contour plot for the evolution of phase around the vortex given by analytical
expression for phase. The distribution according to eq S9 is shown, with imposed condition
of periodicity Φ(θ + 2π) = Φ(θ) + 2π. This evolution of phase reproduces all features of
vortex observed in the framework of self-consistent numerical calculations (Figure 4 of
the main text).
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