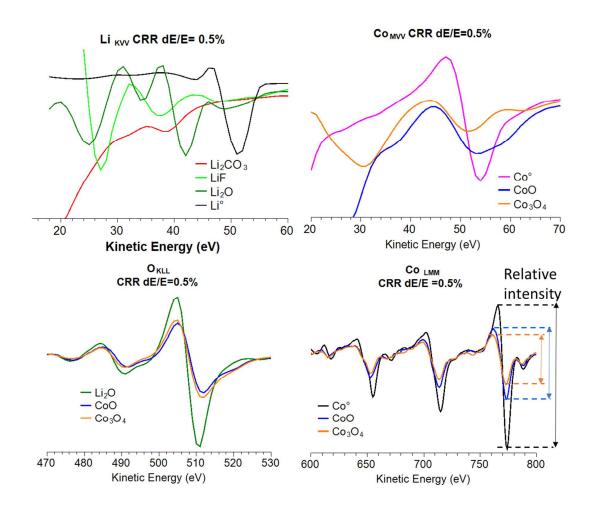
Supporting Information

Nanoscale chemical characterization of solid state microbattery stacks by means of Auger Spectroscopy and ion-milling cross-section preparation

A.Uhart¹, J.B. Ledeuil^{1*}, B. Pecquenard², F. Le Cras^{3,4}, M. Proust⁵, H. Martinez^{1*}

Corresponding author: jean-bernard.ledeuil@univ-pau.fr


¹IPREM ECP – UMR CNRS 5254. Université de Pau et des Pays de l'Adour, Hélioparc Pau-Pyrénées, 2 Avenue du Président Angot, 64053 Pau Cedex 9, France

²CNRS, Université de Bordeaux, ICMCB–UPR 9048 and Bordeaux INP, 87 Avenue du Dr. Schweitzer, F-33600 Pessac, France

³CEA LETI, 17 rue des Martyrs, F-38054 Grenoble, France

⁴Université Grenoble Alpes, F-38000 Grenoble, France

⁵ST Microelectronics, 10 rue Thalès de Milet CS 97155, 37071, Tours, France

Figure S1: Reference spectra of lithium metal, Li_2O , LiF, Co metal, CoO and Co_3O_4 used in the Absolute Intensity quantification method.

S2 and S3 figures display the XPS spectra for respectively Li 1s and C 1s core peaks.

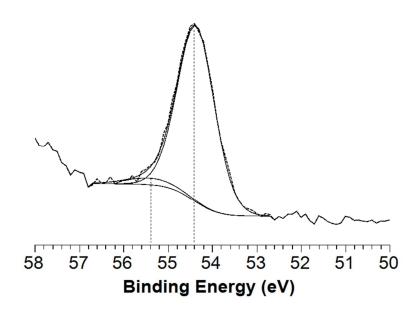


Figure S2: additional Li 1s XPS spectrum of as-deposited LiCoO₂ sample

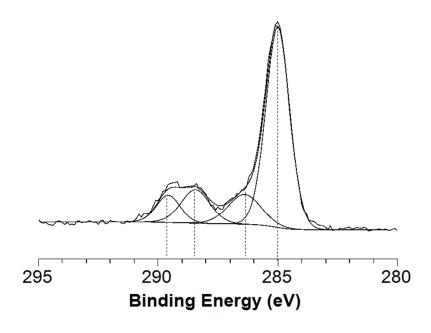


Figure S3: additional C 1s XPS spectrum of as-deposited LiCoO $_2$ sample, component assignments: C-C/C-H at 285.0 eV (% at. =12.2), C-O at 286.4 eV (% at. =2.6), C-O $_2$ at 288.4 eV (% at. =1.9) and C-O $_3$ at 289.5 eV (% at. =1.0)

Comments concerning S2 and S3 figures:

A few amount of lithium carbonates (\sim 6 %), due to the elaboration process, have been observed in XPS. Indeed, the C1s spectrum exhibits a low intensity component (\sim 1%) located around 289.5 eV that can be attributed to CO₃ species. 2 % of lithium type Li₂CO₃ could then be used to fit the Li 1s spectrum. The corresponding component is located around 55.5 eV.

The Li 1s peak attributed to Li_2CO_3 has a low intensity and could reflects the Li1s peak asymmetry towards high BE and it is related to the C 1s component located at 289.5 eV. Note that the decomposition of the Li 1s spectrum is obviously not unique.