Supporting Information

Ba₅Zn₄(BO₃)₆: A Nonlinear Optical Material with Reinforced Interlayer Connections and Large SHG

Response

Meihong Duan^{†‡}, Mingjun Xia[†] and Rukang $Li^{†*}$

[†]Beijing Center for Crystal Research and Development, Key Laboratory of Functional Crystals and Laser Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

[‡]University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China

CONTENTS

General experimental description and results for BZBO	S2	
Single Crystal and powder X-ray Diffraction	S 4	
UV-Vis diffuser reflectance	S 4	
Thermal Analysis	S4	
Second-harmonic generation (SHG) measurements	S5	
Figure S1. Experimental powder XRD pattern and calculated XRD pattern for BZE	30. St	5
Figure S2. UV-Vis diffuser transparency for BZBO.		S5
Figure S3. (a) DSC and weight loss curve for BZBO; (b) Relative XRD patterns for	r BZBO.	S6
Figure S4. 24 and 16 members' loop structures in BZBO.	S 7	
Figure S5. The project of (a) BZBO and (b) Na ₂ CsBe ₆ B ₅ O ₁₅ .		S7
Figure S6. Structure of BZBO crystal.		S 8
Figure S7. The picture of BZBO crystal.		S 8
Figure S8. SHG intensity as a function of particle size for BZBO KDP serves as the	e reference).	S8
Figure S9. X-ray photoelectron spectroscopy (XPS) for BZBO powder.	ŝ	S9
Table S1. Crystal data and structure refinement for BZBO.	:	S10
Table S2. Selected bond lengths (Å).	S	S11
Table S3. Selected bond angles for BZBO.	S	511
Table S4. Atomic coordinates and equivalent isotropic displacement parameters for	r BZBO. S	512
X-ray photoelectron spectroscopy	S	512
References		

General experimental description and results for BZBO.

Single crystals of BZBO were obtained from a high-temperature solution with BaCO₃, ZnO, H_3BO_3 , and NaF in a molar ratio of 2:2:4:1. The mixture was heated to 850 °C in a Pt crucible and held at 850 °C to melt completely; then the melt was slowly cooled to 700°C at a rate of 3°C/h and finally cooled to room temperature in 1 day. Several colorless BZBO crystals was obtained by washing the matrix using distilled water. A colorless crystal with dimensions of $0.12 \text{ m} \times 0.01 \text{ m} \times 0.01 \text{ mm}$ was selected for single-crystal X-ray diffraction (XRD), and the structure and formula $[Ba_5Zn_4 (BO_3)_6]$ were obtained from the subsequent data parse. Polycrystalline BZBO was obtained by a conventional solid-phase synthesis. BaCO₃, ZnO, and H₃BO₃ were mixed and ground adequately with 5:4:6 stoichiometry; then the mixture was slowly heated to 500 °C, held for 24 h, and finally sintered at 760 °C for 48 h with several intermediate grindings. The purities of the samples were checked by powder XRD (Figure S1). The UV cutoff edge of BZBO is about 223 nm, and it has no absorption from 1100 to 380 nm according to the UV-vis reflection spectra (Figure S2), which indicates that BZBO may be applied in the UV range as a new NLO crystal. As shown in Figure S3, a sharp endothermic peak at around 818 °C in the heating curve and an exothermic peak at around 795 °C in the cooling curve were observed. The melted residue after thermal analysis contains ZnO and Ba₂ZnB₂O₆, as confirmed by XRD in Figure S3b, while there is a 2.7% weight loss during the whole process. The weight loss is from the volatilization of B_2O_3 , which was a product of the decomposition of BZBO. It can be written as follows:

$2Ba_5Zn_4(BO_3)_6 \xrightarrow{795-818^{\circ}C} 5Ba_2ZnB_2O_6 + 3ZnO + B_2O_3$

Therefore, BZBO is an incongruent melting compound and should be grown by the flux method; this confirms the correctness of our experiment in using B_2O_3 -NaF as a flux.

Single Crystal and Powder X-ray Diffraction.

