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Derivation of One-electron Integral of Periodic Electrostatic Potential 
The one way to incorporate the electrostatic potential by the bulk is to use 

electrostatic potential that is calculated using periodic PC distribution obtained by slab 
calculation. Here, we describe how to construct such electrostatic potential embedding 
method.  
     Because Gaussian basis functions are employed in almost all cluster models, we 
need to calculate one-electron integral of periodic point charge distribution, using 
Gaussian basis functions. Under the periodic boundary condition (PBC), one-electron 

orbital  is represented by a Bloch function, as follows: 

     (S1) 

where i, k, and ui,k are a band index, a wave vector, and a periodic part of the Bloch 
function, respectively. The periodic part ui,k is represented by a linear combination of 
periodic Gaussian basis functions ; see eqs. S2 and S3;  
 

   (S2) 

   (S3) 

where R is a lattice vector, CAni,k is a coefficient of linear combination, and  is a 
contracted Gaussian basis function at rA = (xA, yA, zA), and A and n are indices of atom 
and basis function at rA, respectively. The basis function  is given by Cartesian 
Gaussian function ; 

    (S4) 

where Nal is a normalization constant, can is a contraction coefficient, and l is a total 
angular momentum. The Cartesian Gaussian function  is given by eq. S5; 

 (S5) 

where lx, ly, and lz are Cartesian angular momenta of x, y, and z components, 
respectively, and gAa is a primitive Gaussian function at rA.  

I. INTRODUCTION

II. METHODS AND MODELS

A. Cluster model embedded in finite number of point charges

In the cluster model embedded in finite number of point charges, the electrostatic poten-

tial formed by the surface is represented by the point charges on atomic positions calculated

with the slab model. The number of point charges is increased over one million to consider

long-range electrostatic interaction from the surface. In this work, Bader charges obtained

by the slab model are employed as the point charges.

B. Cluster model embedded in periodic electrostatic potential

1. One-electron integral of periodci potential

In this work, we calculate a cluster model with Gaussian basis functions incorporating

periodic electrostatic potential (V ES) obtained by a plain-wave calculation under a periodic

boundary condition (PBC). To do such calculations, it is necessary to evaluate one-electron

integral of periodic potential (V PBC) with Gaussian basis functions. We will discuss it here.

Under the PBC, one-electron orbital is represented by a Bloch function as follows:

ψi,k(r) = ui,k(r) e
ik·r (1)

where i is a band index, and k and ui,k are a wave vector and a periodic part of the Bloch

function, respectively. A Gaussian basis function is defined by

φAn(r) =
∑

a

Nalcan ϕAal(r) (2)
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where φAn is a contracted Gaussian basis function positioned at rA = (xA, yA, zA), A is an

index of atoms in the LCAO expansion, n is an index of the basis function at rA, Nal is

a normalization constant, can is a contraction coefficient, and ϕAal is a Cartesian Gaussian

function;

ϕAal(r) = (x− xA)
lx(y − yA)

ly(z − zA)
lz exp

(
−αa|r− rA|2

)

= (x− xA)
lx(y − yA)

ly(z − zA)
lz gAa(r) (3)

where l represents lx, ly, and lz that are Cartesian angular momenta of x, y, and z compo-

nents, respectively, and gAa is a Gaussian function centered at rA with a width of
√

1/2αa. In

the Gaussian basis set, ui,k is expanded as a linear combination of Gaussian basis functions

as

ui,k(r) =
∑

An

CAn i,k φ
PBC
An,k(r) (4)

where CAn i,k is a linear combination coefficient and φPBC
An,k is a periodic contracted Gaussian

basis function;

φPBC
An,k(r) =

∑

R

φAn(r−R)eik·R (5)

where R is a lattice vector.

A super cell, employing very large lattice vectors, is introduced, in order that overlap

between one-electron orbitals ψi located at different cells is negligibly small; that is, overlap

between the Gaussian basis functions at different cells is also negligibly small;

φAn(r−R)φBm(r−R′) ≈ 0 (R ̸= R′) (6)

As a result, band dispersion in reciprocal-space disappears, and, thus, only the Γ-point

(k = (0, 0, 0)) sampling over the first Brillouin zone is necessary. Using Eqs. (1), (4), and

3
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Here, we employed the super-cell approach,S1 where each cluster is positioned in 
one unit cell with very large lattice vectors, and the centers of basis functions are placed 
in the same cell; these are possible without loss of generality. Because the cluster and its 
periodic images are separated very well from each other under this condition, overlap 
between basis functions of the clusters located at different cells is negligibly small; 

        (S6) 

Owing to the sufficient separation of the clusters, band dispersion disappears, and only 
the Γ-point (k = (0, 0, 0)) sampling over the first Brillouin zone is necessary.  

Under such conditions, the one-electron orbital  of the cluster model is 
represented by eq. S7; 

   (S7) 

The basis function  can be represented with Cartesian Gaussian function (eq. S5) 
by eq. 8;  

        (S8) 
 

The next task is to evaluate one-electron integral of periodic potential;  

 
(S9) 

where VSC is a volume of the super-cell and ∫VSCdr indicates integration over the 
super-cell. Because the overlap of basis functions between different cells can be 
neglected (see eq. S6), the integral in eq. S9 can be represented through Fourier 
transformation as follows:  

 (S10) 

where VPBC(G) is a Fourier transform of VPBC(r), G is a reciprocal lattice vector, and 
∫alldr indicates integration over all real-space.  
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(6), the one-electron orbital of the cluster model using the Gaussian basis set in the PBC is

represented as

ψi(r) =
∑

An

CAn iφ
PBC
An (r) (7)

under the super-cell approach.

