Supporting Information

Enhanced Photovoltaic Performance of Tetrazine-Based Small Molecules with Conjugated Side Chain

Chen Wang, Chang Li, Shanpeng Wen,* Pengfei Ma, Ge Wang, Changhao Wang, Huayang Li,

Liang Shen, Wenbin Guo and Shengping Ruan

Methods:

The thermal stability of two synthesized SMs is investigated by thermogravimetric analysis (TGA). The TGA was performed on a Perkin Elmer Pyris 1 analyzer under a nitrogen atmosphere (100 mL min⁻¹) at a heating rate of 10 °C min⁻¹. The temperatures with 5% loss for TBDT(TTzT)2 and TBDT(TTz2T)2 are 315 °C and 320 °C, respectively.

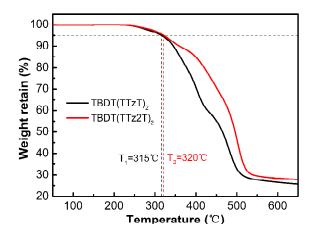


Figure S1.TGA plots of TBDT(TTzT)₂ and TBDT(TTz2T)₂ small molecules.

Transmission electron microscopy (TEM) test was carried out towards four SM:PC₇₁BM blend films to investigate the morphology across the active layers. TEM was conducted using a Hitachi H-800 electron microscope at an acceleration voltage of 200 kV with a CCD camera.

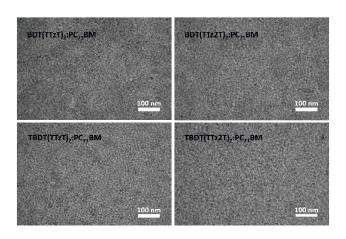


Figure S2.TEM images of blend film morphology of four SMs.

In this work, hole mobilities (μ_h) are determined using space-charge-limited-current (SCLC) method, with a hole only device structure of ITO/PEDOT:PSS/Sample films/Au. Sample films include pure SM films and SM:PC₇₁BM blend films. The dark *J-V* curves were recorded and fitted to a space charge limited form, where the SCLC is described by the Equation of

$$J = \frac{9}{8} \varepsilon_0 \varepsilon_r \mu_h \frac{\left(V - V_{bi} - V_r\right)^2}{L^3} \ . \label{eq:Jacobs}$$

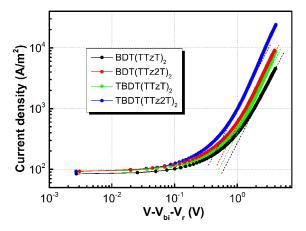


Figure S3.J-V characteristics of the hole-only device based on pure SM films.

Table S1. The derived μ_{h} values of four small molecules in pure films.

	BDT(TTzT) ₂	BDT(TTz2T) ₂	TBDT(TTzT) ₂	TBDT(TTz2T) ₂
$\mu_h (cm^2/Vs)$	1.28×10 ⁻⁴	2.54×10 ⁻⁴	1.65×10 ⁻⁴	5.01×10 ⁻⁴

Table S2. The dihedral angles of four SMs determined through DFT calculations.

Small molecule	Structure	θ ₁ (°)	θ ₂ (°)	HOMO orbital	LUMO orbital
BDT(TTzT) ₂		2.8	-	Second Cons	The said of the said
BDT(TTz2T) ₂		5.1	-	ANTONE TO A STATE OF THE PARTY	AND THE PROPERTY OF THE PARTY O
TBDT(TTzT) ₂	N-N S S S S	4.6	56.8	Social Const	
TBDT(TTz2T) ₂	S S S N-N S S S S S S S S S S S S S S S	6.9	57.0	AND THE PROPERTY OF THE PARTY O	

Table S3.Photovoltaic parameters based on different photoactive layer and D/A weight ratio under similar film thickness.

Photoactive layer	Weight ratio	Film thickness (nm)	$V_{\rm oc}({ m V})$	$J_{\rm sc}$ (mAcm ⁻²)	FF(%)	PCE (%)
TBDT(TTzT) ₂ : PC ₇₁ BM	2:1	70	1.00	4.83	47.0	2.27
	1.5:1	75	1.03	5.10	52.0	2.73
	1:1	73	1.01	4.62	50.7	2.34
	1:1.5	78	1.01	4.21	43.4	1.85
	2:1	76	0.89	5.02	46.1	2.06
$TBDT(TTz2T)_2$:	1.5:1	79	0.93	5.41	51.6	2.60
PC ₇₁ BM	1:1	81	0.96	6.10	53.1	3.11
	1:1.5	80	0.95	5.78	49.4	2.71