A colorless crystal with dimensions of $0.12m \times 0.01m \times 0.01mm$ was selected for single-crystal X-ray diffraction. The diffraction data were collected on a Rigaku AFC10 single-crystal diffractometer equipped with graphite-monochromatic Mo K α radiation (λ = 0.71073 Å) at 153.15 K and a Saturn CCD detector. CrystalClear program was used to record the intensity data and to conduct cell refinement and data reduction. The crystal structure was solved by the direct method with grogram SHELXS-97¹ and refined by full matrix least squares on F2 by SHELXL-97 programs. The structure was verified using the ADDSYM algorithm from the program PLATON, and no higher symmetry was found. The diffraction data of powder samples was collected by powder X-ray diffraction measurement on a Bruker D8 ADVANCE X-ray diffractometer using Cu K α radiation (λ = 1.5418Å) at room temperature in the angular range of 2θ = 5-80° with a scan step width of 0.02° and a scan rate of 0.1.

UV-Vis diffuser reflectance.

The reflection spectrum of BZBO crystal was performed with a Perkin-Elmer Lambda 900 UV–vis-NIR spectrometer in the range of 200–1100 nm.

Thermal Analysis.

The differential scanning calorimetric (DSC) analysis (Fig.2) was performed on a NETZSCH STA–409CD apparatus using Al_2O_3 as reference material under N₂ flow with a sample heating rate of 10.0k/min from 50°C to 850°C. The crystal powders has melt at 850°C, after the melting, the sample was checked by powder XRD.

Second-harmonic generation (SHG) measurements.

Powder SHG measurements were carried out by Kurtz-Perry method¹. The measurements were performed with a laser at 1064nm, for visible and ultraviolet SHG, respectively. Polycrystalline BZBO samples were ground and sieved into the flowing particle size ranges: 30-50, 50-74, 74-100, 100-130 and 130-180µm. KDP was also ground and sieved into the same particle size ranges and used as references for visible and ultraviolet SHG tests, respectively.

Figure S1. Experimental powder XRD pattern and calculated XRD pattern for BZBO

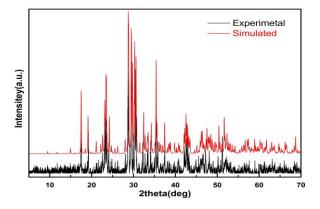


Figure S2. UV-Vis diffuser reflectance for BZBO

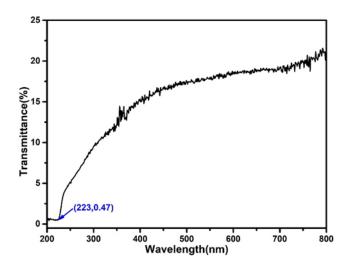


Figure S3. (a) DSC and weight loss curve for BZBO; (b) Relative XRD patterns for

BZBO.

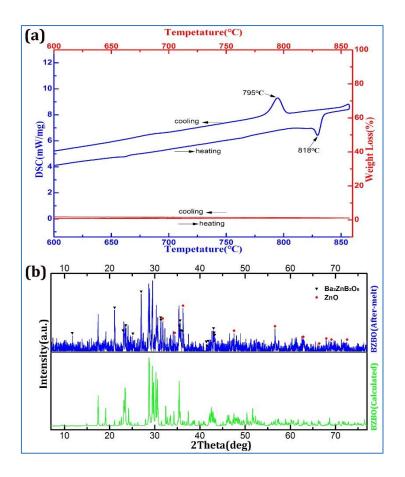


Fig.S4 24 and 16 members' loop structures in BZBO.

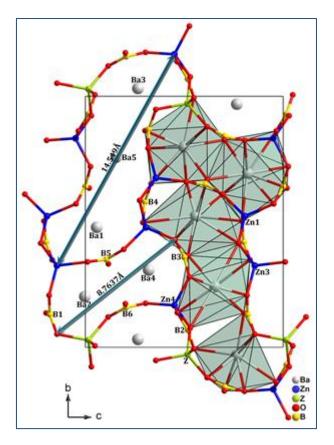
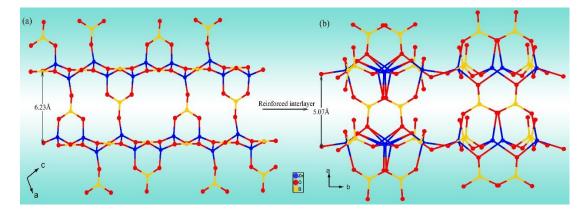
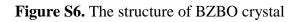