φPBC
An (r) =

∑

a

Nalcan ϕ
PBC
Aal (r)

=
∑

a

Nalcan
∑

R

ϕAal(r−R)

The next task is to evaluate one-elctron integral of periodic potential;

⟨φPBC
An |V̂ PBC|φPBC

Bm ⟩ = 1

V SC

∫

V SC

dr φPBC
An (r)V PBC(r)φPBC

Bm (r)

=
∑

a

∑

b

NalNbl′cancbm
1

V SC

∫

V SC

dr ϕPBC
Aal (r)V

PBC(r)ϕPBC
Bbl′ (r) (8)

where V SC is a volume of the super cell,
∫
V SCdr indicates integration over the super cell,

and ϕPBC
Aal (r) is a periodic Cartesian Gaussian function;

ϕPBC
Aal (r) =

∑

R

ϕAal(r−R) (9)

Because the overlap between ϕAal at different cells can be neglected, the integral in Eq. (8)

can be evaluated in reciprocal-space through Fourier transformation as follows:

∫

V SC

dr ϕPBC
Aal (r)V

PBC(r)ϕPBC
Bbl′ (r) =

∑

G

V PBC(G)

∫

all

dr ϕAal(r)ϕBbl′(r) e
iG·r

(10)

where V PBC(G) is a Fourier transform of V PBC(r), G is a reciprocal lattice vector, and
∫
alldr

indicates integration over all real-space.

The integral in the right-hand side in Eq. (38) is a complex conjugate of Fourier transform

of product of two Cartesian Gaussian functions. To evaluate the one-electron integral of

4
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The integral in the right-hand side in eq. S10 is a complex conjugate of Fourier 
transform of the product of two Cartesian Gaussian functions. To evaluate the 
one-electron integral of periodic potential, therefore, the Fourier transform of the 
product of two Cartesian Gaussian functions is required. Because both of the product of 
two Gaussian functions and the Fourier transform of Gaussian function are Gaussian 
function, the Fourier transform of the product of two Gaussian functions is also the 
Gaussian function as follows: 

 (S11) 

where 

 

Though the Fourier transform of the product of two Cartesian Gaussian functions 
cannot be provided as a simple form, it can be represented as a recursion formula within 
a binomial expansion; details are presented in Appendix A (page S8)). 

Hereafter, we focus on the electrostatic potential that is defined by eq. S12;  

  (S12) 

where n(r) is electron density at r and ZC is a nuclear charge of the C-th nucleus at rC in 
the unit cell. Using Poisson's equation, VES(r) is transformed to eq. S13; 

  (S13) 

where n(G) is a Fourier transform of n(r). The one-electron integral of the electrostatic 
potential can be evaluated using eqs. S10 and S13; however, the Fourier series 
expansion in eq. S10 is, in general, not complete because the finite number of 
wave-vectors G, which is usually determined by a cut-off energy, is not sufficient to 
incorporate high frequency components of the nuclear point-charge potential in 
reciprocal-space. To avoid this problem, the Ewald summation method, which is 
developed to evaluate electrostatic interaction between PCs in the PBC, is applied to 
evaluation of electrostatic interaction between PCs and one-electron orbital represented 
by the Gaussian basis functions in the PBC.  
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∫
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dr gAa(r)gBb(r) e
−iG·r =

(
π

αp

) 3
2

FAaBb e
−iG·rP exp

(
− |G|2

4αp

)
(11)

where

αp = αa + αb, FAaBb = exp

(
− αaαb

αa + αb
|rA − rB|2

)
, and rP =

αarA + αbrB
αa + αb

In the case of Cartesian Gaussian fucntions, the Fourier transform of product of two Carte-

sian Gaussian fucntions cannot be privided as a simple form, but as a recursive form within

a binomial expansion, as presented in Appendix A.

2. Ewald summation method for ⟨φAn|V̂ ES|φBm⟩

Hereafter, we focus on the discussion of the periodic electrostatic potential that is defined

as

V ES(r) =

∫

all

dr′
n(r′)

| r− r′ | +
∑

R

∑

C

ZC

| r− rC −R | (12)

where n(r) is electron charge density, and ZC is a nuclear charge of C-th nucleus positioned

at rC in the unit cell. Using Poisson’s equation, Eq. (12) is transformed to

V ES(G) =
4π

|G|2

(
n(G) +

∑

C

ZCe
−iG·rC

)
(13)

where n(G) is a Fourier transform of n(r). The one-electron integral of the electrostatic

potential can be evaluated using Eqs. (10) and (13); however, the Fourier series expansion

in Eq. (10) is, in general, not complete because the finite number of wave-vectors G, which
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In the Ewald summation method, the electrostatic potential of PCs is represented 
as the sum of two short-range terms and one long-range term as follows:  

  (S14)  

    (S15) 

 (S16) 

