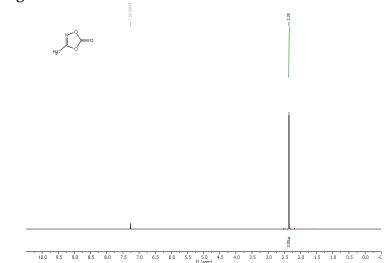
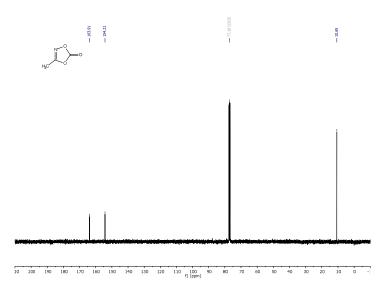
Highly effective solid electrolyte interphase (SEI)-forming electrolyte additive enabling high voltage lithium ion batteries

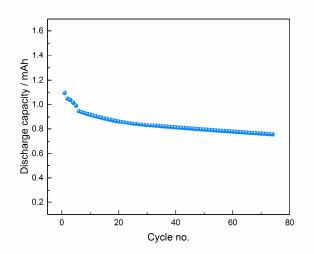
Stephan Röser^a, Andreas Lerchen^c, Lukas Ibing^a, Xia Cao^a, Johannes Kasnatscheew^b, Frank Glorius^{*,c}, Martin Winter^{*,a,b} and Ralf Wagner^{*,a}

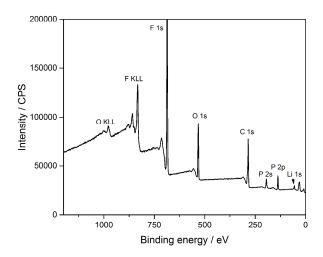

^a MEET Battery Research Center / Institute of Physical Chemistry, University of Münster, Corrensstrasse 46, 48149 Münster, Germany

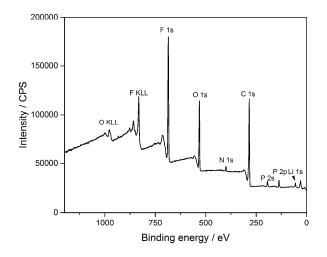
^b Helmholtz-Institute Münster, IEK-12, Forschungszentrum Jülich GmbH, Corrensstrasse 46, 48149 Münster, Germany

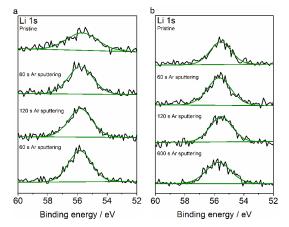

^c Institute of Organic Chemistry, University of Münster, Corrensstrasse 40, 48149 Münster, Germany

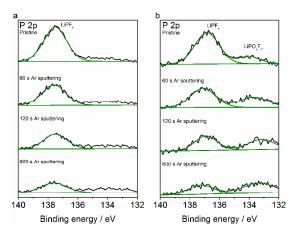
* Corresponding authors: ralf.wagner@uni-muenster.de, martin.winter@uni-muenster.de, glorius@uni-muenster.de

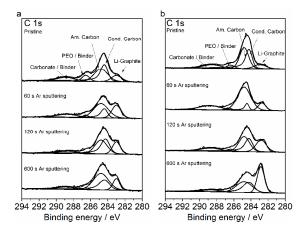

Supporting Figures

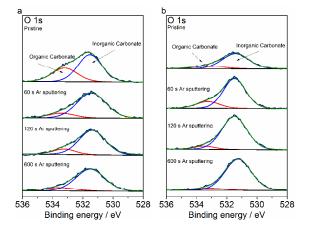

Figure S1. ¹H-NMR spectrum of MDO in chloroform-*d* solvent at T = 300 K.


Figure S2. ¹³C-NMR spectrum of MDO in chloroform-d solvent at T = 300 K.


Figure S3. Long-term cycling stability of NMC532/graphite full cells comprising 1 M LiPF₆ in PC +2 wt.% MDO at 60 °C. Cells were cycled in the voltage range from 2.8 V to 4.2 V.


Figure S4. XPS survey spectrum of harvested graphite electrode after first charge/discharge in NMC532/graphite full cells using 1 M LiPF₆ in PC + 2 wt.% FEC electrolyte formulation. Instead of a pass energy of 40 eV, a pass energy of 160 eV were used for survey spectra.


Figure S5. XPS survey spectrum of harvested graphite electrode after first charge/discharge in NMC532/graphite full cells using 1 M LiPF₆ in PC + 2 wt.% MDO electrolyte formulation. Instead of a pass energy of 40 eV, a pass energy of 160 eV were used for survey spectra.


Figure S6. Li 18 XPS depth profiling spectra of harvested graphite electrodes after first charge/discharge in NMC532/graphite full cells using (a) 1 M LiPF₆ in PC + 2 wt.% FEC and (b) 1 M LiPF₆ in PC + 2 wt.% MDO electrolyte formulation.

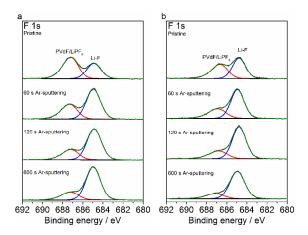

Figure S7. P 2p XPS depth profiling spectra of harvested graphite electrodes after first charge/discharge in NMC532/graphite full cells using (a) 1 M LiPF₆ in PC + 2 wt.% FEC and (b) 1 M LiPF₆ in PC + 2 wt.% MDO electrolyte formulation.

Figure S8. C 1s XPS depth profiling spectra of harvested graphite electrodes after first charge/discharge in NMC532/graphite full cells using (a) 1 M LiPF₆ in PC + 2 wt.% FEC and (b) 1 M LiPF₆ in PC + 2 wt.% MDO electrolyte formulation.

Figure S9. O 18 XPS depth profiling spectra of harvested graphite electrodes after first charge/discharge in NMC532/graphite full cells using (a) 1 M LiPF₆ in PC + 2 wt.% FEC and (b) 1 M LiPF₆ in PC + 2 wt.% MDO electrolyte formulation.

Figure S10. F 1s XPS depth profiling spectra of harvested graphite electrodes after first charge/discharge in NMC532/graphite full cells using (a) 1 M LiPF₆ in PC + 2 wt.% FEC and (b) 1 M LiPF₆ in PC + 2 wt.% MDO electrolyte formulation.