Figure S5. The project of (b) BZBO and (a) $Na_2CsBe_6B_5O_{15}$

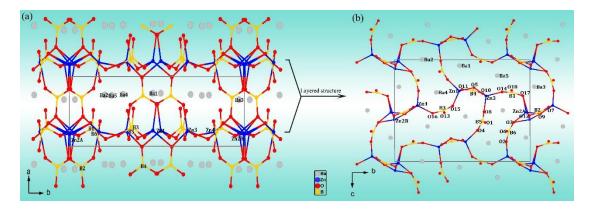


Figure S7. The picture of BZBO crystal.

Figure S8. SHG intensity as a function of particle size for BZBO.

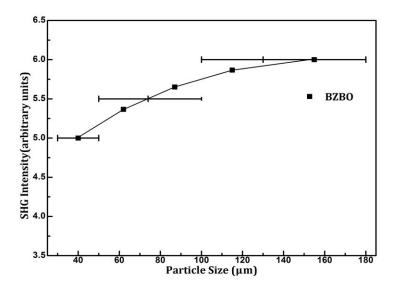
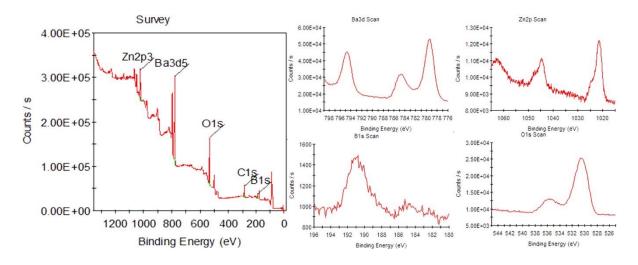



Figure S9. X-ray photoelectron spectroscopy (XPS) for BZBO powder.

The XPS of BZB powder is recorded with an ESCALAB 250Xi X-ray photoelectron spectrometer in the room temperature.

Ba: Zn: B: O = 1.06: 1: 2.17: 4.91.

Formula	$Ba_5Zn_4B_6O_{18}$	
formula mass(amu)	1301.04	
crystal system	monoclinic	
space group	<i>P1c1(7)</i>	
a(Å)	5.0725(10)	
$b(\text{\AA})$	15.117(3)	
$c(\text{\AA})$	11.860(2)	
α	90	
β	92.06(3)	
γ	90	
$V(\text{\AA}^3)$	704.9(2)	
Ζ	2	
<i>T</i> (K)	153.15	
$\rho(calcd)(g/cm^3)$	4.75392	
λ (Å)	0.71073	
F(000)	1148	
$\theta(deg)$	1.35-27.50	
Cryst size (mm ³)	0.12×0.01×0.01	
$\mu(\mathrm{mm}^{-1})$	15.914	
$R(F)^{a}$	0.0488	
$R_{\rm W}(F_{\rm o}^{2})^{b}$	0.1321	

Table S1. Crystal data and structure refinement for BZBO

 ${}^{a}R(F) = \sum | | F_{o}| - | F_{c}| | / \sum | F_{o}| \text{ for } F_{o}^{2} > 2\sigma(F_{o}^{2}).$

 ${}^{b}R_{w}(F_{o}^{2}) = \{ (\sum [w(F_{o}^{2} - F_{c}^{2})^{2}] / \sum wF_{o}^{4} \}^{1/2} \text{ for all data.} \}$

 $w^{-1} = \sigma^2 (F_o^2) + (zP)^2$, where $P = (_{\text{Max}}(F_o^2, 0) + 2F_c^2)/3$.