 (S17) 

where rcut is a cut-off parameter in real-space, erf is an error function, σ is a 
convergence parameter of the Ewald sum, and Ecut is a cut-off energy in reciprocal 
space. Because the short-range terms have no reciprocal space contribution, 
one-electron integral of VES

sr1 can be evaluated in the same manner as nuclear-attraction 
integral, which is implemented in standard ab initio program. One-electron integral of 
VES

sr2 can be evaluated in a similar manner to two-electron integral; see Appendix B in 
page S9. Finally, the one-electron integral of VES

sr2 for the Gaussian functions is 
represented by eq. S18; 

  (S18) 

where αc = 1/2σ2. The one-electron integral of VES
sr2 for the Cartesian Gaussian 

functions is presented in Appendix B (page S9). The one-electron integral of VES
lr can 

be evaluated using eqs. S10 and S17.  
In this way, the electrostatic interaction between the periodic PC distribution and 

the one-electron orbital of the embedded cluster model can be correctly evaluated in 
reasonable computational cost using the super-cell approach, where no approximation is 
employed except for very large lattice vectors for super-cells. The determination of 
cut-off energy in Ewald summation method and the dependency on the super-cell size 
are discussed in page S11. 
 

is usually determined by a cut-off energy Ecut, is not sufficient to incorporate high frequency

components of the nuclear point-charge potential in reciprocal-space. To avoid this prob-

lem, the Ewald summation method, which is developed to evaluate electrostatic interaction

between point charges in the PBC, is applied to evaluation of electrostatic interaction be-

tween point charges and one-electron orbital expanded by the Gaussian basis functions in

the PBC.

In the Ewald summation method, the electrostatic potential of point charges is repre-

sented as the sum of two short-range terms and one long-range term as follows:

V ES(r) = V ES
sr1 (r) + V ES

sr2 (r) + V ES
lr (r) (14)

Here,

V ES
sr1 (r) =

|r−rC−R|≤rcut∑

R,C

ZC

| r− rC −R | (15)

V ES
sr2 (r) =

|r−rC−R|≤rcut∑

R,C

−ZC

| r− rC −R |erf
(

1√
2σ

|r− rC −R|
)

(16)

V ES
lr (r) =

|G|2/2≤Ecut∑

G

4π

|G|2
∑

C

ZCe
−iG·rC exp

(
−σ

2|G|2

2

)
eiG·r (17)

where rcut is a cut-off parameter in real-space, erf is an error function, σ is a convergence

parameter of the Ewald sum, and Ecut is a cut-off energy in reciprocal-space. The sum

of the short-range terms (V ES
sr1 + V ES

sr2 ) quickly converges in real-space, and the long-range

term (V ES
lr ) does in reciprocal-space. Because the short-range terms have no reciprocal-space

contribution, One-electron integral of V ES
sr1 can be evaluated in the same manner as evaluation

of nuclear-attraction integral that is normally implemented in standard ab initio programs.

One-electron integral of V ES
sr2 can be evaluated in a similar manner to evaluation of two-

electron integral where the two Gaussian basis functions with the same electron coordinate

are located at the same position (rC) with the same Gaussian width (
√
2σ), the same
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One-electron integral of V ES
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electron integral where the two Gaussian basis functions with the same electron coordinate
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normalization constant ((1/2πσ2)3/4), and no Cartesian angular momenta (lx = ly = lz = 0).
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contribution, One-electron integral of V ES
sr1 can be evaluated in the same manner as evaluation

of nuclear-attraction integral that is normally implemented in standard ab initio programs.

One-electron integral of V ES
sr2 can be evaluated in a similar manner to evaluation of two-

electron integral where the two Gaussian basis functions with the same electron coordinate

are located at the same position (rC) with the same Gaussian width (
√
2σ), the same

normalization constant ((1/2πσ2)3/4), and no Cartesian angular momenta (lx = ly = lz = 0).

6

normalization constant ((1/2πσ2)3/4), and no Cartesian angular momenta (lx = ly = lz = 0).

The one-electron integral of V ES
sr2 for the Gaussian functions is represented as

∫

all

dr gAa(r)V
ES
sr2 (r)gBb(r) =

(
π

αp

) 3
2

FAaBb

|r−rC−R|≤rcut∑

R,C

−ZC

| rP − rC −R |

×erf

(√
αpαc

αp + αc
|rP − rC −R|

)
(18)

where αc = 1/2σ2. The one-electron integral of V ES
sr2 for the Cartesian Gaussian functions is

presented in Appendix B, using a Hermite polynomial expansion with Rodrigues’ formula.

The one-electron integral of V ES
lr can be evaluated using Eqs. (38) and (17).
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Appendices for Derivation of One-electron Integral of

PE Potential

Appendix A: Fourier transform of product of two Cartesian Gaus-

sian functions

The Fourier transform of product of two Cartesian Gaussian functions is represented as

∫

all

dr ϕAal(r)ϕBbl′(r) e
−iG·r = FAaBb sPplxl′x(Gx) sPplyl′y(Gy) sPplzl′z(Gz) (A1)

Here, the x-component, sPplxl′x(Gx), is defined by

sPplxl′x(Gx) =

∫ +∞

−∞
dx (x− xA)

lx(x− xB)
l′x exp

(
−αp|x− xP |2

)
e−iGxx (A2)

The y- and z-components, sPplyl′y(Gy) and sPplzl′z(Gz), respectively, are similarly defined.

