1	SUPPORTING INFORMATION
2	
3	Contributions of Nanoscale Roughness to
4	Anomalous Colloid Retention and Stability Behavior
5	
6	Scott A. Bradford ¹ , Hyunjung Kim ² , Chongyang Shen ³ , Salini Sasidharan ⁴ , and Jianying Shang ³
7	
8	¹ US Salinity Laboratory, USDA, ARS, Riverside, CA
9	² Department of Mineral Resources and Energy Engineering, Chonbuk National University, 664-
10	14 Duckjin, Jeonju, Jeonbuk 561-756, Republic of Korea
11	³ Department of Soil and Water Sciences, China Agricultural University, Beijing, China 100193
12	⁴ Department of Environmental Sciences, University of California, Riverside, 92521
13	
14	
15	Revised
16	Langmuir
17	August 23, 2017
18	
19	Pages: 5
20	Figures: 2
21	
22	
23	

24 Supporting Information

25 The supporting information contains details pertaining to interactions energy calculations (S1). Figure S1 presents a plot of ε_1 as a function of Φ_{max} when $\Phi_{2min}=0$ and $\Phi_{1min}=-\infty$ 26 (unfavorable electrostatic conditions), and ε_{rl} as a function of Φ_{lmin} when $\Phi_{2min}=0$ and $\Phi_{max}=0$ 27 (favorable electrostatic conditions). Figure S2 presents plots of Φ_{Imin} for a physically and 28 chemically homogeneous oocyst and SWI when the IS=10 mM and the zeta potential of the 29 oocyst and the SWI were varied between -60 to 60 mV. This information is available free of 30 charge via the Internet at http://pubs.acs.org 31 **S1** – Interaction Energy Calculations 32 The value of Φ_s between a colloid and the SWI, or another colloid, was considered to be 33 the sum of electrostatic, van der Waals, and Born repulsion interaction energies: 34 $\Phi_{s}(h) = \Phi_{s}^{el}(h) + \Phi_{s}^{vdW}(h) + \Phi_{s}^{Born}(h)$ 35 [S1] where Φ_s^{el} [ML²T⁻²], Φ_s^{vdW} [ML²T⁻²], and Φ_s^{Born} [ML²T⁻²] are the electrostatic, van der Waals, 36 and Born interaction energies on the smooth surface, respectively. The value of Φ_s^{el} was 37 determined using the constant surface potential interaction expression of Hogg et al.¹ for a 38 sphere-plate interaction as: 39 $\Phi_s^{el}(h) = \pi \varepsilon \varepsilon_0 r_c \left\{ 2\zeta_1 \zeta_2 ln \left[\frac{1 + \exp(-\kappa h)}{1 - \exp(-\kappa h)} \right] + (\zeta_1^2 + \zeta_2^2) ln [1 - \exp(-2\kappa h)] \right\}$ 40 [S2]

- 41 where ε (dimensionless) is the dielectric constant of the medium, $\varepsilon_0 [M^{-1}L^{-3}T^4A^{-2}]$, where A
- 42 denotes ampere] is the permittivity in a vacuum, r_c [L] is the colloid radius, ζ_1 is the zeta
- 43 potential of the colloid, ζ_2 is the zeta potential of the collector, and κ [L⁻¹] is the Debye-Huckel

44 parameter. The value of Φ_s^{vdW} for a sphere-plate interaction was determined using the expression 45 by Gregory² as:

46
$$\Phi_s^{\nu dW}(h) = -\frac{A_{123}r_c}{6h} \left[1 + \frac{14h}{\lambda}\right]^{-1}$$
 [S3]

47 where A_{123} [ML²T⁻² is the Hamaker constant, and λ is a characteristic wavelength that was taken 48 as 100 nm.² The value of Φ_s^{Born} was calculated from Ruckenstein and Prieve³ for a sphere-plate 49 interactions as:

50
$$\Phi_{S}^{Born}(h) = \frac{A_{123}\sigma_{c}^{6}}{7560} \left[\frac{8r_{c}+h}{(2r_{c}+7)^{7}} + \frac{6r_{c}-h}{h^{7}} \right]$$
[S4]

The collision diameter, σ_c , was taken as 0.26 nm in order to achieve a primary minimum depth at 0.157 nm, a commonly accepted distance of closest approach.⁴

Slightly modified versions of Eqs. [S2] and [S3] were employed for colloid-colloid interactions. In particular, the value of r_c was replaced by $r_{c1}r_{c2}/(r_{c1}+r_{c2})$ for sphere-sphere interactions; where r_{c1} [L] and r_{c2} [L] are the radii of two colloids denoted with subscripts 1 and 2, respectively. Unfortunately, Eq. [S4] cannot be simply modified in a similar manner to determine the Born repulsion for sphere-sphere geometry. In this case, the expression of Oliveira⁵ was employed to determine Born repulsion as:

59
$$\Phi_s^{Born}(h) = \frac{A_{123}H_{min}^6}{168h^7} \left[\frac{r_{c1}r_{c2}}{r_{c1}+r_{c2}} \right]$$
[S5]

60 where H_{min} [L] is the value of closest approach equal to 0.157 nm.

All interaction energies were made dimensionless by dividing by the product of the Boltzmann constant ($k_B = 1.38 \times 10^{-23} \text{ J K}^{-1}$) and the absolute temperature (T_K).

63 Cited Literature

- 64 (S1) Hogg, R.; Healy, T. W.; Fuerstenau, D. W., Mutual coagulation of colloidal dispersions.
- 65 Trans. Faraday Soc. 1966, 62, 1638–1651
- 66 (S2) Gregory, J., Approximate expression for retarded van der Waals interaction. J. Colloid
- 67 Interface Sci. 1981, 83, 138–145.
- 68 (S3) Ruckenstein, E.; Prieve, D. C., Adsorption and desorption of particles and their
- 69 chromatographic separation. *AIChE J.* **1976**, 22, 276-285.
- 70 (S4) van Oss, C.J. Interfacial Forces in Aqueous Media. Marcel Dekker (New York), 1994.
- 71 (S5) Oliveira, R. Understanding adhesion: a means for preventing fouling. *Exp. Therm. Fluid*
- 72 *Sci.* **1997**, 14, 316–322.

73

Figure S1. Plots of ε_1 as a function of Φ_{max} when $\Phi_{2min}=0$ and $\Phi_{1min}=-\infty$ (unfavorable electrostatic conditions), and ε_{r1} as a function of the magnitude of Φ_{1min} when $\Phi_{2min}=0$ and

 $\Phi_{max}=0$ (favorable electrostatic conditions).

Figure S2. Plots of Φ_{Imin} for a physically and chemically homogeneous oocyst and SWI when the IS=10 mM and the zeta potential of the oocyst and the SWI were varied between -60 to 60 mV.

79