Zn1-04	1.937(15)	Zn3-010	1.955(16)	B3-O13 ^{vii}	1.38(3)
Zn1-011	1.963(16)	Zn3-08	1.957(15)	B3-015 ⁱⁱⁱ	1.39(2)
Zn1-O15	1.971(15)	Zn3-O5 ^{iv}	2.008(14)	B4-O10 ^{vii}	1,34(3)
Zn1-05	2.046(13)	Zn4-02	1.925(16)	B4-011 ⁱⁱⁱ	1.40(3)
Zn2A-017	1.93(2)	B3-O16	1.38(2)	B5-O4 ⁱⁱⁱ	1.42(3)
Zn2A-O3	1.942(17)	B ⁱⁱ -017	1.39(3)	Zn3 ^{viii} -O5	2.008(14)
Zn2A-012	1.952(16)	B1-017 ⁱⁱⁱ	1.39(3)	B6 ⁱⁱ -O6	1.38(3)
Zn2A-O9 ^{xi}	2.005(16)	B2-O7 ^{xi}	1.38(2)	B2 ^{vi} -O7	1.38(3)
B4 ⁱⁱ -O11	1.40(3)	B2-O9 ^{xiii}	1.42(3)	B5-O8	1.35(3)
B2-O12	1.34(3)	Zn4-016	1.945(15)	B2 [∨] -O9	1.42(3)
B3 ⁱ -013	1.38(3)	Zn4-07	1.962(14)	Zn2B ^{vi} -O9	1.893(19)
B1-O14	1.40(3)	Zn4-09	1.981(16)	Zn2A ^{vi} -O9	2.005(16)
B3 ⁱⁱ -O15	1.39(2)	B5-01	1.32(3)	B4 ⁱ -O10	1.34(3)
Zn2B-O12	1.86(2)	B6-O2	1.40(3)	B6-O6 ⁱⁱⁱ	1.38(3)
Zn2B-O9 ^{xi}	1.893(19)	B6 ⁱⁱ -O3	1.39(3)	B6-O3 ⁱⁱⁱ	1.39(3)
Zn2B-O3	1.966(19)	B5 ⁱⁱ -O4	1.42(3)		
Zn3-014	1.935(15)	B4-O5	1.40(3)		

Table S2. Selected bond lengths (\AA) for BZBO

Table S3. Selected bond angles for BZBO

		8			
04-Zn1-011	107.4(6)	03-Zn2A-O9 ^{xi}	108.4(7)	010-Zn3-08	116.4(6)
04-Zn1-015	105.9(6)	012-Zn2A-O9 ^{xi}	114.5(6)	014-Zn3-05 ^{iv}	109.8(6)
011-Zn1-015	114.6(7)	O12-Zn2B-O9 ^{xi}	82.69(10)	010-Zn3-O5 ^{iv}	110.8(6)
015-Zn1-05	107.4(6)	012-Zn2B-O3	113.3(9)	08-Zn3-O5 ^{iv}	100.7(6)
017-Zn2A-03	119.1(7)	O9 ^{xi} -Zn2B-O3	112.1(9)	O2-Zn4-O16	115.2(6)
017-Zn2A-012	99.2(7)	014-Zn3-010	114.7(6)	02-Zn4-07	121.1(7)
03-Zn2A-012	110.2(6)	014-Zn3-08	103.3(6)	016-Zn4-07	90.6(6)
07-Zn4-09	109.3(6)	012-B2-09 ^{xiii}	118.6(18)	010 ^{vii} -B4-05	121.1(18)
018-B1-017 ⁱⁱⁱ	121.(2)	07 ^{xi} -B2-O9 ^{xiii}	118.4(18)	010 ^{vii} -B4-011 ⁱⁱⁱ	122.0(18)
O18-B1-O14	121.(2)	013 ^{vii} -B3-016	118.0(17)	05-B4-011 ¹¹¹	116.8(17)
017 ⁱⁱⁱ -B1-014	118.(2)	013 ^{vii} -B3-015 ⁱⁱⁱ	120.9(17)	O1-B5-O8	126.(2)
012-B2-07 ^{xi}	123.(2)	016-B3-O15 ⁱⁱⁱ	121.0(18)	01-B5-04 ⁱⁱⁱ	121.(2)
06 ⁱⁱⁱ -B6-O3 ⁱⁱⁱ	122.(2)	B3-O16-Zn4	126.2(13)	B2-012-Zn2A	121.6(14)
06 ⁱⁱⁱ -B6-O2	120.(2)	B3 ⁱⁱ -O15-Zn1	120.0(13)	B2-O12-Zn2B	118.5(15)
03 ⁱⁱⁱ -B6-O2	118.(2)	B1-O14-Zn3	125.2(16)	B4 ⁱ -010-Zn3	133.2(14)
B2 ^v -O9-Zn2A ^{vi}	120.9(13)	B2 ^v -O9-Zn4	123.1(13)	B2 ^v -O9-Zn2B ^{vi}	131.0(14)
B5-08-Zn3	127.7(14)	B2 ^{vi} -O7-Zn4	133.5(14)	B4-05-Zn1	118.0(11)
B4-O5-Zn3 ^{viii}	118.0(12)	B6 ⁱⁱ -O3-Zn2B	108.1(15)	B6 ⁱⁱ -O3-Zn2A	126.3(15)
B6-O2-Zn4	121.0(15)	04-Zn1-05	105.4(6)	011—Zn1-05	115.4(6)