Using a binomial expansion, sPplxl′x(Gx) can be represented as follows:

sPplxl′x(Gx) =
lx∑

k=0

l′x∑

k′=0

⎛

⎜⎝
lx

k

⎞

⎟⎠

⎛

⎜⎝
l′x

k′

⎞

⎟⎠ (xP − xA)
lx−k(xP − xB)

l′x−k′ ϕPpk+k′(Gx)

(A3)

Here, ϕPpk+k′(Gx) is the x-component of Fourier transform of Cartesian Gaussian func-

tion;

ϕPpk+k′(Gx) =

∫ +∞

−∞
dx (x− xP )

k+k′ exp
(
−αp|x− xP |2

)
e−iGxx (A4)
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which can be derived using the following recursion relations in a similar manner to eq. 46

of Ref. S2:

ϕPp 0(Gx) =

(
π

αp

) 1
2

exp

(
− G2

x

4αp

)
e−iGxxP

ϕPp 1(Gx) = − iGx

2αp
ϕPp 0(Gx)

...

ϕPplx(Gx) =
lx − 1

2αp
ϕPplx−2(Gx)−

iGx

2αp
ϕPplx−1(Gx) (A5)

The y- and z-components of Fourier transform of Cartesian Gaussian function are simi-

larly derived.

Appendix B: One electron integral of V ES
sr2 in Ewald summation

method

In the Ewald summation method, the electrostatic potential of point charges is repre-

sented as the sum of two short-range terms and one long-range term, as represented in

eq. S14. The second short-range term V ES
sr2 (eq. S16) can be expressed as follows:

V ES
sr2 (r) =

|r−rC−R|≤rcut∑

R,C

−ZC

| r− rC −R |erf
(

1√
2σ

|r− rC −R|
)

=
|r−rC−R|≤rcut∑

R,C

(−ZC)

(
1

2πσ2

) 3
2
∫

all

dr′
exp

(
− 1

2σ2 | r′ − rC −R |2
)

| r− r′ | (B1)

As presented in eq. B1, V ES
sr2 of the Ewald summation method can be regarded as the

electrostatic potential formed by the Gaussian charge densities (for more details of the

Ewald summation method, see Ref. S3). Thus, one-electron integral of V ES
sr2 can be

evaluated in a similar manner to evaluation of two-electron integral which is carried out

by the two Gaussian basis functions with the same electron coordinate (r′), the same

position (rC + R), the same Gaussian width (
√
2σ), the same normalization constant

((1/2πσ2)3/4), and no Cartesian angular momenta (lx = ly = lz = 0). Using a Hermite

polynomial expansion with Rodrigues’ formula,S4 the one-electron integral of V ES
sr2 for the
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Cartesian Gaussian functions is presented as

∫

all

drϕAal(r)V
ES
sr2 (r)ϕBbl′(r) = FAaBb

|r−rC−R|≤rcut∑

R,C

(αc

π

) 3
2 −ZCπ

5
2

αpαc
√
αp + αc

×
∑

sxs′xtxt
′
xuxvx

Ix
∑

sys′ytyt
′
yuyvy

Iy
∑

szs′ztzt
′
zuzvz

Iz

× 2Bν

(
αpαc

αp + αc
|rP − rC −R|2

)
(B2)

Here, αc = 1/2σ2, Bν is the ν-th order Boys function as

Bν(T ) =

∫ 1

0

dt t2ν exp (−Tt2) (B3)

and

∑

sxs′xtxt
′
xuxvx

Ix =
(−1)lx+l′xlx! l′x!

plx+l′x

[lx/2]∑

sx=0

[l′x/2]∑

s′x=0

lx−2sx∑

tx=0

l′x−2s′x∑

t′x=0

[(tx+t′x)/2]∑

ux=0

(−1)t
′
x+ux(tx + t′x)!

4sx+s′x+uxsx!s′x!tx!t
′
x!ux!

×at
′
x−sx−uxbtx−s′x−uxp2(sx+s′x)+ux(rAx − rBx)tx+t′x−2ux

(lx − 2sx − tx)!(l′x − 2s′x − t′x)!(tx + t′x − 2ux)!

×
[µx/2]∑

vx=0

(−1)vxµx!(pc/(p+ c))µx−vx(rPx − rCx)µx−2vx

4vxvx!(µx − 2vx)!
(B4)

where µx = lx + l′x − 2(sx + s′x)− (tx + t′x), ν = µx + µy + µz − (vx + vy + vz), and Iy and

Iz are similarly defined in terms of y- and z-components, respectively. Boys function can

be evaluated as

Bν(T ) =
(2ν)!

2ν!

[ √
π

4νT ν+1/2
erf(

√
T ) − e−T

ν−1∑

k=0

(ν − k)!

