
Supporting Information

High Strength Astringent Hydrogels Using Protein as the Building Block for Physically Crosslinked Multi-Network

Rongnian Xu^{ab}[‡], Shuanhong Ma^a[‡], Peng Lin^a, Bo Yu^a, Feng Zhou^a*, Weimin Liu^a*

R. Xu, S. Ma, P. Lin, Prof. F. Zhou, Prof. W. Liu ^a State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics Chinese Academy of Sciences Lanzhou 730000, China E-mail: zhouf@licp.cas.cn; wmliu@licp.cas.cn R. Xu ^b College of Materilas Science and Opto-Electonic Technology, University of Chinese Academy of Sciences Beijing 100049, China

‡ These people contribute equally.

Figure S1. Fourier-transform infrared spectroscopy (FTIR) of the as-prepared hydrogels.

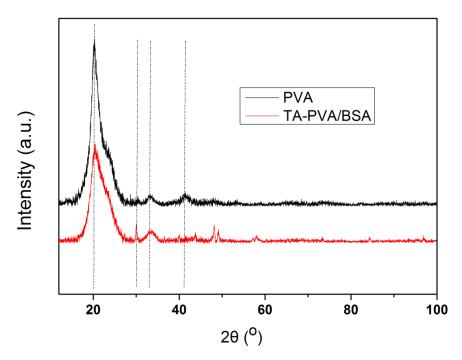
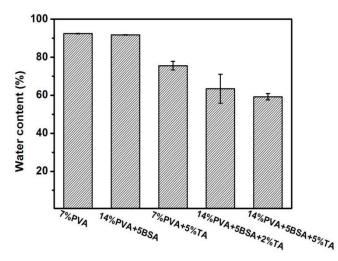
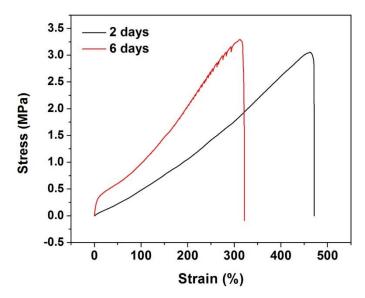
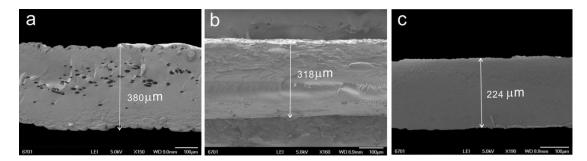


Figure S2. X-ray diffraction (XRD) patterns of PVA hydrogel and TA-PVA/BSA hydrogel.

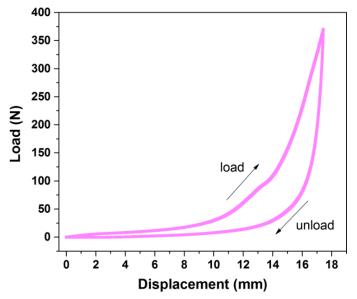

Figure S3. The water content of hydrogels.

Figure S4. Stress-strain curves of TA(5%)-PVA@BSA(5mg/mL) hydrogel with different soaking time in TA.

Figure S5. The cross-sectional SEM morphology of TA-PVA@BSA(5mg/mL) hydrogel with different immersing time in 5% TA solution (the original thickness of PVA@BSA hydrogel is 0.8 mm, BSA: 5mg/mL). (a) 6h; (b) 12h and (c) 48h.

Figure S6. Load-unload compression curve of TA(5%)-PVA@BSA(5mg/mL) hydrogel cylinder after heating at 50 °C for 22 h.