BC)					
	Atom	Wyckoff	x/a	y/b	z/c	Ueq [Ų]
	Ba1	2a	0.7625(2)	0.47790(8)	0.05736(11)	0.008
	Ba2	2a	0.7369(2)	0.20186(7)	-0.00279(11)	0.008
	Ba3	2a	0.6699(2)	0.03123(8)	0.26583(11)	0.009
	Ba4	2a	0.7457(2)	0.30735(8)	0.32013(11)	0.007
	Ba5	2a	0.7308(3)	0.75765(9)	0.15577(14)	0.009
	Zn1	2a	1.2257(5)	0.47736(15)	0.3061(2)	0.006
	Zn2A	2a	1.1889(6)	0.02881(17)	0.0165(3)	0.003
	Zn2B	2a	1.178(2)	0.0028(17)	0.0889(11)	0.013
	Zn3	2a	0.2196(5)	0.32535(15)	-0.1435(2)	0.006
	Zn4	2a	0.2047(5)	0.16740(14)	0.4503(2)	0.004
	B1	2a	0.262(6)	0.1313(18)	-0.179(3)	0.020
	B2	2a	0.701(5)	-0.0696(14)	0.018(2)	0.006
	B3	2a	0.273(4)	0.3590(13)	0.5007(19)	0.002
	B4	2a	0.726(4)	0.5800(14)	0.3018(19)	0.002
	B5	2a	0.253(5)	0.3503(15)	0.106(2)	0.006
	B6	2a	0.206(5)	0.1588(17)	0.206(2)	0.015
	01	2a	0.508(3)	0.3323(9)	0.1166(14)	0.007
	02	2a	0.357(3)	0.1753(10)	0.3044(14)	0.011
	03	2a	1.331(3)	0.1207(10)	0.1156(15)	0.011
	04	2a	1.115(3)	0.3902(9)	0.1943(13)	0.004
	05	2a	0.991(3)	0.5853(8)	0.2744(12)	0.003
	06	2a	0.937(3)	0.1736(10)	0.2026(15)	0.011
	07	2a	-0.169(3)	0.1378(9)	0.4653(12)	0.005
	08	2a	0.102(3)	0.3402(8)	0.0107(12)	0.005
	09	2a	0.425(3)	0.0774(10)	0.5305(14)	0.013
	010	2a	0.593(3)	0.3482(10)	-0.1675(14)	0.014
	011	2a	1.605(3)	0.4969(10)	0.2907(13)	0.010
	012	2a	0.820(3)	0.0059(10)	0.0487(13)	0.011
	013	2a	0.541(3)	0.6343(9)	0.0196(12)	0.010
	014	2a	0.103(3)	0.2071(9)	-0.1828(13)	0.013
	015	2a	1.129(3)	0.4285(10)	0.4529(13)	0.013
	016	2a	0.153(3)	0.2799(9)	0.5260(13)	0.011
	017	2a	1.150(4)	0.0523(12)	-0.1436(17)	0.027
	018	2a	0.517(3)	0.1366(10)	-0.1983(15)	0.020

Table S4. Atomic coordinates and equivalent isotropic displacement parameters for BZBO

REFERENCES

(1) Sheldrick, G., SHELXS-97, Program for crystal structure solution; University of Göttingen: Göttingen, Germany, 1997.