4k(2ν − 2k)!T k+1

]
(B5)

when T > 0, and Bν(T ) = 1/(2ν + 1) when T = 0.S4
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Effects of Cut-off Energy in the Ewald Summation

Method and Super-cell Size on Interactions of Rh2

with Al2O3 and AlPO4

Effects of cut-off energy in the Ewald summation method on

interactions of Rh2 with Al2O3 and AlPO4:

Because the long-range term of electrostatic potential in the Ewald summation method

(eq. S17) quickly converges in reciprocal-space, the cut-off energy Ecut, which determines

the number of wave-vectors used in Fourier expansion, can be significantly reduced. Fig-

ure S1 shows the convergence behavior of total energies of the Al2O3 cluster model with

respect to cut-off energy value in the presence and absence of the Ewald summation

method. Here, a 2× 2× 1 super-cell (33× 34× 36 Å), a convergence parameter of σ = 1

Å, and a real-space cut-off criteria, (αpαc/(αp + αc))|rP − rC − R|2 ≤ rcut = 20 ln 10,

were used; the cut-off criteria is same as the default used in gamessS5 for calculation of

one-electron integrals. In the absence of the Ewald summation method, the total energy

varies by more than 50 eV when the cut-off range is 400 to 800 eV. In the presence of

the Ewald summation method, on the other hand, the total energy converges rapidly

with respect to the cut-off energy; for instance, it varies within 0.001 eV when the cut-off

energy is larger than 150 eV. Therefore, the cut-off energy of 150 eV was used in this

work.

Effect of super-cell size on interactions of Rh2 with Al2O3 and

AlPO4:

In the embedding method incorporating periodic electrostatic potential developed in this

work, two-electron integrals (Coulomb and exchange integrals) between clusters located

at different cells are not considered. Therefore, the large super-cell should be employed so

as that the two-electron integrals between clusters located at different cells are negligible.
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Figure S1: Total energy of Al2O3 cluster model as a function of cut-off energy with and
without the Ewald summation method (blue dashed- and red solid-lines, respectively).

Table S1 shows dependency of interaction energy and HOMO–LUMO gap on size of

super-cell in the Al2O3 and AlPO4 cluster models. For the Al2O3 cluster model, the

interaction energy and HOMO–LUMO gap of the 2× 2 super-cell agree with those of the

larger ones within 0.02 eV. For the AlPO4 one, those values of the 3× 3 super-cell agree

with those of the larger ones within 0.01 eV. Therefore, we employed these super-cell

sizes in this work.
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Table S1: The minimum atomic distances (dmin) between clusters located at
different cells, interaction energies (Eint) of Rh2 with Al2O3 and AlPO4, and
HOMO–LUMO gaps (εgap) of distorted surfaces at various sizes of super-cells.

Size of super-cell 1× 1 2× 2 3× 3 4× 4 5× 5
Rh2/Al2O3

dmin (Å) 5.46 22.3 39.1 55.9 72.6
PBE

Eint (eV) a −6.02 −6.02 −6.02 −6.02
εgap (eV) a 1.82 1.82 1.82 1.82

B3LYP
Eint (eV) −5.43 −5.50 −5.50 −5.50 −5.50
εgap (eV) 2.44 3.51 3.50 3.49 3.49

Rh2/AlPO4

dmin (Å) 1.69 18.2 34.9 51.6 68.2
PBE

Eint (eV) a −5.74 −5.71 −5.70 −5.70
εgap (eV) a 0.63b 0.63c 0.63c 0.63c

B3LYP
Eint (eV) a −5.57 −5.54 −5.53 −5.53
εgap (eV) a 2.32b 2.32c 2.32c 2.32c

a SCF calculations do not converge.
b εgap = εLUMO − εHOMO-4.
c εgap = εLUMO − εHOMO-2.
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Table S2: Effects of choice of atomic charge on interaction energies (Eint; eV)
of Rh2 with Al2O3 and AlPO4.

VLPa PEb

Baderc Formald Baderc Formald

Rh2/Al2O3

PBE
Eint −5.99 −6.79 −6.02 −6.72

(−4.93)e (−5.20)e (−4.95)e (−5.23)e

B3LYP
Eint −5.51 −6.18 −5.47 −6.16

(−4.53)e (−4.81)e (−4.47)e (−4.76)e

Rh2/AlPO4

PBE
Eint −5.55 −5.44 −5.71 −5.62

(−5.09)e (−4.99)e (−5.25)e (−5.16)e

B3LYP
Eint −5.43 −5.32 −5.52 −5.45

(−4.95)e (−4.85)e (−5.11)e (−5.03)e

a A number of point charges is 1451940 (920 x 920 x 15 Å3) for the Al2O3

embedded models with very large number of point charges (VLP), and that is
1016310 (970 x 920 x 15 Å3) for the AlPO4 ones with VLP.

b PE indicates periodic electrostatic potential.

c The Bader charges calculated by the slab calculations were condidered in the
calculation.

d Formal charges were considered in the calcilation; +3 for Al, −2 for O, and +5 for
P.

e In parentheses are the interaction energies after correction of basis set
superposition error.
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Table S3: Basis set effects on interaction energies (Eint; eV) of Rh2 with Al2O3

and AlPO4.

VLPa PEb

Al LANL2DZc SDDd cc-pVDZe LANL2DZc SDDd

P LANL2DZc SDDd cc-pVDZe LANL2DZc SDDd

O D95Vf DZPg cc-pVDZe D95Vf DZPg

Rh LANL2DZc SDDd SDDd LANL2DZc SDDd

Rh2/Al2O3

PBE
Eint −5.99 −6.98 −8.19 −6.02 −7.00

(−4.93)h (−5.09)h (−5.07)h (−4.95)h (−5.11)h

B3LYP
Eint −5.51 −6.44 −7.57 −5.47 −6.46

(−4.53)h (−4.74)h (−4.64)h (−4.47)h (−4.68)h

Rh2/AlPO4

PBE
Eint −5.55 −5.95 −6.08 −5.71 −6.13

(−5.09)h (−5.13)h (−5.13)h (−5.25)h (−5.40)h

B3LYP
Eint −5.43 −5.96 −6.10 −5.52 −5.96

(−4.95)h (−5.13)h (−5.14)h (−5.11)h (−5.23)h

a A number of point charges is 1451940 (920 x 920 x 15 Å3) for the Al2O3 embedded models with very
large number of point charges (VLP), and that is 1016310 (970 x 920 x 15 Å3) for the AlPO4 ones with
VLP.
b PE indicates periodic electrostatic potential.
c Los Alamos basis sets and effective core potentials (ECPs) with d-polatization function.S5–S7
d Stuttgart/Dresden basis sets and ECPs.S8–S10
e Dunning’s correlation consistent basis sets.S11,S12
f Huzinaga-Dunning valence double-zeta basis sets.S13
g Huzinaga-Dunning double-zeta basis sets with d-polarization function.S13
h In parentheses are the interaction energies after correction of basis set superposition error.

In the case of Rh2/Al2O3, the Eint without BSSE correction increases considerably, as

the quality of basis sets increases. In the case of Rh2/AlPO4, the basis set effects on the

Eint is moderate. In both cases, the Eint after BSSE correction depends little on the basis

sets, suggesting that the basis set effects arise from the BSSE. Because the Eint without

BSSE correction calculated with the LANL2DZ is the closest to the Eint(no-BSSE), we

employed LANL2DZ here for discussing HOMO, LUMO, DOS etc.
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Table S4: Cluster size effects on frontier orbital energies (εHOMO and εLUMO;
eV) and band gaps of distoetd Al2O3 and AlPO4.a

VLPb PEc VLPb PEc

distorted Al2O3
a distorted Al2O3-La, d

PBE
εLUMO −5.48 −5.22 −5.57 −5.21
εHOMO −7.29 −7.03 −7.17 −6.80
Band gape 1.81 1.82 1.61 1.59

B3LYP
εLUMO −4.83 −4.57 −4.94 −4.58
εHOMO −8.32 −8.08 −8.30 −7.94
Band gape 3.49 3.51 3.35 3.36

distorted AlPO4
a distorted AlPO4-La, d

PBE
εLUMO

f −8.35 −7.45 −8.47 −7.29
εHOMO

f −8.98g −8.08g −9.06g −7.89h

Band gape 0.63i 0.63i 0.59i 0.60j

B3LYP
εLUMO

f −7.84 −6.97 −7.97 −6.84
εHOMO

f −10.17g −9.29g −10.24g −9.13h

Band gape 2.33i 2.32i 2.27i 2.29j

b These geometries were taken to be the same as the corresponding moiety of
Rh2/Al2O3 and Rh2/AlPO4 optimized by the slab calculations.

b A number of point charges is 1451940 (920 x 920 x 15 Å3) for the Al2O3

embedded models with very large number of point charges (VLP), and that is
1016310 (970 x 920 x 15 Å3) for the AlPO4 ones with VLP.

c PE indicates periodic electrostatic potential.

d Rh2/Al2O3-L and Rh2/AlPO4-L mean Rh2/(Al2O3)18 and Rh2/(AlPO4)19 cluster
models, respectiveky.

e Band gap is εLUMO − εHOMO unless caution is presented as superscript.

f Frontier orbitals similar to HO and LU bands of the slab model.

g HOMO−2.

h HOMO−4.

i εLUMO − εHOMO−2.

j εLUMO − εHOMO−4.
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(Al2O3)12 model � (Al2O3)18 model �

Eint   –5.99�  –5.72�

(AlPO4)15 model � (AlPO4)19 model �

Eint   –5.55�  –5.61�

Figure S2: Cluster size effects on interaction energies (Eint; eV)a of Rh2 with Al2O3 and
AlPO4.
a PBE functional was used. The embedded cluster model with VLP charges was employed.
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HOMO�

HOMO – 1 �

PE�
HOMO�

HOMO – 1 �

VLP �

Figure S3: HOMO and HOMO−1 of the Rh2/AlPO4 cluster models with VLP and PE.

These HOMO and HOMO−1 are localized on the edge, which correspond to the

artificial dangling bond. These orbitals cannot be compared with the HO band of the

slab model.
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gamma-Al2O3(001) Rh2/Al24O36 

 Al 8.762850784296630 6.275025008240084 6.1279681070768271 

 Al 5.930401363024095 4.924749647065852 6.8504232953946221 

 Al 5.862170448509959 7.686850024882931 6.8181361829093081 

 Al 6.261511754819407 6.270951510325323 4.0205941476614381 

 Al 8.738969075823874 14.721584448759794 6.1278569739494171 

 Al 7.498401831506978 9.018402773918115 4.9503995030555091 

 Al 7.461339382117327 11.987557633541403 4.8983110478741031 

 Al 5.907080892821233 13.309703073126098 6.8283030561272681 

 Al 5.904721906302870 16.063841061850120 6.8508679242636721 

 Al 9.055418794193097 11.220226532837147 7.0305111117095941 

 Al 6.260952086372366 14.730865736737613 4.0193907510879411 

 Al 6.231863485548383 10.478632059477507 7.3332760181282511 

 Al 14.385440210789946 6.278591503893326 6.1220479671739091 

 Al 11.533580725746148 4.872044611990028 6.8616970143095741 

 Al 11.704365122915316 7.562123380849910 6.9489445619424861 

 Al 11.848630555950944 6.305151364128190 4.0426040017948571 

 Al 14.343665085109350 14.711434707150605 6.1240882823593491 

 Al 13.187324134733782 9.010303928876978 4.9712206178921121 

 Al 13.178283008177440 11.968177096259780 4.9664325691416481 

 Al 11.602247839055181 13.379251159394586 6.8554162502799141 

 Al 11.498986459446359 16.086538887723211 6.8508350732380861 

 Al 14.732593093471912 10.494228748535971 6.9500181759056031 

 Al 11.850153318181116 14.696514821946490 4.0248207099119741 

 Al 11.906693552438496 10.457144281541254 7.0417869474174031 

  O 10.332685305405896 6.287405534367787 7.0629850463509541 

  O 7.221123689770146 6.263983771580422 7.1374454410748781 

  O 8.839093095398210 7.706876920071048 5.0057908270670271 

  O 8.869688207339342 4.907687251415568 4.9720409499754741 

  O 6.166324519808304 7.714138823460740 5.0293817180335261 

  O 6.226786311997744 4.829840279594545 5.0730622353998101 

  O 10.300885526414627 14.694495470233164 7.0464586969538831 

  O 8.974627305696030 10.591109131271264 5.2351668390750151 

  O 7.204760647612241 14.717718376592881 7.1509298772701921 

  O 6.295614373440485 10.499155754639215 5.0314196778761271 
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  O 10.690894289380708 11.858411032826920 7.3347978088918501 

  O 11.017620199961813 9.019879367250768 7.7882163467430091 

  O 8.863277623169965 16.092356678187890 4.9749583881887631 

  O 8.819170879904139 13.309447449789429 4.9980151643780741 

  O 7.414631251417997 11.961198267000304 6.8726889881758551 

  O 7.252285536362678 8.980971487913052 6.8951317675229301 

  O 6.226791450154687 16.163373108438648 5.0802144527358161 

  O 6.161678402477171 13.287211478933864 5.0382120288740671 

  O 4.702592262651906 6.285471743784201 7.0600785271757301 

  O 12.883948750419218 6.202673494476930 7.1986398940379481 

  O 14.451896442425268 7.665419789650470 4.9678788789372561 

  O 14.451230230049461 4.897948128585901 4.9759009193422851 

  O 11.840181550924667 7.723979013035787 5.1488564456212781 

  O 11.816430551457355 4.850491199039271 5.0833847235304681 

  O 4.697196271256240 14.695013378889559 7.0608282289528681 

  O 14.555420174324345 10.519331591207798 5.1177404028335901 

  O 12.822182780854586 14.733731647948625 7.1726715466297761 

  O 11.860215633755196 10.471428424288005 5.1060522783443411 

  O 4.933995154292224 11.781836699536083 7.3580386486880501 

  O 4.847374466521948 9.239379742470099 7.3505519136598851 

  O 14.441909236268254 16.090453281993135 4.9756792939591081 

  O 14.439870121009760 13.320000551679428 4.9811269090296821 

  O 13.208886568144887 11.766666377719119 6.9705420129103711 

  O 13.297706986281600 9.222427330587724 6.9075741452731561 

  O 11.812407252697401 16.140146309361469 5.0795337459725541 

  O 11.829350286801606 13.252976821392307 5.0817055554916671 

 Rh 9.006952887035229 8.985329177369747 7.8697270883165270 

 Rh 8.006343672079991 10.455969405033512 9.3744636192809080 

 

92 

tridymite-AlPO4(110) Rh2/Al15P15O60 

Al 7.195031995533290 5.374328311695990 3.740513561850480  

Al 1.661064074965470 5.383193114405330 7.917290535486850  

Al 7.271017408427600 5.325169195876190 11.987924149877999  

Al 1.650561292017710 5.377270429230070 16.217187099247699  

Al 10.402355258891699 5.342536207024110 7.818324932969820  



 
 

S23 

Al 16.067572940286400 5.353627895579700 12.068630814087999  

Al 10.451913096305701 5.367854373933560 16.229809471476901  

Al 3.308890443857070 7.801714105130000 3.485931351331900  

Al 6.060701949481110 8.079099085136900 7.865428727205260  

Al 3.109643438648130 7.753214151903370 11.527878094954700  

Al 5.634694059913850 7.784608766464950 15.847853466093500  

Al 11.989462435997501 7.763350529539670 3.270428860478190  

Al 14.559959512757899 7.778052187679800 7.417926568879930  

Al 12.077939069956800 7.777238985322110 11.752879420548799  

Al 14.569059019397899 7.805522910303510 15.819315037175800  

P 1.570842329843540 5.340002187111240 4.671739621415670  

P 7.282290841320010 5.304791122867480 8.736963750304239  

P 1.528875245087100 5.334286387371280 12.989153007557700  

P 10.340661012676300 5.332441929428930 4.607237763926910  

P 16.169821107961301 5.326882584330440 8.812030285580599  

P 10.365526105279899 5.332123606268550 12.992095286869800  

P 6.128272112709680 8.063008081221280 4.641913924610190  

P 2.868228667335630 8.018875456154751 8.564060346614660  

P 5.943006097455970 8.068000437162770 12.818834921244100  

P 14.843588335314299 8.056878347437140 4.440867542422490  

P 11.671732321144400 8.089349450869671 8.696015865175029  

P 14.915774547171599 8.085184470994781 12.855447779770600  

P 7.320883510593320 5.333931686566170 17.158734479607489  

P 2.781206359559000 8.054663823628760 17.116403618495188  

P 11.631453467325400 8.066979243165720 16.952776653220266  

O 0.096708540803287 5.507415129922790 4.289908276164780  

O 2.078308573727380 3.979747278224040 4.189937899579610  

O 2.390076466643400 6.450692159790940 3.969137540389660  

O 1.748788820016150 5.491102199038550 6.174133858838130  

O 8.726975145222470 5.472964124095390 8.221318295490271  

O 6.331324239283420 6.290397692601020 8.071429048745060  

O 6.824366003329150 3.873719134157320 8.443440413461170  

O 7.306823635931090 5.506188782026850 10.268641886521300  

O 0.030272705934572 5.443013811624770 12.714307814732500  

O 2.067998686035630 3.974921726525700 12.546145285887199  

O 2.237674174269420 6.441767279445140 12.166589499957800  



 
 

S24 

O 1.821612555617350 5.568465724851090 14.472418271350200  

O 8.849416618094789 5.446964171164020 4.336795622070060  

O 10.888443415915299 3.976637147670530 4.165107969085250  

O 11.060804332374101 6.440528569573090 3.789553671512600  

O 10.650798830983399 5.560691135429630 6.091882289936840  

O 17.617642593402000 5.475608363836370 8.378331230185699  

O 15.331976972319600 6.457630708621990 8.140358784440400  

O 15.580376865950500 3.986447591994020 8.368916537044630  

O 16.034140940698300 5.498028112639540 10.324852636869499  

O 8.887681111630339 5.473095362325320 12.650586243822501  

O 10.907724367806701 3.982674996818230 12.529874448237100  

O 11.138903972179600 6.452005017788660 12.232262978775800  

O 10.596965347138100 5.529847125872510 14.485605122051600  

O 4.592846119148220 8.441542522942211 4.368521696798000  

O 6.098041288915420 6.474567222626160 4.506637672357480  

O 7.078584734807900 8.691058673405809 3.694269552449140  

O 6.352816920730360 8.397762041833630 6.143081328121590  

O 4.330163851637490 8.287376317217880 8.144615774050040  

O 1.804722758135440 8.556066899378511 7.686884620908140  

O 2.736306847052660 6.441567080999580 8.790695198777740  

O 2.782486874145520 8.557291910750690 10.085354590515900  

O 4.413172032092060 8.230646098468000 12.520334696698400  

O 6.232698817400400 6.547532526340520 12.692222056407500  

O 6.801424730542190 8.953524842919480 11.964305489601699  

O 6.107766708007870 8.419858591135769 14.336488186429900  

O 13.264141019775300 8.232184634352519 4.276629352492140  

O 15.022387945354600 6.488616331829790 4.455424749493470  

O 15.656968666218500 8.790770407094559 3.459521996323860  

O 15.063178126466500 8.475611462805819 5.959717275303750  

O 13.118273399990800 8.308815895932479 8.138467358756531  

O 10.698873947178200 8.975435442802739 7.972953418731580  

O 11.383598843244100 6.567206248597980 8.621118311182590  

O 11.771357422643501 8.443299485256460 10.221670075461301  

O 13.344811359590100 8.359643064495360 12.700244583802700  

O 14.985929397152301 6.504893714877260 12.820379520118500  

O 15.767255684652699 8.778820982015599 11.876075714947000  



 
 

S25 

O 15.172936938480900 8.460433197030209 14.371692356229699  

O 8.770258154863940 5.486639061937220 16.697693555519727  

O 6.488309543534200 6.462220991582590 16.478049720871699  

O 6.751597218061890 3.988381114174440 16.706463527331099  

O 7.210907381875690 5.500371378548090 18.667680427681777  

O 4.246565935153230 8.383598749401990 16.574304584166399  

O 1.703494717610860 8.741917693667791 16.385443606759701  

O 2.711510963509520 6.473827398876870 17.066794919176314  

O 2.903018847982470 8.414407394195459 18.645924655025809  

O 13.120738811887600 8.350340661976920 16.481462810954000  

O 10.600492276440400 8.719028196397961 16.127754617830000  

O 11.533895538471301 6.489271703384880 17.023794380077231  

O 11.667983385369300 8.511654963731900 18.476241529820129  

Rh 7.222428261131680 9.125149933629411 9.853400258451369  

Rh 8.563089356276249 9.148356559392710 8.029911843482680  
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